## C- <br> CYPRESS

The following document contains information on Cypress products. The document has the series name, product name, and ordering part numbering with the prefix "MB". However, Cypress will offer these products to new and existing customers with the series name, product name, and ordering part number with the prefix "CY".

## How to Check the Ordering Part Number

1. Go to www.cypress.com/pcn.
2. Enter the keyword (for example, ordering part number) in the SEARCH PCNS field and click Apply.
3. Click the corresponding title from the search results.
4. Download the Affected Parts List file, which has details of all changes

For More Information
Please contact your local sales office for additional information about Cypress products and solutions.

## About Cypress

Cypress is the leader in advanced embedded system solutions for the world's most innovative automotive, industrial, smart home appliances, consumer electronics and medical products. Cypress' microcontrollers, analog ICs, wireless and USB-based connectivity solutions and reliable, high-performance memories help engineers design differentiated products and get them to market first. Cypress is committed to providing customers with the best support and development resources on the planet enabling them to disrupt markets by creating new product categories in record time. To learn more, go to www.cypress.com.

The MB90595G series with FULL-CAN interface and FLASH ROM is especially designed for automotive and industrial applications. Its main features are two on board CAN Interfaces, which conform to V2.0 Part A and Part B, while supporting a very flexible message buffer scheme and so offering more functions than a normal full CAN approach.
The instruction set of $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{LX}$ CPU core inherits an AT architecture of the $\mathrm{F}^{2} \mathrm{MC}^{*}$ family with additional instruction sets for highlevel languages, extended addressing mode, enhanced multiplication/division instructions, and enhanced bit manipulation instructions. The microcontroller has a 32-bit accumulator for processing long word data.
The MB90595G series has peripheral resources of 8/10-bit A/D converters, UART (SCI), extended I/O serial interface, 8/16-bit PPG timer, I/O timer (input capture (ICU), output compare (OCU)) and stepping motor controller.

## Features

■ Clock
Embedded PLL clock multiplication circuit
Operating clock (PLL clock) can be selected from divided-by2 of oscillation or one to four times the oscillation (at oscillation of $4 \mathrm{MHz}, 4 \mathrm{MHz}$ to 16 MHz ).
Minimum instruction execution time: 62.5 ns (operation at oscillation of 4 MHz , four times the oscillation clock,
Vcc of 5.0 V )
■ Instruction set to optimize controller applications
Rich data types (bit, byte, word, long word)
Rich addressing mode (23 types)
Enhanced signed multiplication/division instruction and RETI instruction functions
Enhanced precision calculation realized by the 32-bit accumulator

■ Instruction set designed for high level language (C language) and multi-task operations
Adoption of system stack pointer
Enhanced pointer indirect instructions
Barrel shift instructions
■ Program patch function (for two address pointers)
■ Enhanced execution speed: 4-byte instruction queue
■ Enhanced interrupt function: 8 levels, 34 factors

- Automatic data transmission function independent of CPU operation
Extended intelligent I/O service function (EI ${ }^{2} \mathrm{OS}$ ): Up to 10 channels

■ Embedded ROM size and types
Mask ROM: 128 Kbytes
Flash ROM: 128 Kbytes
Embedded RAM size: 4 Kbytes (MB90595G: 6 Kbytes)

- Flash ROM

Supports automatic programming, Embedded Algorithm
Write/Erase/Erase-Suspend/Resume commands
A flag indicating completion of the algorithm
Hard-wired reset vector available in order to point to a fixed boot sector
Erase can be performed on each block
Block protection with external programming voltage
■ Low-power consumption (stand-by) mode
Sleep mode (mode in which CPU operating clock is stopped)
Stop mode (mode in which oscillation is stopped)

CPU intermittent operation mode Hardware stand-by mode

■ Process: $0.5 \mu \mathrm{~m}$ CMOS technology

- I/O port

General-purpose I/O ports: 78 ports
Push-pull output and Schmitt trigger input.
Programmable on each bit as I/O or signal for peripherals.
■ Timer
Watchdog timer: 1 channel
8/16-bit PPG timer: 8/16-bit $\times 6$ channels
16-bit re-load timer: 2 channels

- 16-bit I/O timer

16-bit Free-run timer: 1 channel
Input capture: 4 channels
Output compare: 4 channels
■ Extended I/O serial interface: 1 channel

- UARTO

With full-duplex double buffer (8-bit length) Clock asynchronized or clock synchronized (with start/stop bit) transmission can be selectively used.
■ UART1 (SCI)
With full-duplex double buffer (8-bit length)
Clock asynchronized or clock synchronized serial transmission (I/O extended transmission) can be selectively used.

■ Stepping motor controller (4 channels)

- External interrupt circuit (8 channels)

A module for starting an extended intelligent I/O service (EI ${ }^{2} \mathrm{OS}$ ) and generating an external interrupt which is triggered by an external input.

■ Delayed interrupt generation module: Generates an interrupt request for switching tasks.

■ 8/10-bit A/D converter (8 channels) 8/10-bit resolution can be selectively used. Starting by an external trigger input.
■ FULL-CAN interface: 1 channel Conforming to Version 2.0 Part A and Part B Flexible message buffering (mailbox and FIFO buffering can be mixed)

- 18-bit Time-base counter

■ External bus interface: Maximum address space 16 Mbytes

MB90595G Series

## Contents

Product Lineup .....  3
Pin Assignment ..... 5
Pin Description ..... 6
I/O Circuit Type ..... 8
Handling Devices ..... 11
Block Diagram ..... 14
Memory Space ..... 15
I/O Map ..... 16
Can Controller ..... 23
List of Control Registers ..... 23
List of Message Buffers (ID Registers) ..... 24
List of Message Buffers (DLC Registers and Data Registers) ..... 27
Interrupt Source, Interrupt Vector, and Interrupt Control Register ..... 29
Electrical Characteristics ..... 31
Absolute Maximum Ratings ..... 31
Recommended Conditions ..... 33
DC Characteristics ..... 33
AC Characteristics ..... 35
A/D Converter ..... 42
A/D Converter Glossary ..... 44
Notes on Using A/D Converter ..... 45
Flash memory ..... 46
Example Characteristics ..... 47
Ordering Information ..... 49
Package Dimensions ..... 50
Major Changes ..... 51

## 1. Product Lineup

| Features |  | MB90598G | MB90F598G | MB90V595G |
| :---: | :---: | :---: | :---: | :---: |
| Classification |  | Mask ROM product | Flash ROM product | Evaluation product |
| ROM size |  | 128 Kbytes | 128 Kbytes Boot block Hard-wired reset vector | None |
| RAM size |  | 4 Kbytes | 4 Kbytes | 6 Kbytes |
| Emulator-specific power supply *1 |  | - |  | None |
| CPU functions |  | The number of instructions: 351 Instruction bit length: 8 bits, 16 bits Instruction length: 1 byte to 7 bytes Data bit length: 1 bit, 8 bits, 16 bits Minimum execution time: 62.5 ns (at machine clock frequency of 16 MHz ) Interrupt processing time: $1.5 \mu \mathrm{~s}$ (at machine clock frequency of 16 MHz , minimum value) |  |  |
| UART0 |  | Clock synchronized transmission ( $500 \mathrm{~K} / 1 \mathrm{M} / 2 \mathrm{Mbps}$ ) <br> Clock asynchronized transmission (4808/5208/9615/10417/19230/38460/62500 <br> / 500000 bps at machine clock frequency of 16 MHz ) <br> Transmission can be performed by bi-directional serial transmission or by master/slave connection. |  |  |
| UART1(SCI) |  | Clock synchronized transmission ( $62.5 \mathrm{~K} / 125 \mathrm{~K} / 250 \mathrm{~K} / 500 \mathrm{~K} / 1 \mathrm{Mbps}$ ) <br> Clock asynchronized transmission (1202/2404/4808/9615/31250 bps) <br> Transmission can be performed by bi-directional serial transmission or by master/slave connection. |  |  |
| 8/10-bit A/D converter |  | Conversion precision: 8/10-bit can be selectively used. <br> Number of inputs: 8 <br> One-shot conversion mode (converts selected channel once only) <br> Scan conversion mode (converts two or more successive channels and can program up to 8 channels) <br> Continuous conversion mode (converts selected channel continuously) <br> Stop conversion mode (converts selected channel and stop operation repeatedly) |  |  |
| 8/16-bit PPG timers (6 channels) |  | Number of channels: 6 (8/16-bit $\times 6$ channels) <br> PPG operation of 8-bit or 16-bit <br> A pulse wave of given intervals and given duty ratios can be output. <br> Pulse interval: fsys, fsys $/ 2^{1}, \mathrm{fsys} / 2^{2}$, fsys $/ 2^{3}$, fsys $/ 2^{4}$ (fsys $=$ system clock frequency) <br> $128 \mu \mathrm{~s}$ (fosc $=4 \mathrm{MHz}$ : oscillation clock frequency) |  |  |
| 16-bit Reload timer |  | Number of channels: 2 <br> Operation clock frequency: fsys $/ 2^{1}$, fsys $/ 2^{3}$, fsys $/ 2^{5}$ (fsys = System clock frequency) <br> Supports External Event Count function |  |  |
| 16-bit I/O timer | 16-bit Output compares | Number of channels: 4 <br> Pin input factor: A match signal of compare register |  |  |
|  | Input captures | Number of channels: 4 <br> Rewriting a register value upon a pin input (rising, falling, or both edges) |  |  |


| Features | MB90598G | MB90F598G | MB90V595G |
| :---: | :---: | :---: | :---: |
| CAN Interface | Number of channels: 1 <br> Conforms to CAN Specification Version 2.0 Part A and B <br> Automatic re-transmission in case of error <br> Automatic transmission responding to Remote Frame <br> Prioritized 16 message buffers for data and ID's <br> Supports multiple messages <br> Flexible configuration of acceptance filtering: <br> Full bit compare / Full bit mask / Two partial bit masks <br> Supports up to 1 Mbps <br> CAN bit timing setting: <br> MB90598G/F598G:TSEG2 $\geq$ RSJW |  |  |
| Stepping motor controller (4 channels) | Four high current outputs for each channel Synchronized two 8-bit PWM's for each channel |  |  |
| External interrupt circuit | Number of inputs: 8 <br> Started by a rising edge, a falling edge, an "H" level input, or an "L" level input. |  |  |
| Serial IO | Clock synchronized transmission ( $31.25 \mathrm{~K} / 62.5 \mathrm{~K} / 125 \mathrm{~K} / 500 \mathrm{~K} / 1 \mathrm{Mbps}$ at system clock frequency of 16 MHz ) <br> LSB first/MSB first |  |  |
| Watchdog timer | Reset generation interval: $3.58 \mathrm{~ms}, 14.33 \mathrm{~ms}, 57.23 \mathrm{~ms}, 458.75 \mathrm{~ms}$ (at oscillation of 4 MHz , minimum value) |  |  |
| Flash Memory | Supports automatic programming, Embedded Algorithm and <br> Write/Erase/Erase-Suspend/Resume commands <br> A flag indicating completion of the algorithm <br> Hard-wired reset vector available in order to point to a fixed boot sector in Flash <br> Memory <br> Boot block configuration <br> Erase can be performed on each block <br> Block protection with external programming voltage <br> Flash Writer from Minato Electronics, Inc. |  |  |
| Low-power consumption (stand-by) mode | Sleep/stop/CPU intermittent operation/watch timer/hardware stand-by |  |  |
| Process | cmos |  |  |
| Power supply voltage for operation*2 | $+5 \mathrm{~V} \pm 10$ \% |  |  |
| Package | QFP-100 |  | PGA-256 |

*1: It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.
Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.
*2: Varies with conditions such as the operating frequency. (See "Electrical Characteristics.")

## 2．Pin Assignment

| （Top view） |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
| P21 | 1 2 | P94／INT2 |
| P22 | 3 （ 78 | P93／INT1 |
| P23 |  | RST |
| P24 |  | $\square \mathrm{P} 92 / \mathrm{INTO}$ |
| P25 | 6 （ 75 | ］P91／RX |
| P26 | 7 （ 74 | $\square \mathrm{P90} / \mathrm{TX}$ |
| P27 |  | $\square \mathrm{DVss}$ |
| P30 | 9 （ 72 | 口P87／PWM2M3 |
| P31 | 10 （ 71 | ］P86／PWM2P3 |
| Vss | 11 （ 70 | ］P85／PWM1M3 |
| P32 |  | P84／PWM1P3 |
| P33 | 13 （ 68 | $\square \mathrm{DV}$ cc |
| P34 |  | ］P83／PWM2M2 |
| P35 | 15 （ 66 | ］P82／PWM2P2 |
| P36 |  | －P81／PWM1M2 |
| P37 | 17 （ 64 | P80／PWM1P2 |
| P40／SOT0 |  | 口DVss |
| P41／SCK0 |  | 口P77／PWM2M1 |
| P42／SIN0 |  | 口P76／PWM2P1 |
| P43／SIN1 | 21 60 | 口P75／PWM1M1 |
| P44／SCK1 | 22 29 | ］P74／PWM1P1 |
| Vcc | 23 － 58 | 口DVcc |
| P45／SOT1 |  | ］P73／PWM2M0 |
| P46／SOT2 |  | 口P72／PWM2P0 |
| P47／SCK2 | 26 （ 55 | ］P71／PWM1M0 |
|  | 27 （ 54 | 口P70／PWM1P0 |
| P50／SIN2 | 28 （ 53 | $\square \mathrm{DVss}$ |
| P51／INT4 | 29 20 52 | $\square \mathrm{HST}$ |
| P52／INT5 |  | $\square \mathrm{MD} 2$ |
|  |  |  |
|  |  |  |
|  |  |  |  |  |
| （PQH100） |  |  |

## 3. Pin Description

| Pin $n$ o. | Pin name | Circuit type | Function |
| :---: | :---: | :---: | :---: |
| 82 | X0 | A | Oscillator pin |
| 83 | X1 |  |  |
| 77 | $\overline{\mathrm{RST}}$ | B | Reset input |
| 52 | HST | C | Hardware standby input |
| 85 to 88 | P00 to P03 | G | General purpose IO |
|  | IN0 to IN3 |  | Inputs for the Input Captures |
| 89 to 92 | P04 to P07 | G | General purpose IO |
|  | OUT0 to OUT3 |  | Outputs for the Output Compares. |
| 93 to 98 | P10 to P15 | D | General purpose IO |
|  | PPG0 to PPG5 |  | Outputs for the Programmable Pulse Generators |
| 99 | P16 | D | General purpose IO |
|  | TIN1 |  | TIN input for the 16-bit Reload Timer 1 |
| 100 | P17 | D | General purpose IO |
|  | TOT1 |  | TOT output for the 16-bit Reload Timer 1 |
| 1 to 8 | P20 to P27 | G | General purpose IO |
| 9 to 10 | P30 to P31 | G | General purpose IO |
| 12 to 16 | P32 to P36 | G | General purpose IO |
| 17 | P37 | D | General purpose IO |
| 18 | P40 | G | General purpose IO |
|  | SOTO |  | SOT output for UART 0 |
| 19 | P41 | G | General purpose IO |
|  | SCK0 |  | SCK input/output for UART 0 |
| 20 | P42 | G | General purpose IO |
|  | SINO |  | SIN input for UART 0 |
| 21 | P43 | G | General purpose IO |
|  | SIN1 |  | SIN input for UART 1 |
| 22 | P44 | G | General purpose IO |
|  | SCK1 |  | SCK input/output for UART 1 |
| 24 | P45 | G | General purpose IO |
|  | SOT1 |  | SOT output for UART 1 |
| 25 | P46 | G | General purpose IO |
|  | SOT2 |  | SOT output for the Serial IO |
| 26 | P47 | G | General purpose IO |
|  | SCK2 |  | SCK input/output for the Serial IO |


| Pin no. | Pin name | Circuit type | Function |
| :---: | :---: | :---: | :---: |
| 28 | P50 | D | General purpose IO |
|  | SIN2 |  | SIN Input for the Serial IO |
| 29 to 32 | P51 to P54 | D | General purpose IO |
|  | INT4 to INT7 |  | External interrupt input for INT4 to INT7 |
| 33 | P55 | D | General purpose IO |
|  | ADTG |  | Input for the external trigger of the A/D Converter |
| 38 to 41 | P60 to P63 | E | General purpose IO |
|  | AN0 to AN3 |  | Inputs for the A/D Converter |
| 43 to 46 | P64 to P67 | E | General purpose IO |
|  | AN4 to AN7 |  | Inputs for the A/D Converter |
| 47 | P56 | D | General purpose IO |
|  | TINO |  | TIN input for the 16-bit Reload Timer 0 |
| 48 | P57 | D | General purpose IO |
|  | TOTO |  | TOT output for the 16-bit Reload Timer 0 |
| 54 to 57 | P70 to P73 | F | General purpose IO |
|  | PWM1P0 <br> PWM1M0 <br> PWM2P0 <br> PWM2M0 |  | Output for Stepper Motor Controller channel 0 |
| 59 to 62 | P74 to P77 | F | General purpose IO |
|  | PWM1P1 <br> PWM1M1 <br> PWM2P1 <br> PWM2M1 |  | Output for Stepper Motor Controller channel 1 |
| 64 to 67 | P80 to P83 | F | General purpose IO |
|  | PWM1P2 <br> PWM1M2 <br> PWM2P2 <br> PWM2M2 |  | Output for Stepper Motor Controller channel 2 |
| 69 to 72 | P84 to P87 | F | General purpose IO |
|  | PWM1P3 <br> PWM1M3 <br> PWM2P3 <br> PWM2M3 |  | Output for Stepper Motor Controller channel 3 |
| 74 | P90 | D | General purpose IO |
|  | TX |  | TX output for CAN Interface |
| 75 | P91 | D | General purpose IO |
|  | RX |  | RX input for CAN Interface |


| Pin no. | Pin name | Circuit type | Function |
| :---: | :---: | :---: | :---: |
| 76 | P92 | D | General purpose IO |
|  | INTO |  | External interrupt input for INT0 |
| 78 to 80 | P93 to P95 | D | General purpose IO |
|  | INT1 to INT3 |  | External interrupt input for INT1 to INT3 |
| 58,68 | DVcc | - | Dedicated power supply pins for the high current output buffers (Pin No. 54 to 72) |
| 53, 63, 73 | DVss | - | Dedicated ground pins for the high current output buffers (Pin No. 54 to 72) |
| 34 | AV ${ }_{\text {cc }}$ | Power supply | Dedicated power supply pin for the A/D Converter |
| 37 | AVss | Power supply | Dedicated ground pin for the A/D Converter |
| 35 | AVRH | Power supply | Upper reference voltage input for the A/D Converter |
| 36 | AVRL | Power supply | Lower reference voltage input for the A/D Converter |
| 49, 50 | $\begin{aligned} & \text { MD0 } \\ & \text { MD1 } \end{aligned}$ | C | Operating mode selection input pins. These pins should be connected to $\mathrm{V}_{\mathrm{cc}}$ or $\mathrm{V}_{\mathrm{ss}}$. |
| 51 | MD2 | H | Operating mode selection input pin. This pin should be connected to Vcc or Vss. |
| 27 | C | - | External capacitor pin. A capacitor of $0.1 \mu \mathrm{~F}$ should be connected to this pin and Vss. |
| 23, 84 | Vcc | Power supply | Power supply pins ( 5.0 V ). |
| 11, 42, 81 | Vss | Power supply | Ground pins ( 0.0 V ). |

## 4. I/O Circuit Type

| Circuit Type | Circuit | Remarks |
| :---: | :---: | :---: |
| A | Hard, Soft Standby control | Oscillation feedback resistor: $1 \mathrm{M} \Omega$ approx. |
| B |  | - Hysteresis input with pull-up Resistor: $50 \mathrm{k} \Omega$ approx. |
| C |  | - Hysteresis input |


| Circuit Type | Circuit | Remarks |
| :---: | :---: | :---: |
| D |  | $■$ CMOS output - CMOS Hysteresis input |
| E |  | CMOS output <br> CMOS Hysteresis input <br> - Analog input |


| Circuit Type | Circuit | Remarks |
| :---: | :---: | :---: |
| F |  | ■ CMOS high current output <br> CMOS Hysteresis input |
| G |  | ■ CMOS output - CMOS Hysteresis input TTL input (MB90F598G, only in Flash mode) |
| H |  | - Hysteresis input Pull-down Resistor: $50 \mathrm{k} \Omega$ approx. (except MB90F598G) |

## 5. Handling Devices

(1) Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below V ss is applied to input or output pins or a voltage exceeding the rating is applied across Vcc and V ss.
When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.
In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH, DVcc) and analog input voltages not exceed the digital voltage ( Vcc ).
(2) Treatment of Unused Pins

Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least $2 \mathrm{k} \Omega$ resistance.
Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.
(3) Using external clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.


## (4) Power supply pins (Vcc/Vss)

In products with multiple $\mathrm{V}_{\mathrm{cc}}$ or $\mathrm{V}_{\mathrm{ss}}$ pins, pins with the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating (See the figure below.)
Make sure to connect $\mathrm{V}_{\mathrm{cc}}$ and $\mathrm{V}_{\mathrm{ss}}$ pins via lowest impedance to power lines.
It is recommended to provide a bypass capacitor of around $0.1 \mu \mathrm{~F}$ between $\mathrm{V}_{\text {cc }}$ and $\mathrm{V}_{\text {ss }}$ pins near the device.


## (5) Pull-up/down resistors

The MB90595G Series does not support internal pull-up/down resistors. Use external components where needed.

## (6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may cause abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuit not cross the lines of other circuits.
A printed circuit board artwork surrounding the X 0 and X 1 pins with ground area for stabilizing the operation is highly recommended.
(7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply ( Vcc ).
Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

## (8) Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to $A V c c=\mathrm{Vcc}, \mathrm{AV} s \mathrm{~s}=\mathrm{AVRH}=\mathrm{DV} \mathrm{cc}=\mathrm{V}$ ss.
(9) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

## (10) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at
$50 \mu \mathrm{~s}$ or more ( 0.2 V to 2.7 V ).
(11) Indeterminate outputs from ports 0 and 1 (MB90V595G only)

During oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on, the outputs from ports 0 and 1 become following state.

■ If $\overline{R S T}$ pin is " H ", the outputs become indeterminate.
■ If $\overline{\mathrm{RST}}$ pin is " L ", the outputs become high-impedance.
Pay attention to the port output timing shown as follows.


(12) Initialization

The device contains internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.
(13) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in " 00 h ".
If the values of the corresponding bank register (DTB,ADB,USB,SSB) are set to other than " 00 H ", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.
(14) Using REALOS

The use of $\mathrm{El}^{2} \mathrm{OS}$ is not possible with the REALOS real time operating system.
(15) Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected in the microcontroller, it may attempt to continue the operation using the free-running frequency of the automatic oscillating circuit in the PLL circuitry even if the oscillator is out of place or the clock input is stopped. Performance of this operation, however, cannot be guaranteed.

## 6. Block Diagram



## 7. Memory Space

The memory space of the MB90595G Series is shown below
Figure 1. Memory space map


Note: : The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16 -bit of bank FF and the lower 16 -bit of bank 00 are assigned to the same address, enabling reference of the table on the ROM without stating "far".
For example, if an attempt has been made to access 00 COOOH , the contents of the ROM at FFCOOOH are accessed. Since the ROM area of the FF bank exceeds 48 Kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000н to FFFFFFн looks, therefore, as if it were the image for 004000 н to 00 FFFFн. Thus, it is recommended that the ROM data table be stored in the area of FF4000н to FFFFFFH.

## 8. I/O Map

| Address | Register | Abbreviation | Access | Peripheral | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 00н | Port 0 Data Register | PDR0 | R/W | Port 0 | XXXXXXXX |
| 01н | Port 1 Data Register | PDR1 | R/W | Port 1 | ХХХХХХХХХв |
| 02н | Port 2 Data Register | PDR2 | R/W | Port 2 | XXXXXXXX |
| 03н | Port 3 Data Register | PDR3 | R/W | Port 3 | XXXXXXXX |
| 04 | Port 4 Data Register | PDR4 | R/W | Port 4 | XXXXXXXX |
| 05 | Port 5 Data Register | PDR5 | R/W | Port 5 | XXXXXXXX |
| 06н | Port 6 Data Register | PDR6 | R/W | Port 6 | XXXXXXXX |
| 07 ${ }^{\text {}}$ | Port 7 Data Register | PDR7 | R/W | Port 7 | XXXXXXXX |
| 08H | Port 8 Data Register | PDR8 | R/W | Port 8 | XXXXXXXX |
| 09н | Port 9 Data Register | PDR9 | R/W | Port 9 | __ XXXXXX ${ }_{\text {¢ }}$ |
| OAн to 0F\% | Reserved |  |  |  |  |
| 10н | Port 0 Direction Register | DDR0 | R/W | Port 0 | 00000000 в |
| 11н | Port 1 Direction Register | DDR1 | R/W | Port 1 | 00000000 в |
| 12H | Port 2 Direction Register | DDR2 | R/W | Port 2 | 00000000 в |
| 13н | Port 3 Direction Register | DDR3 | R/W | Port 3 | 00000000 в |
| 14 | Port 4 Direction Register | DDR4 | R/W | Port 4 | 00000000 в |
| 15н | Port 5 Direction Register | DDR5 | R/W | Port 5 | 00000000 в |
| 16н | Port 6 Direction Register | DDR6 | R/W | Port 6 | 00000000 в |
| 17H | Port 7 Direction Register | DDR7 | R/W | Port 7 | 00000000 в |
| 18н | Port 8 Direction Register | DDR8 | R/W | Port 8 | 00000000 в |
| 19н | Port 9 Direction Register | DDR9 | R/W | Port 9 | _ _ 000000 в |
| 1 Ан $^{\text {¢ }}$ | Reserved |  |  |  |  |
| 1 BH | Analog Input Enable Register | ADER | R/W | Port 6, A/D | 1111111 1в |
| 1- $\mathrm{CH}_{\text {to }} 1 \mathrm{FH}$ | Reserved |  |  |  |  |
| 20 н | Serial Mode Control Register 0 | UMC0 | R/W | UART0 | $00000100{ }_{\text {в }}$ |
| 21н | Serial status Register 0 | USR0 | R/W |  | 00010000 в |
| 22н | Serial Input/Output Data Register 0 | UIDR0/UODR0 | R/W |  | XXXXXXXX |
| 23H | Rate and Data Register 0 | URDO | R/W |  | 0000000 Х |
| 24- | Serial Mode Register 1 | SMR1 | R/W | UART1 | 00000000 в |
| 25 н | Serial Control Register 1 | SCR1 | R/W |  | $00000100^{\text {b }}$ |
| 26н | Serial Input/Output Data Register 1 | SIDR1/SODR1 | R/W |  | XXXXXXXX |
| 27 | Serial Status Register 1 | SSR1 | R/W |  | 00001 _ 00 в |
| 28н | UART1 Prescaler Control Register | U1CDCR | R/W |  | 0__ 1111 в |

(Continued)

| Address | Register | Abbreviation | Access | Peripheral | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $29_{\text {н }}$ to 2 A $^{\text {r }}$ | Reserved |  |  |  |  |
| 2 BH | Serial IO Prescaler | SCDCR | R/W | Serial IO | $0_{\text {_ }}$ - 1111 в |
| 2 CH | Serial Mode Control Register (low-order) | SMCS | R/W |  | ----00008 |
| 2Dн | Serial Mode Control Register (high-order) | SMCS | R/W |  | 00000010 в |
| 2Eн | Serial Data Register | SDR | R/W |  | ХХХХХХХХХ в |
| 2 FH | Edge Selector | SES | R/W |  | ------- ${ }^{\text {O }}$ |
| 30 H | External Interrupt Enable Register | ENIR | R/W | External Interrupt | 00000000 в |
| 31н | External Interrupt Request Register | EIRR | R/W |  | XXXXXXXX |
| 32 ${ }^{\text {}}$ | External Interrupt Level Register | ELVR | R/W |  | 00000000 в |
| 33 ${ }^{\text {}}$ | External Interrupt Level Register | ELVR | R/W |  | 00000000 в |
| 34 н | A/D Control Status Register 0 | ADCS0 | R/W | A/D Converter | 00000000 B |
| 35 ${ }^{\text {H}}$ | A/D Control Status Register 1 | ADCS1 | R/W |  | 00000000 в |
| 36 | A/D Data Register 0 | ADCR0 | R |  | XXXXXXXX в |
| 37 ${ }^{\text {H}}$ | A/D Data Register 1 | ADCR1 | R/W |  | $00001_{\text {_ }} \times \chi_{\text {B }}$ |
| 38H | PPG0 Operation Mode Control Register | PPGC0 | R/W | 16-bit Programmable Pulse Generator 0/1 | $0_{-} 000{ }_{\text {_- }}{ }^{18}$ |
| 39 ${ }_{\text {H}}$ | PPG1 Operation Mode Control Register | PPGC1 | R/W |  | $0_{+} 000001_{\text {в }}$ |
| 3Ан | PPG0, 1 Output Pin Control Register | PPG01 | R/W |  | 00000 _ $^{\text {B }}$ |
| 3В ${ }_{\text {¢ }}$ | Reserved |  |  |  |  |
| $3 \mathrm{C}_{\mathrm{H}}$ | PPG2 Operation Mode Control Register | PPGC2 | R/W | 16-bit Programmable Pulse Generator 2/3 | $0_{-} 000{ }_{--}{ }^{18}$ |
| 3Dн | PPG3 Operation Mode Control Register | PPGC3 | R/W |  | 0_0000018 |
| 3Ен | PPG2, 3 Output Pin Control Register | PPG23 | R/W |  | $000000{ }_{\text {_ }}{ }^{\text {B }}$ |
| $3 \mathrm{FH}_{\mathrm{H}}$ | Reserved |  |  |  |  |
| 40 H | PPG4 Operation Mode Control Register | PPGC4 | R/W | 16-bit Programmable Pulse Generator 4/5 | $0_{-} 000{ }_{--}{ }^{18}$ |
| 41н | PPG5 Operation Mode Control Register | PPGC5 | R/W |  | $0_{-} 000001_{\text {B }}$ |
| 42H | PPG4, 5 Output Pin Control Register | PPG45 | R/W |  | $000000{ }_{\text {_ }}{ }^{\text {B }}$ |
| 43н | Reserved |  |  |  |  |
| 44н | PPG6 Operation Mode Control Register | PPGC6 | R/W | 16-bit Programmable Pulse Generator 6/7 | $0_{\sim} 000{ }_{--}{ }^{18}$ |
| 45 ${ }^{\text {H}}$ | PPG7 Operation Mode Control Register | PPGC7 | R/W |  | $0_{+} 000001_{\text {B }}$ |
| 46н | PPG6, 7 Output Pin Control Register | PPG67 | R/W |  | $000000^{\text {_ }}{ }^{\text {B }}$ |
| 47\% | Reserved |  |  |  |  |
| 48н | PPG8 Operation Mode Control Register | PPGC8 | R/W | 16-bit Programmable Pulse Generator 8/9 | $0_{-} 000_{--}{ }^{18}$ |
| 49н | PPG9 Operation Mode Control Register | PPGC9 | R/W |  | $0_{+} 000001_{\text {B }}$ |
| 4Ан | PPG8, 9 Output Pin Control Register | PPG89 | R/W |  | $000000{ }_{\text {_ }}{ }^{\text {B }}$ |
| $4 \mathrm{BH}^{\text {}}$ | Reserved |  |  |  |  |

(Continued)

| Address | Register | Abbreviation | Access | Peripheral | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 CH | PPGA Operation Mode Control Register | PPGCA | R/W | ```16-bit Programmable Pulse Generator A/B``` | $0_{\sim} 0000_{-} 1_{\text {B }}$ |
| 4D | PPGB Operation Mode Control Register | PPGCB | R/W |  | $0 \_000001_{\text {B }}$ |
| 4Ен | PPGA, B Output Pin Control Register | PPGAB | R/W |  | $000000{ }_{\text {- }}{ }^{\text {b }}$ |
| 4FH | Reserved |  |  |  |  |
| 50н | Timer Control Status Register 0 | TMCSR0 | R/W | $\begin{gathered} \text { 16-bit } \\ \text { Reload Timer } 0 \end{gathered}$ | 00000000 в |
| 51н | Timer Control Status Register 0 | TMCSR0 | R/W |  | ----00008 |
| 52H | Timer 0/Reload Register 0 | TMR0/TMRLR0 | R/W |  |  |
| 53 ${ }^{\text {¢ }}$ | Timer 0/Reload Register 0 | TMR0/TMRLR0 | R/W |  | $X X X X X X X \chi_{\text {в }}$ |
| 54н | Timer Control Status Register 1 | TMCSR1 | R/W | $\begin{gathered} \text { 16-bit } \\ \text { Reload Timer } 1 \end{gathered}$ | $00000000{ }_{\text {в }}$ |
| 55 | Timer Control Status Register 1 | TMCSR1 | R/W |  | ----00008 |
| 56н | Timer Register 1/Reload Register 1 | TMR1/TMRLR1 | R/W |  | $X X X X X X X \chi_{\text {в }}$ |
| 57\% | Timer Register 1/Reload Register 1 | TMR1/TMRLR1 | R/W |  | $X X X X X X X \chi_{\text {в }}$ |
| 58\% | Output Compare Control Status Register 0 | OCS0 | R/W | Output Compare 0/1 | $0000{ }_{\text {_ }} 000{ }_{\text {b }}$ |
| 59 ${ }_{\text {H }}$ | Output Compare Control Status Register 1 | OCS1 | R/W |  | - - $00000 \mathrm{O}_{\text {в }}$ |
| 5Ан | Output Compare Control Status Register 2 | OCS2 | R/W | Output Compare 2/3 | $0000{ }_{\text {_ }} 0000^{\text {b }}$ |
| 5Вн | Output Compare Control Status Register 3 | OCS3 | R/W |  | - - - $00000 \mathrm{O}_{\text {в }}$ |
| $5 \mathrm{C}_{\mathrm{H}}$ | Input Capture Control Status Register 0/1 | ICS01 | R/W | Input Capture 0/1 | $00000000{ }_{\text {b }}$ |
| 5D | Input Capture Control Status Register 2/3 | ICS23 | R/W | Input Capture 2/3 | $00000000{ }_{\text {b }}$ |
| 5Ен | PWM Control Register 0 | PWC0 | R/W | Stepping Motor Controller 0 | $00000{ }_{\text {_ }} 0_{\text {B }}$ |
| 5FH | Reserved |  |  |  |  |
| 60 ${ }^{\text {r }}$ | PWM Control Register 1 | PWC1 | R/W | Stepping Motor Controller 1 | $00000{ }_{\text {_ }} 0$ в |
| 61н | Reserved |  |  |  |  |
| 62н | PWM Control Register 2 | PWC2 | R/W | Stepping Motor Controller 2 | $00000{ }_{\text {_ }} 0_{\text {B }}$ |
| 63H | Reserved |  |  |  |  |
| 64 ${ }^{\text {H}}$ | PWM Control Register 3 | PWC3 | R/W | Stepping Motor Controller 3 | $00000{ }_{\text {_ }} 0_{\text {B }}$ |
| 65 | Reserved |  |  |  |  |
| 66 ${ }^{\text {}}$ | Timer Data Register (low-order) | TCDT | R/W | 16-bit Free-run Timer | $00000000{ }^{\text {b }}$ |
| 67н | Timer Data Register (high-order) | TCDT | R/W |  | $00000000{ }_{\text {в }}$ |
| 68н | Timer Control Status Register | TCCS | R/W |  | $00000000{ }_{\text {в }}$ |
| 69н to 6Eн | Reserved |  |  |  |  |

(Continued)

| Address | Register | Abbreviation | Access | Peripheral | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6F\% | ROM Mirror Function Selection Register | ROMM | R/W | ROM Mirror | _------ ${ }^{18}$ |
| 70н | PWM1 Compare Register 0 | PWC10 | R/W | Stepping Motor Controller 0 | XXXXXXXX ${ }_{\text {B }}$ |
| 71 H | PWM2 Compare Register 0 | PWC20 | R/W |  | XXXXXXXX |
| 72н | PWM1 Select Register 0 | PWS10 | R/W |  | _ $000000{ }_{\text {B }}$ |
| 73 | PWM2 Select Register 0 | PWS20 | R/W |  | _ $0000000{ }^{\text {c }}$ |
| 74 | PWM1 Compare Register 1 | PWC11 | R/W | Stepping Motor Controller 1 | XXXXXXXX ${ }_{\text {B }}$ |
| 75 | PWM2 Compare Register 1 | PWC21 | R/W |  | XXXXXXXX |
| 76 | PWM1 Select Register 1 | PWS11 | R/W |  | _ _ $000000{ }_{\text {в }}$ |
| 77 ${ }^{\text {}}$ | PWM2 Select Register 1 | PWS21 | R/W |  | _ 0000000 в |
| 78 | PWM1 Compare Register 2 | PWC12 | R/W | Stepping Motor Controller 2 | XXXXXXXX ${ }_{\text {B }}$ |
| 79н | PWM2 Compare Register 2 | PWC22 | R/W |  | XXXXXXXX |
| 7Ан | PWM1 Select Register 2 | PWS12 | R/W |  | _ _ $000000{ }_{\text {B }}$ |
| 7Вн | PWM2 Select Register 2 | PWS22 | R/W |  | _ 0000000 B |
| 7 CH | PWM1 Compare Register 3 | PWC13 | R/W | Stepping Motor Controller 3 | XXXXXXXX ${ }_{\text {в }}$ |
| 7D | PWM2 Compare Register 3 | PWC23 | R/W |  | XXXXXXXX |
| 7Ен | PWM1 Select Register 3 | PWS13 | R/W |  | _ $000000{ }_{\text {в }}$ |
| 7 F | PWM2 Select Register 3 | PWS23 | R/W |  | _ 0000000 в |
| 80н to 8Fн | CAN Controller. Refer to section about CAN Controller |  |  |  |  |
| 90н to 9Dн | Reserved |  |  |  |  |
| 9Ен | Program Address Detection Control Status Register | PACSR | R/W | Address Match Detection Function | 00000000 в |
| 9F\% | Delayed Interrupt/Request Register | DIRR | R/W | Delayed Interrupt | -------_ ${ }^{\text {в }}$ |
| AOH | Low-Power Mode Control Register | LPMCR | R/W | Low Power Controller | 00011000 в |
| A1н | Clock Selection Register | CKSCR | R/W | Low Power Controller | $11111100{ }^{\text {¢ }}$ |
| A2 ${ }_{\text {to }}$ to ${ }^{\text {\% }}$ H | Reserved |  |  |  |  |
| A8H | Watchdog Timer Control Register | WDTC | R/W | Watchdog Timer | XXXXX 111 в |
| A9н | Time Base Timer Control Register | TBTC | R/W | Time Base Timer | 1 __ $00100_{\text {в }}$ |
| ААн to ADr | Reserved |  |  |  |  |
| АЕн | Flash Memory Control Status Register (MB90F598G only. Otherwise reserved) | FMCS | R/W | Flash Memory | $000 \times 0000$ в |
| AFH | Reserved |  |  |  |  |

(Continued)

| Address | Register | Abbreviation | Access | Peripheral | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B0н | Interrupt Control Register 00 | ICR00 | R/W | Interrupt controller | $00000111^{\text {b }}$ |
| B1н | Interrupt Control Register 01 | ICR01 | R/W |  | $00000111^{\text {B }}$ |
| B2 ${ }^{\text {¢ }}$ | Interrupt Control Register 02 | ICR02 | R/W |  | $00000111^{\text {b }}$ |
| B3 ${ }^{\text {}}$ | Interrupt Control Register 03 | ICR03 | R/W |  | $00000111^{\text {b }}$ |
| B4 ${ }^{\text {¢ }}$ | Interrupt Control Register 04 | ICR04 | R/W | Interrupt controller | $00000111^{\text {B }}$ |
| $\mathrm{B5}_{\mathrm{H}}$ | Interrupt Control Register 05 | ICR05 | R/W |  | $00000111^{\text {b }}$ |
| B6 | Interrupt Control Register 06 | ICR06 | R/W |  | $00000111^{\text {B }}$ |
| B7 ${ }_{\text {H }}$ | Interrupt Control Register 07 | ICR07 | R/W |  | $00000111^{\text {B }}$ |
| В8н | Interrupt Control Register 08 | ICR08 | R/W |  | $00000111^{\text {B }}$ |
| B9н | Interrupt Control Register 09 | ICR09 | R/W |  | $00000111^{\text {B }}$ |
| ВАн | Interrupt Control Register 10 | ICR10 | R/W |  | $00000111^{\text {b }}$ |
| ВВн | Interrupt Control Register 11 | ICR11 | R/W |  | $00000111^{\text {b }}$ |
| BCH | Interrupt Control Register 12 | ICR12 | R/W |  | $00000111^{\text {b }}$ |
| BD | Interrupt Control Register 13 | ICR13 | R/W |  | $00000111^{\text {b }}$ |
| ВЕн | Interrupt Control Register 14 | ICR14 | R/W |  | $00000111^{\text {b }}$ |
| BF\% | Interrupt Control Register 15 | ICR15 | R/W |  | $00000111^{\text {b }}$ |
| CO н to FF н | Reserved |  |  |  |  |
| 1900н | Reload Register L | PRLLO | R/W | 16-bit Programmable Pulse Generator 0/1 | XXXXXXXX ${ }_{\text {B }}$ |
| 1901H | Reload Register H | PRLH0 | R/W |  | XXXXXXXXX |
| 1902н | Reload Register L | PRLL1 | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 1903н | Reload Register H | PRLH1 | R/W |  | XXXXXXXX ${ }_{\text {B }}$ |
| 1904н | Reload Register L | PRLL2 | R/W | 16-bit Programmable Pulse Generator 2/3 | XXXXXXXX ${ }_{\text {B }}$ |
| 1905 H | Reload Register H | PRLH2 | R/W |  | XXXXXXXX ${ }_{\text {¢ }}$ |
| 1906н | Reload Register L | PRLL3 | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 1907H | Reload Register H | PRLH3 | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 1908н | Reload Register L | PRLL4 | R/W | 16-bit Programmable Pulse Generator 4/5 | XXXXXXXX ${ }_{\text {¢ }}$ |
| 1909н | Reload Register H | PRLH4 | R/W |  | XXXXXXXX ${ }_{\text {B }}$ |
| 190Ан | Reload Register L | PRLL5 | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 190Вн | Reload Register H | PRLH5 | R/W |  | XXXXXXXX ${ }_{\text {B }}$ |
| 190 С ${ }_{\text {¢ }}$ | Reload Register L | PRLL6 | R/W | 16-bit Programmable Pulse Generator 6/7 | XXXXXXXX ${ }_{\text {B }}$ |
| 190D | Reload Register H | PRLH6 | R/W |  | ХХХХХХХХХ ${ }_{\text {в }}$ |
| 190Eн | Reload Register L | PRLL7 | R/W |  | XXXXXXXX ${ }_{\text {¢ }}$ |
| 190F ${ }_{\text {H }}$ | Reload Register H | PRLH7 | R/W |  | XXXXXXXX ${ }_{\text {B }}$ |

(Continued)

| Address | Register | Abbreviation | Access | Peripheral | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1910 ${ }_{\text {H }}$ | Reload Register L | PRLL8 | R/W | 16-bit Programmable Pulse Generator 8/9 | XXXXXXXX ${ }_{\text {в }}$ |
| 1911н | Reload Register H | PRLH8 | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 1912 ${ }_{\text {H }}$ | Reload Register L | PRLL9 | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 1913H | Reload Register H | PRLH9 | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 1914н | Reload Register L | PRLLA | R/W | 16-bit Programmable Pulse Generator A/B | XXXXXXXX ${ }_{\text {в }}$ |
| 1915 ${ }^{\text {H }}$ | Reload Register H | PRLHA | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 1916н | Reload Register L | PRLLB | R/W | 16-bit Programmable Pulse Generator A/B | XXXXXXXX ${ }_{\text {в }}$ |
| 1917 ${ }_{\text {H }}$ | Reload Register H | PRLHB | R/W |  | ХХХХХХХХХ в |
| 1918 ${ }^{\text {to }} 191 \mathrm{FH}$ | Reserved |  |  |  |  |
| 1920 ${ }_{\text {H }}$ | Input Capture Register 0 (low-order) | IPCP0 | R | Input Capture 0/1 |  |
| 1921H | Input Capture Register 0 (high-order) | IPCP0 | R |  |  |
| 1922 ${ }^{\text {H}}$ | Input Capture Register 1 (low-order) | IPCP1 | R |  |  |
| 1923H | Input Capture Register 1 (high-order) | IPCP1 | R |  | XXXXXXXX в $^{\text {¢ }}$ |
| 1924 ${ }_{\text {H }}$ | Input Capture Register 2 (low-order) | IPCP2 | R | Input Capture 2/3 |  |
| 1925 ${ }^{\text {H }}$ | Input Capture Register 2 (high-order) | IPCP2 | R |  | XXXXXXXX в $^{\text {¢ }}$ |
| 1926H | Input Capture Register 3 (low-order) | IPCP3 | R |  |  |
| 1927 ${ }^{\text {H }}$ | Input Capture Register 3 (high-order) | IPCP3 | R |  |  |
| 1928H | Output Compare Register 0 (low-order) | ОССР0 | R/W | Output Compare 0/1 | XXXXXXXX в $^{\text {¢ }}$ |
| 1929 ${ }_{\text {H }}$ | Output Compare Register 0 (high-order) | OCCPO | R/W |  | XXXXXXXX в |
| 192Aн | Output Compare Register 1 (low-order) | OCCP1 | R/W |  |  |
| 192Bн | Output Compare Register 1 (high-order) | OCCP1 | R/W |  |  |

(Continued)
(Continued)

| Address | Register | Abbreviation | Access | Peripheral | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 192Сн | Output Compare Register 2 (low-order) | OCCP2 | R/W | Output Compare 2/3 | XXXXXXXX ${ }_{\text {в }}$ |
| 192D | Output Compare Register 2 (high-order) | OCCP2 | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 192Ен | Output Compare Register 3 (low-order) | OCCP3 | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 192Fн | Output Compare Register 3 (high-order) | OCCP3 | R/W |  | XXXXXXXX ${ }_{\text {B }}$ |
| 1930 ${ }^{\text {to }} 19 \mathrm{FF}$ н | Reserved |  |  |  |  |
| 1A00н to 1AFF | CAN Controller. Refer to section about CAN Controller |  |  |  |  |
|  | CAN Controller. Refer to section about CAN Controller |  |  |  |  |
|  | Reserved |  |  |  |  |
| 1FF0н | Program Address Detection Register 0 (low-order) | PADR0 | R/W | Address Match Detection Function | XXXXXXXX ${ }_{\text {в }}$ |
| 1FF1H | Program Address Detection Register 0 (middle-order) |  |  |  | XXXXXXXX ${ }_{\text {в }}$ |
| 1FF2H | Program Address Detection Register 0 (high-order) |  |  |  | XXXXXXXX ${ }_{\text {в }}$ |
| 1FF3н | Program Address Detection Register 1 (low-order) | PADR1 | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 1FF4н | Program Address Detection Register 1 (middle-order) |  |  |  | XXXXXXXX ${ }_{\text {в }}$ |
| 1FF5 ${ }^{\text {¢ }}$ | Program Address Detection Register 1 (high-order) |  |  |  | XXXXXXXX ${ }_{\text {в }}$ |
| 1FF6 ${ }_{\text {н }}$ to 1FFF ${ }_{\text {H }}$ | Reserved |  |  |  |  |

- Description for Read/Write

R/W : Readable/writable
R : Read only
W: Write only

- Description of initial value

0 : the initial value of this bit is " 0 ".
1 : the initial value of this bit is "1".
$X$ : the initial value of this bit is undefined.
_ : this bit is unused. the initial value is undefined.
Note: : Addresses in the range of 0000 н to $00 \mathrm{FF}_{\mathrm{H}}$, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results in reading " $X$ ", and any write access should not be performed.

## 9. Can Controller

The CAN controller has the following features:
■ Conforms to CAN Specification Version 2.0 Part A and B a-Supports transmission/reception in standard frame and extended frame formats

■ Supports transmission of data frames by receiving remote frames

- 16 transmitting/receiving message buffers
- 29-bit ID and 8-byte data
a Multi-level message buffer configuration
■ Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
$\square$ Two acceptance mask registers in either standard frame format or extended frame format
- Bit rate programmable from 10 kbps to 2 Mbps (when input clock is at 16 MHz )


### 9.1 List of Control Registers

| Address | Register | Abbreviation | Access | Initial Value |
| :---: | :---: | :---: | :---: | :---: |
| 000080 ${ }_{\text {H }}$ | Message buffer valid register | BVALR | R/W | 0000000000000000 в |
| 000081н |  |  |  |  |
| 000082н | Transmit request register | TREQR | R/W | 0000000000000000 в |
| 000083н |  |  |  |  |
| 000084н | Transmit cancel register | TCANR | W | 0000000000000000 в |
| 000085 ${ }_{\text {н }}$ |  |  |  |  |
| 000086 ${ }^{\text {H }}$ | Transmit complete register | TCR | R/W | 0000000000000000 в |
| 000087н |  |  |  |  |
| 000088н | Receive complete register | RCR | R/W | 0000000000000000 в |
| 000089н |  |  |  |  |
| 00008Ан | Remote request receiving register | RRTRR | R/W | 0000000000000000 в |
| 00008Вн |  |  |  |  |
| $00008 \mathrm{C}_{\text {н }}$ | Receive overrun register | ROVRR | R/W | 0000000000000000 в |
| 00008D |  |  |  |  |
| 00008Eн | Receive interrupt enable register | RIER | R/W | 0000000000000000 в |
| 00008Fн |  |  |  |  |
| 001B00н | Control status register | CSR | R/W, R | 00---000 0---0-1в |
| 001B01н |  |  |  |  |
| 001В02н | Last event indicator register | LEIR | R/W | -------- 000-0000в |
| 001В03н |  |  |  |  |
| 001В04н | Receive/transmit error counter | RTEC | R | $0000000000000000{ }_{\text {B }}$ |
| 001B05н |  |  |  |  |
| 001В06н | Bit timing register | BTR | R/W | -1111111 11111111в |
| 001B07н |  |  |  |  |

(Continued)
(Continued)

| Address | Register | Abbreviation | Access | Initial Value |
| :---: | :---: | :---: | :---: | :---: |
| 001B08н | IDE register | IDER | R/W |  |
| 001B09н |  |  |  |  |
| 001В0Ан | Transmit RTR register | TRTRR | R/W | 0000000000000000 в |
| 001В0Вн |  |  |  |  |
| 001B0С ${ }_{\text {H }}$ | Remote frame receive waiting register | RFWTR | R/W |  |
| 001B0D |  |  |  |  |
| 001В0Ен | Transmit interrupt enable register | TIER | R/W | 0000000000000000 в |
| 001B0Fн |  |  |  |  |
| 001B10н | Acceptance mask select register | AMSR | R/W |  |
| 001B11н |  |  |  |  |
| 001B12н |  |  |  |  |
| 001B13н |  |  |  |  |
| 001B14н | Acceptance mask register 0 | AMR0 | R/W |  |
| 001B15 ${ }_{\text {¢ }}$ |  |  |  |  |
| 001B16н |  |  |  | ХХХХХХ--- XXXXXXXXв $^{\text {¢ }}$ |
| 001B17н |  |  |  |  |
| 001B18н | Acceptance mask register 1 | AMR1 | R/W | XXXXXXXX XXXXXXXX |
| 001B19н |  |  |  |  |
| 001В1Ан |  |  |  | ХХХХХ--- ХХХХХХХХв |
| 001B1Вн |  |  |  |  |

### 9.2 List of Message Buffers (ID Registers)

| Address | Register | Abbreviation | Access | Initial Value |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 001A00н } \\ & \text { to } \\ & 001 \mathrm{~A} 1 \mathrm{~A}_{\mathrm{H}} \end{aligned}$ | General-purpose RAM | -- | R/W | $\begin{gathered} \hline \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$ |
| 001A20н | ID register 0 | IDR0 | R/W |  |
| 001A21н |  |  |  |  |
| 001A22н |  |  |  | ХХХХX--- ХХХХХХХХв |
| 001A23н |  |  |  |  |
| 001A24 ${ }^{\text {¢ }}$ | ID register 1 | IDR1 | R/W |  |
| 001A25 |  |  |  |  |
| 001A26н |  |  |  | ХХХХX--- ХХХХХХХХв |
| 001A27H |  |  |  |  |
| 001A28H | ID register 2 | IDR2 | R/W |  |
| 001A29н |  |  |  |  |
| 001A2Aн |  |  |  | XXXXX--- XXXXXXXX $^{\text {¢ }}$ |
| 001A2Bн |  |  |  |  |


| Address | Register | Abbreviation | Access | Initial Value |
| :---: | :---: | :---: | :---: | :---: |
| 001A2CH | ID register 3 | IDR3 | R/W |  |
| 001A2D |  |  |  |  |
| 001A2Eн |  |  |  | XXXXX--- Х $^{\text {PXXXXXXв }}$ |
| 001A2F ${ }_{\text {H }}$ |  |  |  |  |
| 001A30н | ID register 4 | IDR4 | R/W |  |
| 001A31н |  |  |  |  |
| 001A32н |  |  |  | XXXXX--- XXXXXXXXв |
| 001A33н |  |  |  |  |
| 001A34н | ID register 5 | IDR5 | R/W |  |
| 001A35 |  |  |  |  |
| 001A36н |  |  |  | XXXXX--- XXXXXXXXв |
| 001A37 ${ }_{\text {H }}$ |  |  |  |  |
| 001A38н | ID register 6 | IDR6 | R/W |  |
| 001A39н |  |  |  |  |
| 001АЗАн |  |  |  | ХХХХХХ--- ХХХХХХХХв |
| 001A3Bн |  |  |  |  |
| 001A3C ${ }_{\text {H }}$ | ID register 7 | IDR7 | R/W |  |
| 001A3D |  |  |  |  |
| 001А3Ен |  |  |  |  |
| 001A3F ${ }^{\text {H }}$ |  |  |  |  |

(Continued)

| Address | Register | Abbreviation | Access | Initial Value |
| :---: | :---: | :---: | :---: | :---: |
| 001A40H | ID register 8 | IDR8 | R/W |  |
| 001A41н |  |  |  |  |
| 001A42н |  |  |  | ХХХХХХ-- XXXXXXXX |
| 001A43н |  |  |  |  |
| 001A44 | ID register 9 | IDR9 | R/W |  |
| 001A45 |  |  |  |  |
| 001A46H |  |  |  | XXXXX--- XXXXXXXX $^{\text {¢ }}$ |
| 001A47H |  |  |  |  |
| 001A48н | ID register 10 | IDR10 | R/W |  |
| 001A49н |  |  |  |  |
| 001A4Ан |  |  |  |  |
| 001A4Вн |  |  |  |  |
| 001A4CH | ID register 11 | IDR11 | R/W |  |
| 001A4D |  |  |  |  |
| 001A4EH |  |  |  | ХХХХХХ-- XXXXXXXX |
| 001A4F |  |  |  |  |
| 001A50н | ID register 12 | IDR12 | R/W | XXXXXXXX XXXXXXXX ${ }_{\text {в }}$ |
| 001A51н |  |  |  |  |
| 001A52н |  |  |  | ХХХХХХ-- XXXXXXXX |
| 001A53H |  |  |  |  |
| 001A54H | ID register 13 | IDR13 | R/W | XXXXXXXX XXXXXXXX ${ }_{\text {в }}$ |
| 001A55 |  |  |  |  |
| 001A56н |  |  |  | ХХХХХХ-- XXXXXXXX $^{\text {- }}$ |
| 001A57H |  |  |  |  |
| 001A58н | ID register 14 | IDR14 | R/W | XXXXXXXX XXXXXXXX |
| 001A59н |  |  |  |  |
| 001А5Ан |  |  |  | XXXXX--- XXXXXXXX $^{\text {¢ }}$ |
| 001A5Bн |  |  |  |  |
| 001A5CH | ID register 15 | IDR15 | R/W |  |
| 001A5D |  |  |  |  |
| 001A5EH |  |  |  | ХХХХХХ-- XXXXXXXX |
| 001A5FH |  |  |  |  |

### 9.3 List of Message Buffers (DLC Registers and Data Registers)

| Address | Register | Abbreviation | Access | Initial Value |
| :---: | :---: | :---: | :---: | :---: |
| 001A60н | DLC register 0 | DLCR0 | R/W | ----XXXX |
| 001A61н |  |  |  |  |
| 001A62н | DLC register 1 | DLCR1 | R/W | -----ХХХХв |
| 001А63н |  |  |  |  |
| 001A64н | DLC register 2 | DLCR2 | R/W | ----ХХХХв |
| 001A65н |  |  |  |  |
| 001A66н | DLC register 3 | DLCR3 | R/W | ----ХХХХв |
| 001A67н |  |  |  |  |
| 001A68H | DLC register 4 | DLCR4 | R/W | -----ХХХХв |
| 001A69н |  |  |  |  |
| 001A6Ан | DLC register 5 | DLCR5 | R/W | ----ХХХХв |
| 001A6Bн |  |  |  |  |
| 001A6CH | DLC register 6 | DLCR6 | R/W | ----XXXX |
| 001A6D ${ }_{\text {¢ }}$ |  |  |  |  |
| 001A6Eн | DLC register 7 | DLCR7 | R/W | ----ХХХХв |
| 001A6Fн |  |  |  |  |
| 001A70н | DLC register 8 | DLCR8 | R/W | ----XXXX |
| 001A71н |  |  |  |  |
| 001A72н | DLC register 9 | DLCR9 | R/W | ----XXXX |
| 001A73н |  |  |  |  |
| 001A74н | DLC register 10 | DLCR10 | R/W | ----ХХХХв |
| 001A75н |  |  |  |  |
| 001A76н | DLC register 11 | DLCR11 | R/W | ----ХХХХв |
| 001A77н |  |  |  |  |
| 001A78 | DLC register 12 | DLCR12 | R/W | ----ХХХХв |
| 001A79н |  |  |  |  |
| 001A7Aн | DLC register 13 | DLCR13 | R/W | ----ХХХХв |
| 001A7Bн |  |  |  |  |
| 001A7CH | DLC register 14 | DLCR14 | R/W | ----ХХХХв |
| 001A7D ${ }_{\text {н }}$ |  |  |  |  |
| 001A7Eн | DLC register 15 | DLCR15 | R/W | ----ХХХХв |
| 001A7F |  |  |  |  |
| $\begin{aligned} & \text { 001A80H } \\ & \text { to } \\ & 001 \mathrm{~A} 87 \mathrm{H} \end{aligned}$ | Data register 0 (8 bytes) | DTR0 | R/W | $\begin{gathered} \text { XXXXXXXX } \\ \text { to } \\ \text { XXXXXXXX } \end{gathered}$ |

(Continued)
(Continued)

| Address | Register | Abbreviation | Access | Initial Value |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 001A88н } \\ & \text { to } \\ & 001 \text { А8 } \end{aligned}$ | Data register 1 (8 bytes) | DTR1 | R/W | $\begin{gathered} \hline X X X X X X X X B \\ \text { to } \\ X X X X X X X B \end{gathered}$ |
| 001A90н to 001A97H | Data register 2 (8 bytes) | DTR2 | R/W | XXXXXXXX to XXXXXXXX |
| $\begin{aligned} & \text { 001A98н } \\ & \text { to } \\ & 001 \mathrm{~A} 9 \mathrm{~F}_{\mathrm{H}} \end{aligned}$ | Data register 3 (8 bytes) | DTR3 | R/W | XXXXXXXX to XXXXXXXX |
| 001AAOH to 001AA7H | Data register 4 (8 bytes) | DTR4 | R/W | $\begin{gathered} \text { XXXXXXXXB } \\ \text { to } \\ X X X X X X X B \end{gathered}$ |
| 001AA8H to 001AAFH | Data register 5 (8 bytes) | DTR5 | R/W | XXXXXXXX to XXXXXXXX |
| $\begin{aligned} & \hline 001 \mathrm{ABOH} \\ & \text { to } \\ & 001 \mathrm{AB7} \end{aligned}$ | Data register 6 (8 bytes) | DTR6 | R/W | XXXXXXXX to XXXXXXXX |
| $\begin{aligned} & \text { 001AB8н } \\ & \text { to } \\ & 001 \text { ABF }_{H} \end{aligned}$ | Data register 7 (8 bytes) | DTR7 | R/W | XXXXXXXX to XXXXXXXX |
| $\begin{aligned} & 001 \mathrm{ACOH}_{\mathrm{H}} \\ & \text { to } \\ & 001 \mathrm{AC7} \end{aligned}$ | Data register 8 (8 bytes) | DTR8 | R/W | XXXXXXXX <br> to XXXXXXXX |
| $\begin{aligned} & \text { 001AC8H } \\ & \text { to } \\ & 001 \text { ACF }_{\mathrm{H}} \end{aligned}$ | Data register 9 (8 bytes) | DTR9 | R/W | XXXXXXXX <br> to XXXXXXXX |
| $\begin{aligned} & \text { 001ADOH } \\ & \text { to } \\ & 001 \mathrm{AD7H} \end{aligned}$ | Data register 10 (8 bytes) | DTR10 | R/W | XXXXXXXX <br> to XXXXXXXX |
| 001AD8н to 001ADFH | Data register 11 (8 bytes) | DTR11 | R/W | $\begin{gathered} \hline X X X X X X X X B \\ \text { to } \\ X X X X X X X B \end{gathered}$ |
| 001AEOH to 001AE7H | Data register 12 (8 bytes) | DTR12 | R/W | XXXXXXXX to XXXXXXXX |
| 001AE8 to 001AEFH | Data register 13 (8 bytes) | DTR13 | R/W | XXXXXXXX to XXXXXXXX |
| 001AFOH to 001AF7 | Data register 14 (8 bytes) | DTR14 | R/W |  |
| $\begin{aligned} & \text { 001AF8н } \\ & \text { to } \\ & 001 \text { AFF } \end{aligned}$ | Data register 15 (8 bytes) | DTR15 | R/W | $\begin{gathered} \hline X X X X X X X_{B} \\ \text { to } \\ X X X X X X X B \end{gathered}$ |

## 10. Interrupt Source, Interrupt Vector, and Interrupt Control Register

| Interrupt source | $\mathrm{El}^{2} \mathrm{OS}$ clear | Interrupt vector |  | Interrupt control register |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Number | Address | Number | Address |
| Reset | N/A | \# 08 | FFFFDCH | - | - |
| INT9 instruction | N/A | \# 09 | FFFFD8\% | - | - |
| Exception | N/A | \# 10 | FFFFD4н | - | - |
| CAN RX | N/A | \# 11 | FFFFDOH | ICR00 | 0000B0н |
| CAN TX/NS | N/A | \# 12 | FFFFCCH |  |  |
| External Interrupt (INT0/INT1) | *1 | \# 13 | FFFFC8 ${ }_{\text {н }}$ | ICR01 | 0000B1н |
| Time Base Timer | N/A | \# 14 | FFFFC4 ${ }_{\text {¢ }}$ |  |  |
| 16-bit Reload Timer 0 | *1 | \# 15 | FFFFCOH | ICR02 | 0000B2н |
| 8/10-bit A/D Converter | *1 | \# 16 | FFFFBC ${ }_{\text {H }}$ |  |  |
| 16-bit Free-run Timer | N/A | \# 17 | FFFFB8 ${ }_{\text {H }}$ | ICR03 | 0000В3н |
| External Interrupt (INT2/INT3) | *1 | \# 18 | FFFFB44 |  |  |
| Serial I/O | *1 | \# 19 | FFFFB0 ${ }_{\text {H }}$ | ICR04 | 0000B4н |
| External Interrupt (INT4/INT5) | *1 | \# 20 | FFFFAC ${ }_{\text {H }}$ |  |  |
| Input Capture 0 | *1 | \# 21 | FFFFA8 ${ }_{\text {H }}$ | ICR05 | 0000B5 ${ }_{\text {н }}$ |
| 8/16-bit PPG 0/1 | N/A | \# 22 | FFFFA44 |  |  |
| Output Compare 0 | *1 | \# 23 | FFFFAOH | ICR06 | 0000B6н |
| 8/16-bit PPG 2/3 | N/A | \# 24 | FFFF9CH |  |  |
| External Interrupt (INT6/INT7) | *1 | \# 25 | FFFF98 ${ }_{\text {H }}$ | ICR07 | 0000B7н |
| Input Capture 1 | *1 | \# 26 | FFFF94 ${ }_{\text {¢ }}$ |  |  |
| 8/16-bit PPG 4/5 | N/A | \# 27 | FFFF90н | ICR08 | 0000B8н |
| Output Compare 1 | *1 | \# 28 | FFFF8CH |  |  |
| 8/16-bit PPG 6/7 | N/A | \# 29 | FFFF88\% | ICR09 | 0000В9н |
| Input Capture 2 | *1 | \# 30 | FFFF84 |  |  |
| 8/16-bit PPG 8/9 | N/A | \# 31 | FFFF80н | ICR10 | 0000ВАн |
| Output Compare 2 | *1 | \# 32 | FFFF7CH |  |  |
| Input Capture 3 | *1 | \# 33 | FFFF78H | ICR11 | 0000BBн |
| 8/16-bit PPG A/B | N/A | \# 34 | FFFF74 ${ }_{\text {¢ }}$ |  |  |
| Output Compare 3 | *1 | \# 35 | FFFF70н | ICR12 | 0000BC ${ }_{\text {н }}$ |
| 16-bit Reload Timer 1 | *1 | \# 36 | FFFF6C ${ }_{\text {H }}$ |  |  |
| UART 0 RX | *2 | \# 37 | FFFF68 | ICR13 | 0000BDн |
| UART 0 TX | *1 | \# 38 | FFFF64 |  |  |
| UART 1 RX | *2 | \# 39 | FFFF60н | ICR14 | 0000BEн |
| UART 1 TX | *1 | \# 40 | FFFF5C ${ }_{\text {H }}$ |  |  |
| Flash Memory | N/A | \# 41 | FFFF58н | ICR15 | 0000BFH |
| Delayed interrupt | N/A | \# 42 | FFFF54 |  |  |

*1: The interrupt request flag is cleared by the $\mathrm{El}^{2} \mathrm{OS}$ interrupt clear signal.
*2: The interrupt request flag is cleared by the $\mathrm{El}^{2} \mathrm{OS}$ interrupt clear signal. A stop request is available.
$\mathrm{N} / \mathrm{A}$ :The interrupt request flag is not cleared by the $\mathrm{El}^{2} \mathrm{OS}$ interrupt clear signal.

Notes:
■ For a peripheral module with two interrupt for a single interrupt number, both interrupt request flags are cleared by the $\mathrm{El}^{2} \mathrm{OS}$ interrupt clear signal.

■ At the end of $E I^{2} \mathrm{OS}$, the $\mathrm{El}^{2} \mathrm{OS}$ clear signal will be asserted for all the interrupt flags assigned to the same interrupt number. If one interrupt flag starts the $\mathrm{EI}^{2} \mathrm{OS}$ and in the meantime another interrupt flag is set by hardware event, the later event is lost because the flag is cleared by the EI²OS clear signal caused by the first event. So it is recommended not to use the EI²OS for this interrupt number.

■ If $\mathrm{El}^{2} \mathrm{OS}$ is enabled, $\mathrm{El}^{2} \mathrm{OS}$ is initiated when one of the two interrupt signals in the same interrupt control register (ICR) is asserted. This means that different interrupt sources share the same $\mathrm{El}^{2} \mathrm{OS}$ Descriptor which should be unique for each interrupt source. For this reason, when one interrupt source uses the $\mathrm{El}^{2} \mathrm{OS}$, the other interrupt should be disabled.

## 11. Electrical Characteristics

### 11.1 Absolute Maximum Ratings

$(\mathrm{Vss}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}$ )

| Parameter | Symbol | Rating |  | Unit | Remarks |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |  |
| Power supply voltage | Vcc | Vss -0.3 | Vss +6.0 | V |  |  |
|  | AVcc | Vss - 0.3 | Vss +6.0 | V | $\mathrm{Vcc}=\mathrm{AV} \mathrm{cc}$ | *1 |
|  | AVRH, AVRL | Vss -0.3 | $\mathrm{Vss}+6.0$ | V | $\begin{aligned} & \text { AVcc } \geq \mathrm{AVRH} / \mathrm{L}, \\ & \text { AVRH } \geq \mathrm{AVRL} \end{aligned}$ | *1 |
|  | DVcc | Vss - 0.3 | Vss +6.0 | V | Vcc $\geq$ DVcc |  |
| Input voltage | V | Vss - 0.3 | Vss +6.0 | V |  | *2 |
| Output voltage | Vo | Vss - 0.3 | $\mathrm{Vss}+6.0$ | V |  | *2 |
| Maximum Clamp Current | Iclamp | -2.0 | 2.0 | mA | *6 |  |
| Maximum Total Clamp Current | $\sum \mid$ Iclamp $\mid$ | - | 20 | mA | *6 |  |
| "L" level Max. output current | lol1 | - | 15 | mA | Normal output | *3 |
| "L" level Avg. output current | lolav1 | - | 4 | mA | Normal output, average value | *4 |
| "L" level Max. output current | lol2 | - | 40 | mA | High current output | *3 |
| "L" level Avg. output current | lolav2 | - | 30 | mA | High current output, average value | *4 |
| "L" level Max. overall output current | $\sum \mathrm{lol} 1$ | - | 100 | mA | Total normal output |  |
| "L" level Max. overall output current | $\sum \mathrm{lol2}$ | - | 330 | mA | Total high current output |  |
| "L" level Avg. overall output current | $\sum \mathrm{lolav} 1$ | - | 50 | mA | Total normal output, average value | *5 |
| "L" level Avg. overall output current | $\sum \mathrm{lolav} 2$ | - | 250 | mA | Total high current output, average value | *5 |
| "H" level Max. output current | Іон1 | - | -15 | mA | Normal output | *3 |
| "H" level Avg. output current | Іоhav1 | - | -4 | mA | Normal output, average value | *4 |
| "H" level Max. output current | Іон2 | - | -40 | mA | High current output | *3 |
| "H" level Avg. output current | Iohav2 | - | -30 | mA | High current output, average value | *4 |
| "H" level Max. overall output current | $\sum$ Іон1 | - | -100 | mA | Total normal output |  |
| "H" level Max. overall output current | $\sum$ lon2 | - | -330 | mA | Total high current output |  |
| "H" level Avg. overall output current | $\sum \mathrm{lohav1}$ | - | -50 | mA | Total normal output, average value | *5 |
| "H" level Avg. overall output current | $\sum \mathrm{lohav} 2$ | - | -250 | mA | Total high current output, average value | *5 |
| Power consumption | Po | - | 500 | mW | MB90F598G |  |
|  |  | - | 400 | mW | MB90598G |  |
| Operating temperature | $\mathrm{T}_{\text {A }}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Storage temperature | Tstg | -55 | +150 | ${ }^{\circ} \mathrm{C}$ |  |  |

*1: AVcc, AVRH, AVRL and DVcc shall not exceed Vcc. AVRH and AVRL shall not exceed AVcc. Also, AVRL shall never exceed AVRH.
*2: $V_{ı}$ and $V$ o should not exceed $\mathrm{Vcc}+0.3 \mathrm{~V}$. $\mathrm{V}_{\text {I }}$ should not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the $V_{\text {I }}$ rating.
*3: The maximum output current is a peak value for a corresponding pin.
*4: Average output current is an average current value observed for a 100 ms period for a corresponding pin.
*5: Total average current is an average current value observed for a 100 ms period for all corresponding pins.
*6:
■ Applicable to pins : P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P77, P80 to P87, P90 to P95
■ Use within recommended operating conditions.
■ Use at DC voltage (current) .
■ The $+B$ signal should always be applied with a limiting resistance placed between the $+B$ signal and the microcontroller.

■ The value of the limiting resistance should be set so that when the $+B$ signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.

■ Note that when the microcontroller drive current is low, such as in the power saving modes, the $+B$ input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
$\square$ Note that if a +B signal is input when the microcontroller current is off (not fixed at 0 V ), the power supply is provided from the pins, so that incomplete operation may result.

■ Note that if the $+B$ input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on result.

- Care must be taken not to leave the $+B$ input pin open.

■ Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept $+B$ signal input.

■ Sample recommended circuits :

- Input/Output Equivalent circuits


Note: : Average output current = operating current $\times$ operating efficiency
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

### 11.2 Recommended Conditions

$(\mathrm{Vss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V})$

| Parameter | Symbol | Value |  |  | Unit | Remarks |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
|  |  | Min | Typ | Max |  |  |
| Power supply voltage | $\mathrm{V}_{\mathrm{cc}}$ | 4.5 | 5.0 | 5.5 | V | Under normal operation |
|  | AV | 3.0 | - | 5.5 | V | Maintains RAM data in stop mode |
| Smooth capacitor | $\mathrm{Cs}_{\mathrm{cc}}$ | 0.022 | 0.1 | 1.0 | $\mu \mathrm{~F}$ | $*$ |
| Operating temperature | $\mathrm{T}_{\mathrm{A}}$ | -40 | - | +85 | ${ }^{\circ} \mathrm{C}$ |  |

*: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The smoothing capacitor to be connected to the Vcc pin must have a capacitance value higher than Cs.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges.
Operation outside these ranges may adversely affect reliability and could result in device failure.

11.3 DC Characteristics

| Parameter | Symbol | Pin name | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |  |  |
| Input H voltage | $\mathrm{V}_{\text {IHs }}$ | CMOS hysteresis input pin | - | 0.8 Vcc | - | $\mathrm{Vcc}+0.3$ | V |  |
|  | Vінм | MD input pin | - | Vcc-0.3 | - | $\mathrm{Vcc}+0.3$ | V |  |
| Input L voltage | Viss | CMOS hysteresis input pin | - | Vss - 0.3 | - | 0.2 Vcc | V |  |
|  | Vım | MD input pin | - | Vss - 0.3 | - | Vss +0.3 | V |  |
| Output H voltage | Vor1 | Output pins except P70 to P87 | $\begin{aligned} \mathrm{V}_{\mathrm{cc}} & =4.5 \mathrm{~V}, \\ \mathrm{IoH}= & =-4.0 \mathrm{~mA} \end{aligned}$ | Vcc - 0.5 | - | - | V |  |
|  | Vон2 | P70 to P87 | $\begin{gathered} \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{H} 2}=-30.0 \mathrm{~mA} \end{gathered}$ | Vcc - 0.5 | - | - | V |  |
| Output L voltage | Volı | Output pins except P70 to P87 | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \\ & \mathrm{loL}_{1}=4.0 \mathrm{~mA} \end{aligned}$ | - | - | 0.4 | V |  |
|  | Vol2 | P70 to P87 | $\begin{gathered} \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \\ \mathrm{loL2}=30.0 \mathrm{~mA} \end{gathered}$ | - | - | 0.5 | V |  |


| Parameter | Symbol | Pin name | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |  |  |
| Input leak current | 11. |  | $\begin{gathered} \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{gathered}$ | -5 | - | 5 | $\mu \mathrm{A}$ |  |
| Power supply current * | Icc | Vcc | $V_{c c}=5.0 \mathrm{~V} \pm 10 \%,$ <br> Internal frequency: | - | 35 | 60 | mA | MB90598G |
|  |  |  | 16 MHz, <br> At normal operating | - | 40 | 60 | mA | MB90F598G |
|  | Iccs |  | $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%,$ Internal frequency: <br> 16 MHz , <br> At sleep | - | 11 | 18 | mA |  |
|  | Icts |  | $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 1 \%,$ <br> Internal frequency: <br> 2 MHz , <br> At timer mode | - | 0.3 | 0.6 | mA |  |
|  | Icch |  | $\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \pm 10 \%, \\ & \text { At stop, } T_{A}=25^{\circ} \mathrm{C} \end{aligned}$ | - | - | 20 | $\mu \mathrm{A}$ |  |
|  | Ісch2 |  | $V_{c c}=5.0 \mathrm{~V} \pm 10 \%,$ <br> At Hardware standby mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | - | - | 20 | $\mu \mathrm{A}$ | MB90598G |
|  |  |  |  | - | 50 | 100 | $\mu \mathrm{A}$ | MB90F598G |

(Continued)
(Continued)
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=\mathrm{AVss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin name | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |  |  |
| Input capacity | Cin | Other than $\mathrm{C}, \mathrm{AV}_{\mathrm{cc}}, \mathrm{AV}_{\mathrm{ss}}$, AVRH, AVRL, Vcc, Vss, DVcc, DVss, P70 to P87 | - | - | 5 | 15 | pF |  |
|  |  | P70 to P87 | - | - | 15 | 30 | pF |  |
| Pull-up resistance | Rup | $\overline{\mathrm{RST}}$ | - | 25 | 50 | 100 | k $\Omega$ |  |
| Pull-down resistance | Roown | MD2 | - | 25 | 50 | 100 | k $\Omega$ |  |

*: The power supply current testing conditions are when using the external clock.

### 11.4 AC Characteristics

### 11.4.1 Clock Timing

$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin name | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |  |
| Oscillation frequency | $\mathrm{fc}_{\mathrm{c}}$ | $\mathrm{X} 0, \mathrm{X} 1$ | 3 | - | 5 | MHz | When using oscillation circuit |
| Oscillation cycle time | tCYL | X0, X1 | 200 | - | 333 | ns | When using oscillation circuit |
| External clock frequency | fc | X0, X1 | 3 | - | 16 | MHz | When using external clock |
| External clock cycle time | tcyl | X0, X1 | 62.5 | - | 333 | ns | When using external clock |
| Frequency deviation with PLL * | $\Delta \mathrm{f}$ | - | - | - | 5 | \% |  |
| Input clock pulse width | Pwh, Pwl | X0 | 10 | - | - | ns | Duty ratio is about 30 to $70 \%$. |
| Input clock rise and fall time | tcr, tcF | X0 | - | - | 5 | ns | When using external clock |
| Machine clock frequency | fcp | - | 1.5 | - | 16 | MHz |  |
| Machine clock cycle time | tcp | - | 62.5 | - | 666 | ns |  |
| Flash Read cycle time | tCYL | - | - | 2*tcP | - | ns | When Flash is accessed via CPU |

*: Frequency deviation indicates the maximum frequency difference from the target frequency when using a multiplied clock.

$$
\Delta f=\frac{|\alpha|}{f o} \times 100 \%
$$

Central frequency fo


## - Clock Timing



■ Example of Oscillation circuit



- Oscillation frequency and machine clock frequency


AC characteristics are set to the measured reference voltage values below.

- Input signal waveform

Hysteresis Input Pin


## - Output signal waveform

Output Pin

11.4.2 Reset and Hardware Standby Input

| Parameter | Symbol | Pin name | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| Reset input time | $\mathrm{trstL}^{\text {l }}$ | $\overline{\text { RST }}$ | 16 tcp $^{* 1}$ | - | ns | Under normal operation |
|  |  |  | Oscillation time of oscillator*2 +16 tcp*1 $^{*}$ | - | ms | In stop mode |
| Hardware standby input time | thstı | $\overline{\text { HST }}$ | 16 tcp*1 | - | ns | Under normal operation |
|  |  |  | Oscillation time of oscillator*2 +16 tcp*1 $^{*}$ | - | ms | In stop mode |

*1: "tcp" represents one cycle time of the machine clock.
No reset can fully initialize the Flash Memory if it is performing the automatic algorithm.
*2: Oscillation time of oscillator is time that the amplitude reached the $90 \%$.
In the crystal oscillator, the oscillation time is between several ms to tens of ms . In ceramic oscillator, the oscillation time is between hundreds of $\mu \mathrm{s}$ to several ms . In the external clock, the oscillation time is 0 ms .

## Under Normal Operation



## In Stop Mode


11.4.3 Power On Reset

*: Vcc must be kept lower than 0.2 V before power-on.

## Notes:

■ The above values are used for creating a power-on reset.
■ Some registers in the device are initialized only upon a power-on reset. To initialize these registers, turn on the power supply using the above values.


Sudden changes in the power supply voltage may cause a power-on reset.
To change the power supply voltage while the device is in operation, it is recommended to raise the voltage smoothly to suppress fluctuations as shown below. In this case, change the supply voltage with the PLL clock not used. If the voltage drop is 1 V or less per second, however, you can use the PLL clock.

11.4.4 UARTO/1, Serial I/O Timing

| Parameter | Symbol | Pin name | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |  |
| Serial clock cycle time | tscrc | SCK0 to SCK2 | Internal clock operation output pins are $\mathrm{C}_{\llcorner }=80$ pF + 1 TTL. | 8 tcp | - | ns |  |
| SCK $\downarrow \Rightarrow$ SOT delay time | tsıov | SCK0 to SCK2, SOT0 to SOT2 |  | -80 | 80 | ns |  |
| Valid SIN $\Rightarrow$ SCK $\uparrow$ | tivs | SCK0 to SCK2, SINO to SIN2 |  | 100 | - | ns |  |
| SCK $\uparrow \Rightarrow$ Valid SIN hold time | tswix | SCK0 to SCK2, SINO to SIN2 |  | 60 | - | ns |  |


| Parameter | Symbol | Pin name | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |  |
| Serial clock "H" pulse width | tshsL | SCK0 to SCK2 | External clock operation output pins are $\mathrm{C}_{\mathrm{L}}=80$ $\mathrm{pF}+1$ TTL. | 4 tcp | - | ns |  |
| Serial clock "L" pulse width | tsısh | SCK0 to SCK2 |  | 4 tcp | - | ns |  |
| SCK $\downarrow \Rightarrow$ SOT delay time | tsıov | SCK0 to SCK2, SOT0 to SOT2 |  | - | 150 | ns |  |
| Valid SIN $\Rightarrow$ SCK $\uparrow$ | tivs | SCK0 to SCK2, SIN0 to SIN2 |  | 60 | - | ns |  |
| SCK $\uparrow \Rightarrow$ Valid SIN hold time | tshix | SCK0 to SCK2, SIN0 to SIN2 |  | 60 | - | ns |  |

Notes:

- AC characteristic in CLK synchronized mode.
- CL is load capacity value of pins when testing.

■ tcp (external operation clock cycle time) : see Clock timing.

- Internal Shift Clock Mode

- External Shift Clock Mode

(5) Timer Input Timing
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=\mathrm{AVss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin name | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |  |
| Input pulse width | ttiwh | TIN0, TIN1 | - | 4 tcp | - | ns |  |
|  | triwn | IN0 to IN3 |  |  |  |  |  |

## - Timer Input Timing


11.4.5 Trigger Input Timing

| Parameter | Symbol | Pin name | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |  |
| Input pulse width | ttrgh ttrgl | INT0 to INT7, ADTG | - | 5 tcp | - | ns | Under normal operation |
|  |  |  |  | 1 | - | $\mu \mathrm{s}$ | In stop mode |

## - Trigger Input Timing


11.4.6 Slew Rate High Current Outputs (MB90598G, MB90F598G only)
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=\mathrm{AVss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin name | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Typ | Max |  |  |  |
| Output Rise/Fall time | tr2 <br> $\mathrm{t}_{\mathrm{F} 2}$ | Port P70 to P77, <br> Port P80 to P87 | - | 15 | 40 | 150 | ns |  |

- Slew Rate Output Timing

$\mathrm{V}_{\mathrm{H}}=\mathrm{VoL}_{2}+0.1 \times\left(\mathrm{VOH}_{2}-\mathrm{V}_{\mathrm{ol} 2}\right)$ $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{OL} 2}+0.9 \times\left(\mathrm{VOH}_{2}-\mathrm{V}_{\mathrm{oL} 2}\right)$


### 11.5 A/D Converter

| Parameter | $\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$ | Pin name | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |  |
| Resolution | - | - | - |  | 10 | bit |  |
| Conversion error | - | - | - | - | $\pm 5.0$ | LSB |  |
| Nonlinearity error | - | - | - | - | $\pm 2.5$ | LSB |  |
| Differential linearity error | - | - | - | - | $\pm 1.9$ | LSB |  |
| Zero transition voltage | Vot | AN0 to AN7 | $\begin{gathered} \text { AVRL - } \\ \text { 3.5 LSB } \end{gathered}$ | AVRL + 0.5 LSB | $\begin{gathered} \text { AVRL+ } \\ \text { 4.5 LSB } \end{gathered}$ | V |  |
| Full scale transition voltage | $V_{\text {fst }}$ | AN0 to AN7 | $\begin{gathered} \text { AVRH - } \\ \text { 6.5 LSB } \end{gathered}$ | $\begin{gathered} \hline \text { AVRH - } \\ \text { 1.5 LSB } \end{gathered}$ | $\begin{gathered} \text { AVRH + } \\ 1.5 \mathrm{LSB} \end{gathered}$ | V |  |
| Conversion time | - | - | - | 352tcp | - | ns |  |
| Sampling time | - | - | - | 64tcp | - | ns |  |
| Analog port input current | IAIN | AN0 to AN7 | -10 | - | 10 | $\mu \mathrm{A}$ |  |
| Analog input voltage range | $V_{\text {AIN }}$ | AN0 to AN7 | AVRL | - | AVRH | V |  |


| Parameter | Symbol | Pin name | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |  |
| Reference voltage range | - | AVRH | AVRL + 3.0 | - | AVcc | V |  |
|  | - | AVRL | 0 | - | AVRH - 3.0 | V |  |
| Power supply current | IA | AVcc | - | 5 | - | mA |  |
|  | Іан | $A V \mathrm{cc}$ | - | - | 5 | $\mu \mathrm{A}$ | * |
| Reference voltage current | IR | AVRH | - | 400 | 600 | $\mu \mathrm{A}$ | MB90V595G, MB90F598G |
|  |  |  | - | 140 | 600 | $\mu \mathrm{A}$ | MB90598G |
|  | IRH | AVRH | - | - | 5 | $\mu \mathrm{A}$ | * |
| Offset between input channels | - | AN0 to AN7 | - | - | 4 | LSB |  |

* : When not operating $\mathrm{A} / \mathrm{D}$ converter, this is the current $(\mathrm{Vcc}=\mathrm{AVcc}=\mathrm{AVRH}=5.0 \mathrm{~V})$ when the CPU is stopped.


### 11.6 A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter
Linearity error:The deviation of the straight line connecting the zero transition point ("00 00000000 " $\leftrightarrow$ "00 00000001 ") with the full-scale transition point ("11 $11111110 " \leftrightarrow$ "11 11111111 ") from actual conversion characteristics
Differential linearity error:The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value
Total error:The total error is defined as a difference between the actual value and the theoretical value, which includes zerotransition error/full-scale transition error and linearity error.

(Continued)
(Continued)


### 11.7 Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions,:
■ Output impedance values of the external circuit of $15 \mathrm{k} \Omega$ or lower are recommended.
■ When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.
When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period $=4.00 \mu \mathrm{~s}$ @machine clock of 16 MHz ).

## - Equipment of analog input circuit model



## ■ Error

The smaller the | AVRH - AVRL |, the greater the error would become relatively.
11.8 Flash memory

- Erase and programming performance

| Parameter | Condition | Value |  |  | Unit | Remarks |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |  |
| Sector erase time | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ \mathrm{~V}, \mathrm{cc}=5.0 \mathrm{~V} \end{gathered}$ | - | 1 | 15 | S | MB90F598G | Excludes 00 H programming prior erasure |
| Chip erase time |  | - | 5 | - | S | MB90F598G | Excludes 00H programming prior |
| Word (16-bit) programming time |  | - | 16 | 3600 | $\mu \mathrm{s}$ | MB90F598G | Excludes system-level overhead |
| Erase/Program cycle | - | 10000 | - | - | cycle |  |  |

12. Example Characteristics

- H" Level Output Voltage


■ L" Level Input Voltage


■ H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)




Supply Current



13. Ordering Information

| Part number | Package | Remarks |
| :--- | :---: | :--- |
| MB90598GPF <br> MB90F598GPF | 100-pin Plastic QFP <br> (PQH100) |  |
| MB90V595GCR | 256-pin Ceramic PGA | For evaluation |

## 14. Package Dimensions

| Package Type | Package Code |
| :---: | :---: |
| QFP 100 | PQH100 |



## 15. Major Changes

Spansion Publication Number: DS07-13705-7E

| Section | Change Results |
| :--- | :--- |
| - | Deleted the old products, MB90598, MB90F598, and <br> MB90V595. |
| - | Changed the series name; <br> MB90595/595G series ? MB90595G series |
| - | Changed the following erroneous name. <br> I/O timer $\rightarrow$ 16-bit Free-run Timer |
| PRODUCT LINEUP | One of Standby mode name is changed. <br> Clock mode $\rightarrow$ Watch mode |
| I/O CIRCUIT TYPE | Changed Pull-down resistor value of circuit type H. |
| ELECTRICAL CHARACTERISTICS <br> AC Characteristics | Add the "External clock input" and "Flash Read cycle time" in <br> (1) Clock Timing |
|  | Figure in (2) Reset and Hardware Standby Input <br> RST/HST input level of "In Stop Mode" is changed. <br> 0.6 Vcc 0.2 Vcc |
| ELECTRICAL CHARACTERISTICS <br> 5. A/D Converter | Changed the items of "Zero transition voltage" and "Full scale <br> transition voltage". |

NOTE: Please see "Document History" about later revised information.

## Document History

| Document Title: MB90598G/F598G/V595G F²MC-16LX MB90595G Series CMOS 16-bit Proprietary Microcontroller <br> Document Number: 002-07700 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :--- | :---: |
| Revision | ECN | Orig. of <br> Change | Submission <br> Date | Description of Change |  |
| ${ }^{* *}$ | - | AKIH | $09 / 26 / 2008$ | Migrated to Cypress and assigned document number 002-07700. <br> No change to document contents or format. |  |
| ${ }^{*}$ A | 5537128 | AKIH | $11 / 30 / 2016$ | Updated to Cypress template |  |
| *B | 6059031 | TORS | $02 / 06 / 2018$ | Adapted new Cypress logo <br> Updated following package code <br> FPT-100P-M06 $\rightarrow$ PQH100 |  |

## Sales, Solutions, and Legal Information

## Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

## Products

Arm ${ }^{\circledR}$ Cortex ${ }^{\circledR}$ Microcontrollers
Automotive
Clocks \& Buffers
Interface
Internet of Things
Memory
PSoC
Power Management ICs
Touch Sensing
USB Controllers
Wireless Connectivity

## PSoC ${ }^{\circledR}$ Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

## Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

## Technical Support

cypress.com/support

[^0]
## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for 16-bit Microcontrollers - MCU category:
Click to view products by Cypress manufacturer:
Other Similar products are found below :
M30302FCPFP\#U3 MB90F036APMC-GSE1 MB90F428GCPFR-GSE1 MB96F683RBPMC-GSAE1 R5F10MMGDFB\#30
R5F111PGGFB\#30 R5F117BCGNA\#20 R5F11BGEAFB\#30 DF3026XBL25V DF36014GFTV DF36014GFXV DF36024GFTV DF36034GFPV R5F11B7EANA\#U0 R5F21172DSP\#U0 MB90092PF-G-BNDE1 MB90F335APMC1-G-SPE1 MB90F345CAPFR-GSE1 MB90F568PMCR-GE1 MB90F882ASPMC-GE1 MB96F395RSAPMC-GSE2 DF36024GFXV UPD78F1018F1-BA4-A MB96F018RBPMCGSE1 MB90F867ASPFR-GE1 DF2239FA20IV R5F117BCGFP\#30 LC88F58B0AU-SQFPH MB90F548GPF-GE1 MB90214PF-GT-310-BND-AE1 MB90F342CESPQC-GSE2 MB90F428GAPF-GSE1 ML620Q504H-NNNTBWBX UPD78F1500AGK-GAK-AX HD64F3337SF16V MB90F428GCPF-GSE1 MB90F342ESPMC-G-JNE1 MB90022PF-GS-358E1 MB96F395RWAPMC-GSE2 MB96395RSAPMC-GS-110E2 MB90F883CSPMC-GE1 S912ZVHY64F1VLQ ST10F280 MB96F338RSAPMCR-GK5E2 CY90096PF-G-002-BND-ERE1 ML62Q1569-NNNGAZ0AX ML62Q1739-NNNGAZ0AX ML62Q1749-NNNGAZ0AX ML62Q1579-NNNGAZ0AX ML62Q1559-NNNGAZ0AX


[^0]:    
    
    
    
     modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users
    
     of the Software is prohibited.
    
    
    
    
    
    
    
    
    
    
    
     and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.
     the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

