MB15E03SL
Embedded in Tomorrow"'

The Cypress MB15E03SL is a serial input Phase Locked Loop (PLL) frequency synthesizer with a 1.2 GHz prescaler. The 1.2 GHz prescaler has a dual modulus division ratio of 64/65 or 128/129 enabling pulse swallowing operation.
The supply voltage range is between 2.4 V and 3.6 V . The MB15E03SL uses the latest BiCMOS process, as a result, the supply current is typically 2.0 mA at 2.7 V . A refined charge pump supplies a well balanced output currents of 1.5 mA or 6 mA . The charge pump current is selectable by serial data.

Features

■ High frequency operation: 1.2 GHz max

- Low power supply voltage: $\mathrm{V}_{\mathrm{CC}}=2.4 \mathrm{~V}$ to 3.6 V

■ Ultra Low power supply current: $\mathrm{I}_{\mathrm{CC}}=2.0 \mathrm{~mA}$ typ. $\left(\mathrm{V} \mathrm{CC}=\mathrm{Vp}=2.7 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}\right.$, in locking state $)$

$$
\mathrm{I}_{\mathrm{CC}}=2.5 \mathrm{~mA} \text { typ. }\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{Vp}=3 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C} \text {, in locking state }\right)
$$

■ Direct power saving function:Power supply current in power saving mode

$$
\text { Typ. } 0.1 \mu \mathrm{~A}\left(\mathrm{~V}_{\mathrm{CC}}=\mathrm{Vp}=3 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}\right) \text {, Max. } 10 \mu \mathrm{~A}\left(\mathrm{~V}_{\mathrm{CC}}=\mathrm{Vp}=3 \mathrm{~V}\right)
$$

■ Dual modulus prescaler: 64/65 or 128/129
■ Serial input 14-bit programmable reference divider: $\mathrm{R}=3$ to 16,383

- Serial input programmable divider consisting of:
a Binary 7-bit swallow counter: 0 to 127
a Binary 11-bit programmable counter: 3 to 2,047
- Selectable charge pump current

■ On-chip phase control for phase comparator
■ Operating temperature: $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$

MB15E03SL

Contents

Pin Assignments3
Pin Description 4
Block Diagram 5
Absolute Maximum Ratings 6
Recommended Operating Conditions 6
Electrical Characteristics 7
Functional Description 9
Pulse Swallow Function 9
Serial Data Input 9
Do Output Control 12
Power Saving Mode (Intermittent Mode Control Circuit) 12
Serial Data Input Timing 13
Phase Comparator Output Waveform 14
Measurement Circuit (for Measuring InputSensitivity fin/OSCIN)15
Typical Characteristics 16
fin Input Sensitivity 16
OSCIN Input Sensitivity 16
Do Output Current 17
fin Input Impedance 18
OSCIN Input Impedance 18
Reference Information 19
Application Example 22
Usage Precautions 23
Ordering Information 23
Package Dimensions 24
Document History 26
Sales, Solutions, and Legal Information 27

MB15E03SL

1. Pin Assignments

2. Pin Description

Pin No.		Qin Name	I/O	
SSOP	QFN			
1	15	OSCIN	I	Programmable reference divider input. Oscillator input connection to a TCXO.
2	16	OSCout	O	Oscillator output.
3	1	VP	-	Power supply voltage input for the charge pump.
4	2	Vcc	-	Power supply voltage input.

3. Block Diagram

MB15E03SL

4. Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating		Unit	Remark
			Min.	Max.		
Power supply voltage	Vcc	-	-0.5	4.0	V	
	V_{P}	-	Vcc	6.0	V	
Input voltage	V_{1}	-	-0.5	Vcc +0.5	V	
Output voltage	Vo	Except Do	GND	Vcc	V	
	Vo	Do	GND	V_{p}	V	
Storage temperature	Tstg	-	-55	+125	${ }^{\circ} \mathrm{C}$	

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

5. Recommended Operating Conditions

Parameter	Symbol	Value			Unit	Remark
		Min.	Typ.	Max.		
Power supply voltage	Vcc	2.4	3.0	3.6	V	
	V_{P}	Vcc	-	5.5	V	
Input voltage	V I	GND	-	Vcc	V	
Operating temperature	Ta	-40	-	+85	${ }^{\circ} \mathrm{C}$	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

MB15E03SL
Embedded in Tomorrow"

6. Electrical Characteristics

Parameter		Symbol	Condition		Value			to +	
		Unit							
		Min.							
Power supply current*1			Icc	$\begin{aligned} & V_{c c}=V_{P}=2.7 \mathrm{~V} \\ & \left(V_{c c}=V_{P}=3.0 \mathrm{~V}\right) \end{aligned}$		-	$\begin{aligned} & 2.0 \\ & (2.5) \end{aligned}$	-	mA
Power saving current		IPs	ZC = "H" or open		-	$0.1{ }^{*}$	10	$\mu \mathrm{A}$	
Operating frequency	fin	fin	-		100	-	1200	MHz	
	OSCIn	fosc	-		3	-	40	MHz	
Input sensitivity	$\mathrm{fin}^{* 3}$	Pfin	50Ω system (Refer to the Measurment circuit.)		-15	-	+2	dBm	
	$\mathrm{OSCln}^{* 3}$	Vosc	-		0.5	-	Vcc	Vp-p	
" H " level input voltage	Data, Clock, LE, PS, ZC	V_{H}	-		V cc $\times 0.7$	-	-	V	
"L" level input voltage		VIL	-		-	-	V cc $\times 0.3$		
" H " level input current	Data, Clock, LE, PS	$1 \mathbf{H}^{* 4}$	-		-1.0	-	+1.0	$\mu \mathrm{A}$	
"L" level input current		$11 L^{* 4}$	-		-1.0	-	+1.0		
"H" level input current	OSCIn	IH	-		0	-	+100	$\mu \mathrm{A}$	
"L" level input current		$1 L^{*}{ }^{4}$	-		-100	-	0		
"H" level input current	ZC	$11 \mathbf{H}^{* 4}$	-		-1.0	-	+1.0	$\mu \mathrm{A}$	
"L" level input current		$1 L^{* 4}$	Pull up input		-100	-	0		
"L" level output voltage	$\phi \mathrm{P}$	Vol	Open drain output		-	-	0.4	V	
"H" level output voltage	ϕ R, LD/fout	Vor	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{P}}=3 \mathrm{~V}$, $\mathrm{I}_{\mathrm{oH}}=-1 \mathrm{~mA}$		Vcc - 0.4	-	-	V	
"L" level output voltage		Vol	$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{P}}=3 \mathrm{~V}$, $\mathrm{loL}=1 \mathrm{~mA}$		-	-	0.4		
"H" level output voltage	Do	V DOH	$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{P}}=3 \mathrm{~V}$, IDOH $=-0.5 \mathrm{~mA}$		VP-0.4	-	-	V	
"L" level output voltage		Vool	$\mathrm{V}_{\text {cc }}=\mathrm{V}_{\mathrm{P}}=3 \mathrm{~V}$, IDOL $=0.5 \mathrm{~mA}$		-	-	0.4		
High impedance cutoff current	Do	loff	$\begin{aligned} & V_{\text {CC }}=V_{P}=3 \mathrm{~V}, \\ & V_{\text {off }}=0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{P}}-0.5 \mathrm{~V} \end{aligned}$		-	-	2.5	nA	
"L" level output current	$\phi \mathrm{P}$	lot	Open drain output		1.0	-	-	mA	
"H" level output current	$\phi \mathrm{R}$, LD/fout	Іон	-		-	-	-1.0	mA	
"L" level output current		loL	-		1.0	-	-		
"H" level output current	Do	Ioor ${ }^{*}$	$\begin{aligned} & V_{c C}=3 V, \\ & V_{P}=3 V, \\ & V_{D O}=V_{P} / 2 \\ & T a=+25^{\circ} \mathrm{C} \end{aligned}$	CS bit = "H"	-	-6.0	-	mA	
				CS bit = "L"	-	-1.5	-		
"L" level output current		IDoL		CS bit = "H"	-	6.0	-		
				CS bit = "L"	-	1.5	-		
Charge pump current rate	IooL/looh	ldomt ${ }^{\text {* }}$	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{P}} / 2$		-	3	-	\%	
	vs V_{DO}	ldovo ${ }^{*} 6$	$0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DO}} \leq \mathrm{V}_{\mathrm{P}}-0.5 \mathrm{~V}$		-	10	-	\%	
	vs Ta	IDOTA ${ }^{\text { }}{ }^{\text {\% }}$	$-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq+85^{\circ} \mathrm{C}$		-	10	-	\%	

MB15E03SL
Embedded in Tomorrow"
(Continued)
*1: Conditions; fin $=1200 \mathrm{MHz}$, fosc $=12 \mathrm{MHz}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$, in locking state.
${ }^{*} 2$: $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{P}}=3.0 \mathrm{~V}$, fosc $=12.8 \mathrm{MHz}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$, in power saving mode
*3: AC coupling. 1000 pF capacitor is connected under the condition of min. operating frequency.
*4: The symbol "-" (minus) means direction of current flow.
${ }^{*} 5: \mathrm{Vcc}=\mathrm{V}_{\mathrm{P}}=3.0 \mathrm{~V}$, $\mathrm{Ta}=+25^{\circ} \mathrm{C}\left(| |_{3}\left|-\left|\left.\right|_{4}\right|\right) /\left[\left(\left|I_{3}\right|+\left|\left.\right|_{4}\right|\right) / 2\right] \times 100(\%)\right.$
*6: $\mathrm{V}_{\mathrm{Cc}}=\mathrm{V}_{\mathrm{P}}=3.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}\left[\left(| |_{2}\left|-\left|\left.\right|_{1}\right|\right) / 2\right] /\left[\left(\left|\left.\right|_{1}\right|+\left|\left.\right|_{2}\right|\right) / 2\right] \times 100(\%)\right.$ (Applied to each IdoL, IDoh)
*7: $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{P}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DO}}=\mathrm{V}_{\mathrm{P}} / 2\left(\mid \mathrm{IDO}\left(+85^{\circ} \mathrm{C}\right)-{\mathrm{IDO}\left(-40^{\circ} \mathrm{C}\right) \mid}^{2}\right) /\left(\mid \mathrm{IDO}\left(+85^{\circ} \mathrm{C}\right)+{\mathrm{IDO}\left(-40^{\circ} \mathrm{C}\right)} / 2\right) \times 100(\%)($ Applied to each IDoL, IDOH $)$

Charge Pump Output Voltage (V)

7. Functional Description

7.1 Pulse Swallow Function

The divide ratio can be calculated using the following equation:
fvco $=[(M \times N)+A] \times$ fosc $\div R \quad(A<N)$
fvco : Output frequency of external voltage controlled oscillator (VCO)
N : Preset divide ratio of binary 11-bit programmable counter (3 to 2,047)
A : Preset divide ratio of binary 7-bit swallow counter ($0 \leq A \leq 127$)
fosc: Output frequency of the reference frequency oscillator
R : Preset divide ratio of binary 14-bit programmable reference counter (3 to 16,383)
M : Preset divide ratio of the dual modulus prescaler (64 or 128)

7.2 Serial Data Input

Serial data is processed using the Data, Clock, and LE pins. Serial data controls the programmable reference divider and the programmable divider separately.
Binary serial data is entered through the Data pin.
One bit of data is shifted into the shift register on the rising edge of the Clock. When the LE pin is taken high, stored data is latched according to the control bit data as follows:
Table 1. Control Bit

Control Bit (CNT)	Destination of Serial Data
H	For the programmable reference divider
L	For the programmable divider

7.2.1 Shift Register Configuration

Programmable Reference Counter

Note: Start data input with MSB first.

MB15E03SL
Embedded in Tomorrow"

Programmable Counter

CNT : Control bit
N1 to N11 : Divide ratio setting bits for the programmable counter (3 to 2,047)
A1 to A7 : Divide ratio setting bits for the swallow counter (0 to 127)
[Table 1]
[Table 3]
[Table 4]

Note: Start data input with MSB first.

Table 2. Binary 14-bit Programmable Reference Counter Data Setting

Divide ratio (R)	$\mathbf{R 1 4}$	$\mathbf{R 1 3}$	$\mathbf{R 1 2}$	$\mathbf{R 1 1}$	$\mathbf{R 1 0}$	$\mathbf{R 9}$	$\mathbf{R 8}$	$\mathbf{R 7}$	$\mathbf{R 6}$	$\mathbf{R 5}$	$\mathbf{R 4}$	$\mathbf{R 3}$	$\mathbf{R 2}$	$\mathbf{R 1}$
3	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	1	0	0
\times														
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio less than 3 is prohibited.

Table 3. Binary 11-bit Programmable Counter Data Setting

Divide ratio (N)	N11	N10	N9	N8	N7	N6	N5	N4	N3	N2	N1
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
\times											
2047	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio less than 3 is prohibited.

Table 4. Binary 7-bit Swallow Counter Data Setting

Divide ratio (A)	$\mathbf{A 7}$	A6	A5	A4	A3	A2	A1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\times							
127	1	1	1	1	1	1	1

MB15E03SL

Table 5. Prescaler Data Setting

SW	Prescaler Divide Ratio
H	$64 / 65$
L	$128 / 129$

Table 6. Charge Pump Current Setting

CS	Current Value
H	$\pm 6.0 \mathrm{~mA}$
L	$\pm 1.5 \mathrm{~mA}$

Table 7. LD/fout Output Select Data Setting

LDS	
H	fout signal
L	LD signal

7.2.2 Relation between the FC Input and Phase Characteristics

The FC bit changes the phase characteristics of the phase comparator. Both the internal charge pump output level (Do) and the phase comparator output ($\phi \mathrm{R}, \phi \mathrm{P}$) are reversed according to the FC bit. Also, the monitor pin (fout) output is controlled by the FC bit. The relationship between the FC bit and each of $D_{0}, \phi R$, and ϕP is shown below.

Table 8. Table 8. FC Bit Data Setting (LDS = "H")

	FC = High				FC = Low			
	Do	¢R	ϕP	LD/fout	Do	$\phi \mathrm{R}$	ϕP	LD/fout
$\mathrm{fr}>\mathrm{fp}$	H	L	L	fout $=$ fr	L	H	Z*	fout $=\mathrm{fp}$
$\mathrm{fr}<\mathrm{fp}$	L	H	Z*		H	L	L	
$\mathrm{fr}=\mathrm{fp}$	Z*	L	Z*		Z*	L	Z*	

*: High impedance
When designing a synthesizer, the FC pin setting depends on the VCO and LPF characteristics.

- When the LPF and VCO characteristics are similar to (1), set FC bit high.
- When the VCO characteristics are similar to (2), set FC bit low.

MB15E03SL

7.3 Do Output Control

Table 9. ZC Pin Setting

ZC pin	Do output
H	Normal output
L	High impedance

7.4 Power Saving Mode (Intermittent Mode Control Circuit)

Table 10. Table 10. PS Pin Setting

PS pin	
H	Normal mode
L	Power saving mode

The intermittent mode control circuit reduces the PLL power consumption.
By setting the PS pin low, the device enters into the power saving mode, reducing the current consumption. See the Electrical Characteristics chart for the specific value.
The phase detector output, Do, becomes high impedance.
For the signal PLL, the lock detector, LD, remains high, indicating a locked condition.
Setting the PS pin high, releases the power saving mode, and the device works normally.
The intermittent mode control circuit also ensures a smooth startup when the device returns to normal operation. When the PLL is returned to normal operation, the phase comparator output signal is unpredictable. This is because of the unknown relationship between the comparison frequency (fp) and the reference frequency (fr) which can cause a major change in the comparator output, resulting in a VCO frequency jump and an increase in lockup time. To prevent a major VCO frequency jump, the intermittent mode control circuit limits the magnitude of the error signal from the phase detector when it returns to normal operation.

Note:

- When power (Vcc) is first applied, the device must be in standby mode, $\mathrm{PS}=$ Low, for at least $1 \mu \mathrm{~s}$.
- PS pin must be set "L" for Power-ON.

(1) $P S=L$ (power saving mode) at Power ON
(2) Set serial data 1μ s later after power supply remains stable ($\mathrm{Vcc} \geq 2.2 \mathrm{~V}$).
(3) Release power saving mode (PS: " L " \rightarrow " H ") 100 ns later after setting serial data.

MB15E03SL
Embedded in Tomorrow"

8. Serial Data Input Timing

On the rising edge of the clock, one bit of data is transferred into the shift register.

Parameter	Min.	Typ.	Max.	Unit
t1	20	-	-	ns
t2	20	-	-	ns
t3	30	-	-	ns
t4	30	-	-	ns

Parameter	Min.	Typ.	Max.	Unit
t 5	100	-	-	ns
t 6	20	-	-	ns
t 7	100	-	-	ns

Note: LE should be "L" when the data is transferred into the shift register.

MB15E03SL
Embedded in Tomorrow"

9. Phase Comparator Output Waveform

[FC = "H"]

[FC = "L"]

Notes:

- Phase error detection range: -2π to $+2 \pi$
- Pulses on Do output signal during locked state are output to prevent dead zone.
$■$ LD output becomes low when phase is twu or more. LD output becomes high when phase error is twL or less and continues to be so for three cycles or more.
$\bullet t w u$ and twa depend on OSCin input frequency.
twu $\geq 2 /$ fosc (s) (e. g. twu $\geq 156.3 \mathrm{~ns}$, fosc $=12.8 \mathrm{MHz}$)
twu $\leq 4 /$ fosc (s) (e. g. twl $\leq 312.5 \mathrm{~ns}$, fosc $=12.8 \mathrm{MHz}$)
$■$ LD becomes high during the power saving mode ($\mathrm{PS}=$ " L ").

MB15E03SL
Embedded in Tomorrow"
10. Measurement Circuit (for Measuring Input Sensitivity fin/OSCin)

MB15E03SL
Embedded in Tomorrow"

11. Typical Characteristics

11.1 fin Input Sensitivity

11.2 OSC $_{\text {IN }}$ Input Sensitivity

MB15E03SL
11.3 Do Output Current

1.5 mA mode

Charge pump output voltage VDO (V)
6.0 mA mode

Charge pump output voltage VDO (V)

MB15E03SL
Embedded in Tomorrow"

11.4 fin Input Impedance

11.5 OSC $_{\text {in }}$ Input Impedance

MB15E03SL

12. Reference Information

$\mathrm{fvco}=810.425 \mathrm{MHz}$
$\mathrm{Kv}=17 \mathrm{MHz} / \mathrm{V}$
$\mathrm{fr}=25 \mathrm{kHz}$
fosc $=14.4 \mathrm{MHz}$
\exp current: 6.0 mA

■ LPF

MB15E03SL
Embedded in Tomorrow"'

■ PLL Reference Leakage

PLL Phase Noise

(Continued)
(Continued)

MB15E03SL
Embedded in Tomorrow"

13. Application Example

Notes:

■ In case of using a crystal resonator, it is necessary to optimize matching between the crystal and this LSI, and perform detailed system evaluation. It is recommended to consult with a supplier of the crystal resonator. (Reference oscillator circuit provides its own bias, feedback resistor is $100 \mathrm{k} \Omega$ (typ).)

- SSOP-16

MB15E03SL

14. Usage Precautions

To protect against damage by electrostatic discharge, note the following handling precautions:

- Store and transport devices in conductive containers.

■ Use properly grounded workstations, tools, and equipment.
■ Turn off power before inserting device into or removing device from a socket.

- Protect leads with a conductive sheet when transporting a board-mounted device.

15. Ordering Information

Part number	Package	Remarks
MB15E03SLPFV1	16-pin, Plastic SSOP (FPT-16P-M05)	
MB15E03SLWQN	16-pin, Plastic QFN (LCC-16P-M69)	

MB15E03SL
Embedded in Tomorrow"'

16. Package Dimensions

16-pin plastic SSOP	Lead pitch	0.65 mm
Package width \times package length	$4.40 \times 5.00 \mathrm{~mm}$	
Lead shape	Gullwing	
(FPT-16P-M05)		

16-pin plastic SSOP
(FPT-16P-M05)

(c) 2003-2010 FUJITSU SEMICONDUCTOR LIMITED F16013S-C-4-8

Note 1) *1 : Resin protrusion. (Each side : +0.15 (.006) Max).
Note 2) *2 : These dimensions do not include resin protrusion. Note 3) Pins width and pins thickness include plating thickness. Note 4) Pins width do not include tie bar cutting remainder.

Dimensions in mm (inches).
Note: The values in parentheses are reference values.

16-pin plastic QFN	Lead pitch	0.50 mm
Package width \times package length	$4.00 \mathrm{~mm} \times 4.00 \mathrm{~mm}$	
Sealing method	Plastic mold	
Mounting height	0.80 mm MAX	

16-pin plastic QFN
(LCC-16P-M69)

MB15E03SL
Embedded in Tomorrow"

Document History

Document Title: MB15E03SL Single Serial Input PLL Frequency Synthesizer On-chip 1.2 GHz Prescaler Document Number: 002-08431				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	-	TAOA	05/31/2012	Initial release.
*A	5562033	TAOA	12/22/2016	Migrated Spansion datasheet "DS04-21359-6E" into Cypress Template.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products	
ARM $^{\circledR}$ Cortex ${ }^{\circledR}$ Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks \& Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Lighting \& Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

© Cypress Semiconductor Corporation, 2000-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Phase Locked Loops - PLL category:
Click to view products by Cypress manufacturer:

Other Similar products are found below :
HMC700LP4TR CPLL58-2400-2500 MB15E07SLPFV1-G-BND-6E1 PI6C2409-1HWEX BA4116FV-E2 HMC820LP6CETR
HMC828LP6CETR LMX2430TMX/NOPB HMC837LP6CETR HMC831LP6CETR NB3N5573DTG ADF4153ABCPZ PI6C2405A-1LE CD74HC4046AM CPLL66-2450-2450 NJM567D CY23S05SXI-1 STW81200T ADF4208BRUZ ADF4218LBRUZ ADF4355-3BCPZ ADF5355BCPZ ADF4355BCPZ ADF4169WCCPZ ADF4360-7BCPZ ADF4360-6BCPZ ADF4360-5BCPZRL7 ADF4360-5BCPZ ADF4360-4BCPZRL7 ADF4360-4BCPZ ADF4360-3BCPZ ADF4360-2BCPZRL7 ADF4252BCPZ ADF4159CCPZ ADF4169CCPZ ADF4252BCPZ-R7 ADF4360-0BCPZ ADF4360-1BCPZ ADF4360-1BCPZRL7 ADF4360-2BCPZ ADF4360-3BCPZRL7 ADF43607BCPZRL7 ADF4360-8BCPZ ADF4360-8BCPZRL7 ADF4360-9BCPZ ADF4360-9BCPZRL7 ADF4159CCPZ-RL7 ADF4159WCCPZ ADF4360-0BCPZRL7 AD9901KPZ

