C-
 CYPRESS

The following document contains information on Cypress products. The document has the series name, product name, and ordering part numbering with the prefix "MB". However, Cypress will offer these products to new and existing customers with the series name, product name, and ordering part number with the prefix "CY".

How to Check the Ordering Part Number

1. Go to www.cypress.com/pcn.
2. Enter the keyword (for example, ordering part number) in the SEARCH PCNS field and click Apply.
3. Click the corresponding title from the search results.
4. Download the Affected Parts List file, which has details of all changes

For More Information
Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress is the leader in advanced embedded system solutions for the world's most innovative automotive, industrial, smart home appliances, consumer electronics and medical products. Cypress' microcontrollers, analog ICs, wireless and USB-based connectivity solutions and reliable, high-performance memories help engineers design differentiated products and get them to market first. Cypress is committed to providing customers with the best support and development resources on the planet enabling them to disrupt markets by creating new product categories in record time. To learn more, go to www.cypress.com.

Description

MB39C605 is a Primary Side Regulation (PSR) LED driver IC for LED lighting. Using the information of the primary peak current and the transformer-energy-zero time, it is able to deliver a well regulated current to the secondary side without using an opto-coupler in an isolated flyback topology. Operating in critical conduction mode, a smaller transformer is required. In addition, MB39C605 has a built-in phase dimmable circuit and can constitute the lighting system for phase dimming.
It is most suitable for the general lighting applications, for example replacement of commercial and residential incandescent lamps.

Features

■PSR topology in an isolated flyback circuit
■High efficiency (>80\% : without dimmer) and low EMI by detecting transformer zero energy
■TRAIC Dimmable LED lighting
■Highly reliable protection functions

- Under voltage lock out (UVLO)
- Over voltage protection (OVP)
\square Over current protection (OCP)
\square Short circuit protection (SCP)
\square Over temperature protection (OTP)
-Switching frequency setting : 30 kHz to 133 kHz
■ Input voltage range VDD : 9V to 20V
■ Input voltage for LED lighting applications : AC110V ${ }_{\text {RMS }}, ~ A C 230 V_{\text {RMS }}$
■Output power range for LED lighting applications: 5 W to 10 W
■Small Package : SOP-8 ($3.9 \mathrm{~mm} \times 5.05 \mathrm{~mm} \times 1.75 \mathrm{~mm}[\mathrm{Max}]$)

Applications

■Phase dimmable (Leading/Trailing) LED lighting
■LED lighting

Note: This product supports the web-based design simulation tool, Easy DesignSim.
It can easily select external components and can display useful information.
Please access from http://cypress.transim.com/login.aspx

Contents

Description 1
Features 1
Applications 1

1. Pin Assignment 3
2. Pin Descriptions 3
3. Block Diagram 4
4. Absolute Maximum Ratings 5
5. Recommended Operating Conditions 6
6. Electrical Characteristics 7
7. Standard Characteristics. 9
8. Function Explanations 10
8.1 LED Current Control by PSR (Primary Side Regulation) 10
8.2 Dimming Function. 11
8.3 Power-On Sequence 12
8.4 Power-Off Sequence 13
8.5 Ip_peak Detection Function 13
8.6 Zero Voltage Switching Function 13
8.7 Protection Functions 14
9. I/O Pin Equivalent Circuit Diagram 15
10. Application Examples. 17
10.1 5W Non-isolated Dimming Application 17
11. Usage Precautions 22
12. RoHS Compliance Information 22
13. Ordering Information 22
14. Package Dimensions 23
15. Major Changes 24
Document History 25
Sales, Solutions, and Legal Information 26

1. Pin Assignment

Figure 1-1. Pin Assignment

2. Pin Descriptions

Table 2-1. Pin Descriptions

Pin No.	Pin Name	I/O	
1	VDD	-	Pescription
2	TZE	I	Transformer Zero Energy detecting pin.
3	COMP	O	External Capacitor connection pin for the compensation.
4	VAC	I	Phase dimming control pin.
5	ADJ	O	Pin for adjusting the switch-on timing.
6	CS	I	Pin for detecting peak current of transformer primary winding.
7	GND	-	Ground pin.
8	DRV	O	External MOSFET gate connection pin.

3. Block Diagram

Figure 3-1. Block Diagram (Isolated Flyback Application)

4. Absolute Maximum Ratings

Table 4-1. Absolute Maximum Rating

Parameter	Symbol	Condition	Rating		Unit
			Min	Max	
Power Supply Voltage	Vvdd	VDD pin	-0.3	+25	V
Input Voltage	$V_{\text {cs }}$	CS pin	-0.3	+6.0	V
	V TZE	TZE pin	-0.3	+6.0	V
	V Vac	VAC pin	-0.3	+6.0	V
Output Voltage	V DRV	DRV pin	-0.3	+25	V
Output Current	$\mathrm{I}_{\text {ADJ }}$	ADJ pin	-1	-	mA
	IdRV	DRV pin DC level	-50	+50	mA
Power Dissipation	Pd	$\mathrm{Ta} \leq+25^{\circ} \mathrm{C}$	-	800 (*1)	mW
Storage temperature	TSTG	-	-55	+125	${ }^{\circ} \mathrm{C}$
ESD Voltage 1	Vesdh	Human Body Model	-2000	+2000	V
ESD Voltage 2	Vesdc	Charged Device Model	-1000	+1000	V

*1: The value when using two layers PCB.
Reference: $\theta \mathrm{ja}$ (wind speed $0 \mathrm{~m} / \mathrm{s}$): $+125^{\circ} \mathrm{C} / \mathrm{W}$

Figure 4-1. Power Dissipation

WARNING:

1. Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.

5. Recommended Operating Conditions

Table 5-1. Recommended Operating Conditions

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
VDD pin Input Voltage	VDD	VDD pin	9	-	20	V
VAC pin Input Voltage	V Vac	VAC pin After UVLO release	0	-	5	V
VAC pin Input Current	Ivac	VAC pin Before UVLO release	0	-	2.5	$\mu \mathrm{A}$
TZE pin Resistance	Rtze	TZE pin	50	-	200	$k \Omega$
ADJ pin Resistance	RadJ	ADJ pin	9.3	-	185.5	k Ω
COMP pin Capacitance	Ссомр	COMP pin	-	0.01	-	$\mu \mathrm{F}$
VDD pin Capacitance	$\mathrm{C}_{\text {BP }}$	Set between VDD pin and GND pin	-	4.7	-	$\mu \mathrm{F}$
Operating Junction Temperature	Tj	-	-40	-	+125	${ }^{\circ} \mathrm{C}$

WARNING:

1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.
2. Any use of semiconductor devices will be under their recommended operating condition.
3. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.
4. No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

6. Electrical Characteristics

Table 6-1 . Electrical Characteristics
$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{VVDD}=12 \mathrm{~V}\right)$

Parameter		Symbol	Pin	Condition	Value			Unit
POWER SUPPLY CURRENT	Power supply current	Ivdo(Static)	VDD	$V_{V D D}=20 \mathrm{~V}, \mathrm{~V}_{\text {TZE }}=1 \mathrm{~V}$	-	3	3.6	mA
		Ivdd(operating)	VDD	$\begin{aligned} & \mathrm{V} \mathrm{vDD}=20 \mathrm{~V}, \mathrm{Qg}=20 \mathrm{nC}, \\ & \mathrm{fsw}=133 \mathrm{kHz} \end{aligned}$	-	5.6	-	mA
UVLO	UVLO Turn-on threshold voltage	$\mathrm{V}_{\text {TH }}$	VDD	-	12.25	13	13.75	V
	UVLO Turn-off threshold voltage	$V_{\text {TL }}$	VDD	-	7.55	7.9	8.5	V
	Startup current	Istart	VDD	$\mathrm{V}_{\mathrm{VDD}}=7 \mathrm{~V}$	-	65	160	$\mu \mathrm{A}$
TRANSFORMER ZERO ENERGY DETECTION	Zero energy threshold voltage	$\mathrm{V}_{\text {tzetL }}$	TZE	TZE = "H" to "L"	-	20	-	mV
	Zero energy threshold voltage	$V_{\text {tzeth }}$	TZE	TZE = "L" to "H"	0.6	0.7	0.8	V
	TZE clamp voltage	$V_{\text {tzeclamp }}$	TZE	$I_{\text {Tze }}=-10 \mu \mathrm{~A}$	-200	-160	-100	mV
	OVP threshold voltage	$\mathrm{V}_{\text {Tzeovp }}$	TZE	-	4.15	4.3	4.45	v
	OVP blanking time	tovpblank	TZE	-	0.6	1	1.7	$\mu \mathrm{s}$
	TZE input current	Itze	TZE	$\mathrm{V}_{\text {TZE }}=5 \mathrm{~V}$	-1	-	+1	$\mu \mathrm{A}$
COMPENSATIO N	Source current	Iso	COMP	$\begin{aligned} & V_{\text {comp }}=2 \mathrm{~V}, \mathrm{~V}_{\text {cs }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{VAC}}=1.85 \mathrm{~V} \end{aligned}$	-	-27	-	$\mu \mathrm{A}$
	Trans conductance	gm	COMP	$\mathrm{V}_{\text {comp }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {cs }}=1 \mathrm{~V}$	-	96	-	$\mu \mathrm{A} / \mathrm{V}$
DIMMING	VAC input current	Ivac	VAC	$\mathrm{V}_{\mathrm{VAC}}=5 \mathrm{~V}$	-0.1	-	+0.1	$\mu \mathrm{A}$
	VACCMP threshold voltage	Vvaccmpvth	VAC	-	135	150	165	mV
	VACCMP hysteresis	Vvaccmphys	VAC	-	-	70	-	mV
ADJUSTMENT	ADJ voltage	$V_{\text {ADJ }}$	ADJ	-	1.81	1.85	1.89	V
	ADJ source current	I ADJ	ADJ	$\mathrm{V}_{\text {ADJ }}=0 \mathrm{~V}$	-650	-450	-250	$\mu \mathrm{A}$
	ADJ time	TAdJ	$\begin{aligned} & \text { TZE } \\ & \text { DRV } \end{aligned}$	$\begin{aligned} & T_{A D J}\left(R_{A D J}=51 \mathrm{k} \Omega\right)- \\ & T_{\text {ADJ }}(\text { RADJ }=9.1 \mathrm{k} \Omega) \end{aligned}$	490	550	610	ns
	Minimum switching period	Tsw	$\begin{aligned} & \text { TZE } \\ & \text { DRV } \end{aligned}$	-	6.75	7.5	8.25	$\mu \mathrm{s}$

$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{VDD}}=12 \mathrm{~V}\right)$

Parameter		Symbol	Pin	Condition	Value			Unit	
		Min			Typ	Max			
CURRENT SENSE	OCP threshold voltage		Vocpth	CS	-	1.9	2	2.1	V
	OCP delay time	tocpdiy	CS	-	-	400	500	ns	
	CS input current	Ics	CS	$\mathrm{V}_{\mathrm{cs}}=5 \mathrm{~V}$	-1	-	+1	$\mu \mathrm{A}$	
DRV	DRV high voltage	V ${ }_{\text {drve }}$	DRV	$V D D=18 \mathrm{~V}, \mathrm{ldrv}=-30 \mathrm{~mA}$	7.6	9.4	-	V	
	DRV low voltage	V ${ }_{\text {dVVL }}$	DRV	$V D D=18 \mathrm{~V}, \mathrm{l}$ DRV $=30 \mathrm{~mA}$	-	130	260	mV	
	Rise time	trise	DRV	$\mathrm{VDD}=18 \mathrm{~V}, \mathrm{CLOAD}=1 \mathrm{nF}$	-	94	-	ns	
	Fall time	tfall	DRV	$\mathrm{VDD}=18 \mathrm{~V}, \mathrm{CLOAD}=1 \mathrm{nF}$	-	16	-	ns	
	Minimum on time	tonmin	DRV	TZE trigger	300	500	700	ns	
	Maximum on time	tonmax	DRV	-	27	44	60	$\mu \mathrm{s}$	
	Minimum off time	toffmin	DRV	-	1	1.5	1.93	$\mu \mathrm{s}$	
	Maximum off time	toffmax	DRV	TZE = GND	270	320	370	$\mu \mathrm{s}$	
OTP	OTP threshold	Totp	-	Tj, temperature rising	-	+150	-	${ }^{\circ} \mathrm{C}$	
	OTP hysteresis	Totphys	-	Tj , temperature falling, degrees below Totp	-	+25	-	${ }^{\circ} \mathrm{C}$	

7. Standard Characteristics

Figure 7-1. Standard Characteristics

MB39C605

8. Function Explanations

8.1 LED Current Control by PSR (Primary Side Regulation)

MB39C605 regulates the average LED current (lLED) by feeding back the information based on Primary Winding peak current (IP_PEAK) and Secondary Winding energy discharge time (TDIS) and switching period (Tsw). Figure 8-1 shows the operating waveform in steady state. I_{P} is Primary Winding current and I_{S} is Secondary Winding current. ILED as an average current of the Secondary Winding is described by the following equation.

$$
I_{\text {LED }}=\frac{1}{2} \times I_{I_{-} P E A K} \times \frac{T_{D I S}}{T_{S W}}
$$

Using Ip_PEAK and the transformer Secondary to Primary turns ratio ($\mathrm{Np} / \mathrm{Ns}$), Secondary Winding peak current (Is_PEAK) is described by the following equation.

$$
I_{S _P E A K}=\frac{N P}{N s} \times I_{P _P E A K}
$$

Therefore,

$$
I_{L E D}=\frac{1}{2} \times \frac{N_{P}}{N_{S}} \times I_{P-P E A K} \times \frac{T D I S}{T S W}
$$

MB39C605 detects TDIs by monitoring TZE pin and IP_PEAK by monitoring CS pin. An internal Err Amp sinks gm current proportional to IP_PEAK from COMP pin during TDIS period. In steady state, since the average of the gm current is equal to internal reference current (Iso), the voltage on COMP pin ($\mathrm{V}_{\text {comp }}$) is nearly constant.

$$
\text { IP_PEAK } \times \text { Rcs } \times \mathrm{gm} \times \text { TDIS }=\text { Iso } \times \text { Tsw }
$$

In above equation, gm is transconductance of the Err Amp and Rcs is a sense resistance.
Eventually, Iled can be calculated by the following equation.

$$
\mathrm{I}_{\text {LED }}=\frac{1}{2} \times \frac{\mathrm{N}_{\mathrm{p}}}{\mathrm{~N}_{\mathrm{s}}} \times \frac{\mathrm{I}_{\mathrm{so}}}{\mathrm{gm}} \times \frac{1}{\mathrm{R}_{\mathrm{cs}}}
$$

Figure 8-1. LED Current Control Waveform

8.2 Dimming Function

MB39C605 has the built-in Phase dimmable circuit to control ILed by changing a reference of Err Amp based on the input dimming control level on the VAC pin and realizes dimming. Figure $8-2$ shows the input circuit to the VAC pin for phase dimming. VBuLKo is divided and filtered into an analog voltage with RC network. It is possible to configurate phase dimmable system by inputting the voltage to the VAC pin.

Figure 8-2. VAC Pin Input Circuit

MB39C605

8.3 Power-On Sequence

When the AC line voltage is supplied, $V_{\text {вицк }}$ is powered from the $A C$ line through a diode bridge and a diode (D1) with charging a capacitor (Свицк), and the VDD pin is charged from V Bulк through a start-up resistance (Rst). (Figure 8-3 red path)

When the VDD pin is charged up and the voltage on the VDD pin (Vvod) rises above the UVLO threshold voltage, an internal Bias circuit starts operating, and MB39C605 starts the dimming control. After the UVLO is released, this device enables switching and is operating in a forced switching mode ($T_{\text {on }}=1.5 \mu \mathrm{~s}$, Toff $=78 \mu \mathrm{~s}$ to $320 \mu \mathrm{~s}$). When the voltage on the TZE pin reaches the Zero energy threshold voltage ($\mathrm{V}_{\text {TZETH }}=0.7 \mathrm{~V}$), MB39C605 enters normal operation mode. After the switching begins, the VDD pin is also charged from Auxiliary Winding through an external diode (DBIAS). (Figure 8-3 blue path)

During start-up period Vvod is not supplied from Auxiliary Winding, because the LED voltage is low. Vvod decreases gradually until the LED voltage rises above enough high that the Auxiliary Winding voltage can exceed Vvdd. In this period, if Vvdd falls below the UVLO threshold voltage, the switching stops. When the VDD pin is charged up again and VvdD rises above the UVLO threshold voltage, MB39C605 restarts the switching. This device repeats above operation until the LED voltage rises above enough high. $V_{\text {vdd }}$ becomes stable after that.

Figure 8-3. VDD Supply Path at Power-On

Figure 8-4. Power-On Waveform

8.4 Power-Off Sequence

After the AC line voltage is removed, $\mathrm{V}_{\text {вuLк }}$ is discharged by switching operation. Since any Secondary Winding current does not flow, Iled is supplied only from output capacitors and decreases gradually. Vvdd also decreases because there is no current supply from both Auxiliary Winding and Vbulk. When Vvdd falls below the UVLO threshold voltage, MB39C605 shuts down.

Figure 8-5. Power-Off Waveform

8.5 IP_PEAK Detection Function

MB39C605 detects Primary Winding peak current (Ip_PEAK) of Transformer. ILed is set by connecting a sense resistance (Rcs) between CS pin and GND pin. Maximum Ip_PEAK (Ip_PEAKMAX) limited by Over Current Protection (OCP) can also be set with the resistance.
Using the Secondary to Primary turns ratio ($\mathrm{N}_{\mathrm{P}} / \mathrm{N}_{\mathrm{s}}$) and $\mathrm{I}_{\text {LED }}$, $\mathrm{Rcs}_{\mathrm{cs}}$ is set as the following equation (refer to 8.1)

$$
R C s=\frac{N p}{N s} \times \frac{0.14}{\text { ILED }}
$$

In addition, using the OCP threshold voltage (VOCPTH) and Rcs, IP_PEAKMAX is calculated with the following equation.

$$
I_{\text {P_PEAKMAX }}=\frac{\text { VocPTH }}{\text { Rcs }}
$$

8.6 Zero Voltage Switching Function

MB39C605 has built-in zero voltage switching function to minimize switching loss of the external switching MOSFET. This device detects a zero crossing point through a resistor divider connected from TZE pin to Auxiliary Winding. A zero energy detection circuit detects a negative crossing point of the voltage on TZE pin to Zero energy threshold voltage ($\mathrm{V}_{\text {TZETL }}$). On-timing of switching MOSFET is decided with waiting an adjustment time (taDJ) after the negative crossing occurs.
$t_{A D J}$ is set by connecting an external resistance (RadJ) between ADJ pin and GND pin. Using Primary Winding inductance (Lp) and the parasitic drain capacitor of switching MOSFET (CD), $\mathrm{t}_{A D J}$ is calculated with the following equation.

$$
\mathrm{t}_{\mathrm{ADJ}}=\frac{\pi \sqrt{\mathrm{LP} \times \mathrm{CD}}}{2}
$$

Using $t_{A D J}, R_{A D J}$ is expressed by the following calculation.

$$
R_{\mathrm{ADJ}}[k \Omega]=0.0927 \times \mathrm{t}_{\mathrm{ADJ}}[\mathrm{~ns}]
$$

8.7 Protection Functions

Under Voltage Lockout Protection (UVLO)

The under voltage lockout protection (UVLO) prevents IC from a malfunction in the transient state during Vvdd startup and a malfunction caused by a momentary drop of $\mathrm{V}_{\mathrm{vDD}}$, and protects the system from destruction/deterioration. An UVLO comparator detects the voltage decrease below the UVLO threshold voltage on VDD pin, and then DRV pin is turned to "L" and the switching stops. MB39C605 automatically returns to normal operation mode when Vvdo increases above the UVLO threshold voltage.

Over Voltage Protection (OVP)

The over voltage protection (OVP) protects Secondary side components from an excessive voltage stress. If the LED is disconnected, the output voltage of Secondary Winding rises up. The output overvoltage can be detected by monitoring TZE pin. During Secondary Winding energy discharge time, $\mathrm{V}_{\text {TZE }}$ is proportional to $\mathrm{V}_{\mathrm{Aux}}$ and the voltage of Secondary Winding (refer to 8.1). When VTze rises higher than the OVP threshold voltage for 3 continues switching cycles, DRV pin is turned to "L", and the switching stops (latch off). When Vvid drops below the UVLO threshold voltage, the latch is removed.

Over Current Protection (OCP)

The over current protection (OCP) prevents inductor or transformer from saturation. The drain current of the external switching MOSFET is limited by OCP. When the voltage on CS pin reaches the OCP threshold voltage, DRV pin is turned to "L" and the switching cycle ends. After zero crossing is detected on TZE pin again, DRV pin is turned to "H" and the next switching cycle begins.

Short Circuit Protection (SCP)

The short circuit protection (SCP) protects the transformer and the Secondary side diode from an excessive current stress. When the short circuit between LED terminals occurs, output voltage decreases. If the voltage on TZE pin falls below SCP threshold voltage, $\mathrm{V}_{\text {сомp }}$ is discharged and fixed at 1.5 V and then the switching enters a low frequency mode. ($\mathrm{T}_{\mathrm{ON}}=1.5 \mu \mathrm{~s} / \mathrm{T}_{\mathrm{OFF}}=78 \mu \mathrm{~s}$ to $320 \mu \mathrm{~s}$)

Over Temperature Protection (OTP)

The over temperature protection (OTP) protects IC from thermal destruction. When the junction temperature reaches $+150^{\circ} \mathrm{C}$, DRV pin is turned to " L ", and the switching stops. It automatically returns to normal operation mode if the junction temperature falls back below $+125^{\circ} \mathrm{C}$.

Table 8-1. Protection Functions Table

Function	PIN Operation			Detection Condition	Return Condition	Remarks
	DRV	COMP	ADJ			
Normal Operation	Active	Active	Active	-	-	-
Under Voltage Lockout Protection (UVLO)	L	L	L	VDD $<7.9 \mathrm{~V}$	VDD > 13V	Auto Restart
Over Voltage Protection (OVP)	L	$\begin{aligned} & 1.5 \mathrm{~V} \\ & \text { fixed } \end{aligned}$	Active	TZE $>4.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{VDD}<7.9 \mathrm{~V} \\ & \rightarrow \mathrm{VDD}>13 \mathrm{~V} \end{aligned}$	Latch off
Over Current Protection (OCP)	L	Active	Active	CS $>2 \mathrm{~V}$	Cycle by cycle	Auto Restart
Short Circuit Protection (SCP)	Active	$\begin{aligned} & 1.5 \mathrm{~V} \\ & \text { fixed } \end{aligned}$	Active	TZE (peak) < 0.7V	TZE (peak) $>0.7 \mathrm{~V}$	Auto Restart
Over Temperature Protection (OTP)	L	$\begin{aligned} & 1.5 \mathrm{~V} \\ & \text { fixed } \end{aligned}$	Active	$\mathrm{Tj}>+150^{\circ} \mathrm{C}$	T < $+125^{\circ} \mathrm{C}$	Auto Restart

9. I/O Pin Equivalent Circuit Diagram

Figure 9-1. I/O Pin Equivalent Circuit Diagram

Pin No.	$\begin{gathered} \text { Pin } \\ \text { Name } \end{gathered}$	Equivalent Circuit Diagram
2	TZE	
3	COMP	
4	VAC	

Pin No. | Pin |
| :---: |
| Name | ADJ

10. Application Examples

10.1 5W Non-isolated Dimming Application

Input: $\mathrm{AC9OV}_{\text {RMs }} \sim 110 \mathrm{~V}_{\text {RMs }}$, Output: $\mathbf{7 0 m A} / \mathbf{7 0 V} \sim \mathbf{7 6 V}, \mathbf{T a}=\boldsymbol{+ 2 5}{ }^{\circ} \mathrm{C}$

Figure 10-1. 5W EVB Schematic

Table 10-1. 5W BOM List

No.	Component	Description	Part No.	Vendor
1	M1	LED driver IC SOP-8	MB39C605	Cypress
2	U1	Op-Amp, Low voltage Rail-to-Rail, $130 \mu \mathrm{~A}$, SOT-23-5	LMV321	TI
3	T1	Transformer, Lp $=550 \mu \mathrm{H} \quad \mathrm{Np} / \mathrm{Na}=150 / 35$	EE808	-
4	Q1	MosFET N-CH 600V 2.8A I-PAK	FQU5N60C	Fairchild
5	Q2	MosFET N-CH 60V 115mA SOT-23	2N7002	Fairchild
6	Q3	MosFET N-CH 600V 0.3A TO-92	FQN1N60C	Fairchild
7	BR1	Bridge Rectifiers, 0.5A, 600V, SOIC-4	MB6S	Fairchild
8	ZD1, ZD2	Diode, Zener, 18V, 500mW, SOD-123	MMSZ5248B	Fairchild
9	ZD3	Diode, Zener, 5.1V, 500mW, SOD-123	MMSZ4689	Fairchild
10	D1, D2	Diode, fast rectifier, 1A, 400V, SMA	ES1G	Fairchild
11	D3	Diode, 200mA, 200V, SOT-23	MMBD1405	Fairchild
12	D4	PNP Bipolar Transistor 12V 3A CPH3	CPH3106	On semiconductor
13	F1	Fuse, chip, 2A, AC/DC125V, 1206	3410.0035.01	Schurter Inc
14	C1	Capacitor, aluminum electrolytic, $8.2 \mu \mathrm{~F} 200 \mathrm{~V}$ $\phi 8.0 \times 11.0$	200LLE8R2MEFC8X9	Rubycon
15	C2	Capacitor Ceramic $2.2 \mu \mathrm{~F}$ 100V 1206	GRM31CR72A225KA73L	murata
16	C3	Capacitor Ceramic $4.7 \mu \mathrm{~F} 35 \mathrm{~V} 0603$	-	-
17	C4, C7	Capacitor Ceramic 10 1 F 25V 0603	-	-
18	C5	Capacitor Ceramic $0.01 \mu \mathrm{~F} 50 \mathrm{~V} 0603$	-	-
19	C6	Capacitor Ceramic $0.1 \mu \mathrm{~F} 50 \mathrm{~V} 0603$	-	-
20	R1	Resistor, winding $10 \Omega 3 \mathrm{~W} \pm 5 \%$	-	-
21	R2, R11	Resistor, chip, 240k Ω, 1/10W, 0603	-	-
22	R3	Resistor, chip, 10k Ω, 1/10W, 0603	-	-
23	R4	Resistor, chip, 2k , 1/4W, 1206	-	-
24	R5	Resistor, chip, 470k $\Omega, 1 / 10 \mathrm{~W}, 0603$	-	-
25	R6	Resistorr, chip, 200k $\Omega 1 / 4 \mathrm{~W}, 1206$	-	-
26	R7	Resistor, chip, 100k $\Omega, 1 / 10 \mathrm{~W}, 0603$	-	-
27	R8	Resistor, chip, 10ת, 1/10W, 0603	-	-
28	R9	Resistor, chip, 110k $\Omega, 1 / 10 \mathrm{~W}, 0603$	-	-
29	R10	Resistor, chip, 30k $, 1 / 10 \mathrm{~W}, 0603$	-	-
30	R12	Resistor, chip, 3.0k $\Omega, 1 / 10 \mathrm{~W}, 0603$	-	-
31	R13	Resistor, chip, 24k , 1/10W, 0603	-	-
32	R14	Resistor, chip, 3.3@, 1/10W, 0603	-	-
33	R15	Resistor, chip, 4.7Ω, 1/10W, 0603	-	-
34	R16	Resistorr, chip, 150k 1 1/4W, 1206	-	-
35	R17	Resistor, chip, $5.1 \mathrm{k} \Omega$, 1/10W, 0603	-	-
36	R18	Resistor, chip, 36k , 1/10W, 0603	-	-
37	R19	Resistor, chip, 150k $\Omega, 1 / 10 \mathrm{~W}, 0603$	-	-
38	R20	Resistor, chip, 3.3k , 1/10W, 0603	-	-
39	R21	Resistor, chip, 1kת, 1/10W, 0603	-	-

TI

Fairchild
On Semiconductor
Schurter Inc
Rubycon
muRata
: Texas Instruments Incorporated
: Fairchild Semiconductor International, Inc.
: ON Semiconductor
: Schurter Holding AG
: Rubycon Corporation
: Murata Manufacturing Co., Ltd.

Figure 10-2. 5W Reference Data

Dimming Curve

Vin=100V ${ }_{\text {RMs }} / 60 \mathrm{~Hz}$ LED:70V 73mA

— : DVCL-123P-JA
—: WTC 57521
_ : WDG9001

_ : DVCL-123P-JA
—: WTC 57521

- : WDG9001

Dimmer		Input Condition	Type	Minimum Angle (${ }^{\circ}$)	Minimum$\mathrm{I}_{0 \mathrm{OIT}}(\mathrm{~mA})$	Maximum Angle (${ }^{\circ}$)	Maximum$\mathrm{I}_{\mathrm{OUT}}(\mathrm{~mA})$
Vendor	Parts Name						
LUTRON	DVCL-123P-JA	$\begin{gathered} \hline \hline \text { VIN }=100 \mathrm{Vrms} \\ 50 \mathrm{~Hz} \\ \text { (Japan Dimmer) } \end{gathered}$	Leading Edge	32.8	1.3	130.9	73.2
Panasonic	WTC 57521			31.1	1.0	134.1	73.2
TOSHIBA	WDG9001		Trailing Edge	27.5	5.7	146.9	73.2
LUTRON	DVCL-123P-JA	$\begin{gathered} \hline \hline \text { VIN }=100 \mathrm{Vrms} \\ 60 \mathrm{~Hz} \\ \text { (Japan Dimmer) } \end{gathered}$	Leading Edge	31.3	1.2	126.1	73.3
Panasonic	WTC 57521			30.5	1.0	133.7	73.4
TOSHIBA	WDG9001		Trailing Edge	33.9	8.7	152.5	73.4

Total Harmonic Distortion(THD)
LED:70V 73mA

11. Usage Precautions

Do not configure the IC over the maximum ratings.
If the IC is used over the maximum ratings, the LSI may be permanently damaged.
It is preferable for the device to normally operate within the recommended usage conditions. Usage outside of these conditions can have an adverse effect on the reliability of the LSI.

Use the device within the recommended operating conditions.
The recommended values guarantee the normal LSI operation under the recommended operating conditions.
The electrical ratings are guaranteed when the device is used within the recommended operating conditions and under the conditions stated for each item.

Printed circuit board ground lines should be set up with consideration for common impedance.
Take appropriate measures against static electricity.
■Containers for semiconductor materials should have anti-static protection or be made of conductive material.
■After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.
■Work platforms, tools, and instruments should be properly grounded.
■Working personnel should be grounded with resistance of $250 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ in serial between body and ground.
Do not apply negative voltages.
The use of negative voltages below - 0.3 V may make the parasitic transistor activated to the LSI, and can cause malfunctions.

12. RoHS Compliance Information

This product has observed the standard of lead, cadmium, mercury, Hexavalent chromium, polybrominated biphenyls (PBB), and polybrominated diphenyl ethers (PBDE).

13. Ordering Information

Table 13-1. Ordering Information

Part Number	Package	Shipping Form
MB39C605PNF-G-JNEFE1		Emboss
MB39C605PNF-G-JNE1 plastic SOP (SOB008)	Tube	

MB39C605

14. Package Dimensions

| SYMBOL | DIMENSIONS | | |
| :---: | :---: | :---: | :---: | :---: |
| | MIN. | NOM. | MAX. |
| A | - | - | 1.75 |
| A1 | 0.05 | - | 0.25 |
| A2 | 1.30 | 1.40 | 1.50 |
| D | 5.05 BSC. | | |
| E | 6.00 BSC.$$ | | |
| E1 | 3.90 BSC | | |
| θ | 00° | - | $8{ }^{\circ}$ |
| c | 0.15 | - | 0.25 |
| b | 0.36 | 0.44 | 0.52 |
| L | 0.45 | 0.60 | 0.75 |
| L 1 | 1.05 REF | | |
| L 2 | 0.25 BSC | | |
| e | 1.27 BSC. | | |
| h | 0.40 BSC.$$ | | |

NOTES

1. ALL DIMENSIONS ARE IN MILLIMETER.
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
3. DIMENSIONING D INCLUDE MOLD FLASH, DIMENSIONING E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.025 mm PER SIDE. D and E1 DIMENSION ARE DETERMINED AT DATUM H .
4. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. DIMENSIONING D and E1 ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, THE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
f. DATUMS A \& B TO BE DETERMINED AT DATUM H.
5. "N" IS THE MAXIMUM NUMBER OF TERMINAL POSITIONS FOR THE SPECIFIED PACKAGE LENGTH.
A THE DIMENSION APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 mm TO 0.25 mm FROM THE LEAD TIP.
6. DIMENSION "b" DOES NOT INCLUDE THE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.10 mm TOTAL IN EXCESS OF THE "b" DIMENSION AT MAXIMUM MATERIAL CONDITION. THE DAMBAR MAY NOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT
Q THIS CHAMFER FEATURE IS OPTIONAL. LF IT IS NOT PRESENT, THEN A PIN 1 IDENTIFIER MUST BE LOCATED WITHIN THE INDEX AREA INDICATED
dA1" IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY EXCLUDING THE LID AND OR THERMAL ENHANCEMENT ON CAVITY DOWN PACKAGE CONFIGURATIONS.
7. JEDEC SPECIFICATION NO. REF : N/A

15. Major Changes

Spansion Publication Number: MB39C605-DS405-00017

Page	Section	Descriptions
Revision 1.0		
-	-	Initial release
Revision 2.0		
16	11.6 Zero Voltage Switching Function	Corrected the R ${ }_{\text {ADJ }}$ formula
20	13. Application Examples	Added Application Examples
26	15. Ordering Information	Added Shipping in Table 15-1
-	,	Rewrote entire document for improving the ease of understanding (the original intentions are remained unchanged).
Revision 3.0		
8	7. Absolute Maximum Ratings	Removed ESD Voltage (Machine Model) from Table 7-1
-	Labeling Sample	Removed section of Labeling Sample
28	17. Recommended mounting condition [JEDEC Level3] Lead Free	Changed Recommended Condition from three conditions to one condition "JEDEC LEVEL3"

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB39C605 Phase Dimmable PSR LED Driver IC for LED Lighting Document Number: 002-08444

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	-	TOYO	02/20/2015	Migrated to Cypress and assigned document number 002-08444. No change to document contents or format.
*A	5211375	TOYO	04/12/2016	Updated to Cypress format.
*B	5742349	HIXT	05/22/2017	Updated Pin Assignment: Change the package name from FPT-8P-M02 to SOB008 Added RoHS Compliance Information Updated Ordering Information: Change the package name from FPT-8P-M02 to SOB008 Deleted "Marking Format" Deleted "Recommended Mounting Condition [JEDEC Level3] Lead Free" Updated Package Dimensions: Updated to Cypress format

MB39C605

Sales, Solutions, and Legal Information
\section*{Worldwide Sales and Design Support}
Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.
\section*{Products}
ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}$ Microcontrollers
Automotive
\(\begin{array}{lr}Clocks \& Buffers \& cypress.com/clocks
Interface \& cypress.com/interface\end{array}\)
Internet of Things
Memory
Microcontrollers
PSoC
Power Management ICs
Touch Sensing
USB Controllers
Wireless/RF
cypress.com/arm
cypress.com/automotive
cypress.com/iot
cypress.com/memory
cypress.com/mcu
cypress.com/psoc
cypress.com/pmic
cypress.com/touch
cypress.com/usb
cypress.com/wireless
\section*{PSoC ${ }^{\circledR}$ Solutions}
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6
\section*{Cypress Developer Community}
Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components
Technical Support
cypress.com/support

ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.
© Cypress Semiconductor Corporation, 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Drivers category:
Click to view products by Cypress manufacturer:

Other Similar products are found below :
LV5235V-MPB-H MB39C602PNF-G-JNEFE1 MIC2871YMK-T5 AL1676-10BS7-13 AL1676-20AS7-13 AP5726WUG-7 MX877RTR ICL8201 IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AL3157F-7 AP5725FDCG-7 AP5726FDCG-7 LV52204MTTBG SLG7NT4082VTR AP5725WUG-7 STP4CMPQTR NCL30086BDR2G CAT4004BHU2-GT3 LV52207AXA-VH AP1694AS-13 TLE4242EJ AS3688 IS31LT3172-GRLS4-TR TLD2311EL KTD2694EDQ-TR KTZ8864EJAA-TR IS32LT3174-GRLA3-TR ZXLD1374QESTTC AL1676-20BS7-13 IS31FL3737B-QFLS4-TR IS31FL3239-QFLS4-TR KTD2058EUAC-TR KTD2037EWE-TR DIO5662ST6 IS31BL3508A-TTLS2-TR MAX20052CATC/V+ MAX25606AUP/V+ BD6586MUV-E2 BD9206EFV-E2 BD9416FS-E2 LYT4227E LYT6079C-TL MP3394SGF-P MP4689AGN-P MPQ4425AGQB-AEC1-Z TLD1311ELXUMA1 TLE4309GATMA1 MIC2873YCS-TR TPS92410DR

