C-
 CYPRESS

The following document contains information on Cypress products. The document has the series name, product name, and ordering part numbering with the prefix "MB". However, Cypress will offer these products to new and existing customers with the series name, product name, and ordering part number with the prefix "CY".

How to Check the Ordering Part Number

1. Go to www.cypress.com/pcn.
2. Enter the keyword (for example, ordering part number) in the SEARCH PCNS field and click Apply.
3. Click the corresponding title from the search results.
4. Download the Affected Parts List file, which has details of all changes

For More Information
Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress is the leader in advanced embedded system solutions for the world's most innovative automotive, industrial, smart home appliances, consumer electronics and medical products. Cypress' microcontrollers, analog ICs, wireless and USB-based connectivity solutions and reliable, high-performance memories help engineers design differentiated products and get them to market first. Cypress is committed to providing customers with the best support and development resources on the planet enabling them to disrupt markets by creating new product categories in record time. To learn more, go to www.cypress.com.

MB89202, MB89202Y

The MB89202R series is a line of single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such, timers, a serial interface, an A/D converter and an external interrupt.

Features
■ F^{2} MC-8L family CPU core
■Maximum memory space : 64 Kbytes
■Minimum execution time : $0.32 \mu \mathrm{~s} / 12.5 \mathrm{MHz}$
■ Interrupt processing time : $2.88 \mu \mathrm{~s} / 12.5 \mathrm{MHz}$
■I/O ports: Max 26 channels
■21-bit time-base timer
-8-bit PWM timer
■8/16-bit capture timer/counter
■10-bit A/D converter : 8 channels
■UART
■8-bit serial I/O
■External interrupt 1 : Up to 3 channels
■External interrupt 2 : Up to 8 channels
■Wild Register : 2 bytes
■Flash (at least 10,000 program / erase cycles) with read protection
■Low-power consumption modes (sleep mode, and stop mode)
■SH-DIP-32, SSOP-34 package
■CMOS Technology

Contents

Features 1
Contents 2
Product Lineup 3
Package and Corresponding Products 4
Differences Among Products 4
Pin Assignments 5
Pin Description 7
I/O Circuit Type 9
Handling Devices 11
Programming and Erase Flash Memory 13
Programming to the EPROM with Evaluation Product Device 14
Block Diagram 15
CPU Core 16
I/O Map 20
Electrical Characteristics 23
Example Characteristics 37
Mask Options 42
Ordering Information 42
Package Dimensions 43
Major Changes 44
Document History 45
Sales, Solutions, and Legal Information 46

Product Lineup

Parameter Part number	$\begin{gathered} \text { MB89202 } \\ \text { MB89202Y } \end{gathered}$	MB89F202RA MB89F202RAY	MB89V201
Classification	Mask ROM product	Flash memory product (read protection)	Evaluation product (for development)
ROM size	$16 \mathrm{~K} \times 8$ bits (internal mask ROM)	$16 \mathrm{~K} \times 8$ bits (internal flash)	$\begin{gathered} 32 \mathrm{~K} \times 8 \text { bits } \\ \text { (external EPROM) } \end{gathered}$
RAM size	512×8 bits		
CPU functions	Number of instructions: 136 Instruction bit length: 8 bits Instruction length : 1 to 3 bytes Data bit length : $1,8,16$ bits Minimum execution time : $0.32 \mu \mathrm{~s}$ to $5.1 \mu \mathrm{~s}(12.5 \mathrm{MHz})$ Interrupt processing time : $2.88 \mu \mathrm{~s}$ to $46.1 \mu \mathrm{~s}(12.5 \mathrm{MHz})$		
Ports	General-purpose I/O ports (CMOS) : 26 (also serve as peripherals) $(4$ ports are also an N-ch open-drain type.)		
21-bit time-base timer	21-bit Interrupt cycle : $0.66 \mathrm{~ms}, 2.64 \mathrm{~ms}, 21 \mathrm{~ms}$, or 335.5 ms with 12.5 MHz main clock		
Watchdog timer	Reset generation cycle : 335.5 ms minimum with 12.5 MHz main clock		
8-bit PWM timer	$\begin{array}{\|l} \text { 8-bit interval timer operation (square output capable, operating clock cycle : } \\ 0.32 \mu \mathrm{~s}, 2.56 \mu \mathrm{~s}, 5.1 \mu \mathrm{~s}, 20.5 \mu \mathrm{~s} \text {) } \\ \text { 8-bit resolution PWM operation (conversion cycle }: 81.9 \mu \mathrm{~s} \text { to } 21.47 \mathrm{~s}: \text { in the selection } \\ \text { of internal shift clock of } 8 / 16 \text {-bit capture timer) } \\ \text { Count clock selectable between 8-bit and } 16 \text {-bit timer/counter outputs } \end{array}$		
8/16-bit capture, timer/counter	External captured input selectable 8 -bit capture timer/counter $\times 1$ channel +8 -bit timer or 16 -bit capture timer/counter $\times 1$ channel Capable of event count operation and square wave output with 8 -bit timer 0 or 16-bit counter		
UART	Transfer data length : $6 / 7 / 8$ bits		
8-bit Serial I/O	8 bits LSB first/MSB first selectable One clock selectable from four operation clocks (one external shift clock, three internal shift clocks : $0.8 \mu \mathrm{~s}, 6.4 \mu \mathrm{~s}, 25.6 \mu \mathrm{~s}$)		
12-bit PPG timer	Output frequency : Pulse width and cycle selectable		
External interrupt 1 (wake-up function)	3 independent channels (Interrupt vector, request flag, request output enabled) Rising/falling/both edge selectable Used for wake-up from stop/sleep mode. (Edge detection is also permitted in the stop mode.)		
External interrupt 2 (wake-up function)	8 channels (low-level interrupt only) Used for wake-up from stop/sleep mode. (Edge detection is also permitted in the stop mode.)		

(Continued)
(Continued)

Parameter Part number	$\begin{gathered} \text { MB89202 } \\ \text { MB89202Y } \end{gathered}$	$\begin{aligned} & \text { MB89F202RA } \\ & \text { MB89F202RAY } \end{aligned}$	MB89V201
10-bit A/D converter	10-bit precision $\times 8$ channels A/D conversion function (Conversion time : $12.16 \mu \mathrm{~s} / 12.5 \mathrm{MHz}$) Continuous activation by $8 / 16$-bit timer/counter output or time-base timer counter		
Wild Register	8 -bit $\times 2$		
Standby mode	Sleep mode, and Stop mode		
Overhead time from reset to the first instruction execution	Power-on reset: Oscillation stabilization wait ${ }^{\star 1}$ External reset: a few $\mu \mathrm{s}$ Software reset: a few $\mu \mathrm{s}$	Power-on reset: Voltage regulator and oscillation stabilization wait ($31.5 \mathrm{~ms} / 12.5 \mathrm{MHz}$) External reset: Oscillation stabilization wait ($21.0 \mathrm{~ms} / 12.5 \mathrm{MHz}$) Software reset: a few $\mu \mathrm{s}$	Power-on reset: Oscillation stabilization wait ($21.0 \mathrm{~ms} / 12.5 \mathrm{MHz}$) External reset: Oscillation stabilization wait ($21.0 \mathrm{~ms} / 12.5 \mathrm{MHz}$) Software reset: a few $\mu \mathrm{s}$
Power supply voltage*2	2.2 V to 5.5 V	3.5 V to 5.5 V	2.7 V to 5.5 V

*1 : Check section "Mask Options".
*2 : The minimum operating voltage varies with the operating frequency, the function. (The operating voltage of the A/D converter is assured separately. Check section "Electrical Characteristics")

Package and Corresponding Products

Package	MB89202	MB89202Y	MB89F202RA	MB89F202RAY	MB89V201
PDS032	\bigcirc	\times	\bigcirc	\times	\times
FPT-34P-M03 *	\times	\bigcirc	\times	\bigcirc	\times
LQD064	\times	\times	\times	\times	\bigcirc

\bigcirc : Available \times : Not available
*: This package is manufacturing discontinuance.

Differences Among Products

- Memory Size

Before evaluating using the evaluation product, verify its differences from the product that will actually be used.

- Mask Options

Functions that can be selected as options and how to designate these options vary by the product. Before using options check section "Mask Options".

Pin Assignments
 - MB89202, MB89F202RA

*: Large-current drive type
(PDS032)
(Continued)

MB89F202RA, MB89F202RAY, MB89V201

(Continued)

- MB89202Y, MB89F202RAY
(TOP VIEW)

*: Large-current drive type
NC: Internally connected. Do not use.
(FPT-34P-M03) This package is manufacturing discontinuance.

Pin Description

Pin No.		Pin name	I/Ocircuittype type ${ }^{*}$	Function
SH-DIP32 ${ }^{\text {+ }}$	SSOP34*2			
8	8	X0	A	Pins for connecting the crystal for the main clock. To use an external clock, input the signal to $\mathrm{X0}$ and leave X 1 open.
9	9	X1		
5,6	5,6	P60, P61	H/E	General-purpose CMOS input ports for MB89F202RA/F202RAY. General-purpose CMOS I/O ports for MB89202/202Y/MB89V201.
7	7	$\overline{\mathrm{RST}}$	C	Reset I/O pin. This pin serves as an N -channel open-drain reset output and a reset input as well. The reset is a hysteresis input. It outputs the "L" signal in response to an internal reset request. Also, it initializes the internal circuit upon input of the " L " signal.
1 to 4	1 to 4	$\begin{array}{\|l} \text { P04/INT24 to } \\ \text { P07/INT27 } \end{array}$	D	General-purpose CMOS I/O ports. These pins also serve as an input (wake-up input) of external interrupt 2. The input of external interrupt 2 is a hysteresis input.
28, 29	30, 31	$\begin{gathered} \hline \text { P00//iNT20/ } \\ \text { AN4, } \\ \text { P01/INT21/ } \\ \text { AN5 } \end{gathered}$	G	General-purpose CMOS I/O ports. These pins also serve as an input (wake-up input) of external interrupt 2 or as a 10 -bit A/D converter analog input. The input of external interrupt 2 is a hysteresis input.
30, 31	32, 33	$\begin{aligned} & \hline \text { P02//̄T22/ } \\ & \text { AN6. } \\ & \text { P03/INT23/ } \\ & \text { AN7 } \end{aligned}$	G	General-purpose CMOS I/O ports. These pins also serve as an input (wake-up input) of external interrupt 2 or as a 10 -bit A/D converter analog input. The input of external interrupt 2 is a hysteresis input.
19	20	$\begin{aligned} & \text { P30/UCK/ } \\ & \text { SCK } \end{aligned}$	B	General-purpose CMOS I/O port. This pin also serves as the clock I/O pin for the UART or 8-bit serial I/O. The resource is a hysteresis input.
18	19	P31/UO/SO	E	General-purpose CMOS I/O port. This pin also serves as the data output pin for the UART or 8-bit serial I/O.
17	18	P32/UI/SI	B	General-purpose CMOS I/O port. This pin also serves as the data input pin for the UART or 8-bit serial I/O. The resource is a hysteresis input.
15	15	P33/EC	B	General-purpose CMOS I/O port. This pin also serves as the external clock input pin for the $8 / 16$-bit capture timer/counter. The resource is a hysteresis input.
14	14	P34/TO/ INT10	B	General-purpose CMOS I/O port. This pin also serves as the output pin for the 8/16-bit capture timer/ counter or as the input (wake-up input) for external interrupt 1. The resource is a hysteresis input.
13, 12	13,12	P35/INT11, P36/INT12	B	General-purpose CMOS I/O ports. These pins also serve as the input (wake-up input) for external interrupt 1 . The resource is a hysteresis input.

(Continued)
(Continued)

Pin No.		Pin name	I/O circuit type*	Function
SH-DIP32*	SSOP34*2			
11	11	$\begin{gathered} \text { P37/BZ/ } \\ \text { PPG } \end{gathered}$	E	General-purpose CMOS I/O port. This pin also serves as the buzzer output pin or the 12-bit PPG output.
20	21	P50/PWM	E	General-purpose CMOS I/O port. This pin also serves as the 8 -bit PWM timer output pin.
24 to 27	26 to 29	$\begin{gathered} \text { P40/AN0 } \\ \text { to } \\ \text { P43/AN3 } \end{gathered}$	F	General-purpose CMOS I/O ports. These pins can also be used as N -channel open-drain ports. These pins also serve as 10 -bit A/D converter analog input pins.
21 to 23	23 to 25	P70 to P72	E	General-purpose CMOS I/O ports.
32	34	Vcc	-	Power supply pin
10	10	Vss	-	Power (GND) pin
16	17	C	-	MB89F202RA/F202RAY: Capacitance pin for regulating the power supply. Connect an external ceramic capacitor of about $0.1 \mu \mathrm{~F}$. MB89202/202Y: This pin is not internally connected. It is unnecessary to connect a capacitor.
-	16, 22	NC	-	Internally connected pins Be sure to leave it open.

*1: DIP-32P-M06
*2: FPT-34P-M03
*3: Refer to "I/O Circuit Type" for details on the I/O circuit types.

I/O Circuit Type

Type	Circuit	Remarks
A	Standby control signal	At an oscillation feedback resistance of approximately $500 \mathrm{k} \Omega$
B		- CMOS output - Hysteresis input - Pull-up resistor optional
C		- At an output pull-up resister (P-ch) of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$ (not available for MB89F202RA/F202RAY) - N-ch open-drain reset output - Hysteresis input - High voltage input tolerable in MB89F202RA/F202RAY
D		- CMOS output - CMOS input - Hysteresis input (Resource input) - Pull-up resistor optional

(Continued)

MB89202, MB89202Y
(Continued)

Type	Circuit	Remarks
E		- CMOS output - CMOS input - Pull-up resistor optional - P70-P72 are large-current drive type
F		- CMOS output - CMOS input - Analog input - N-ch open-drain output available - P40-P43 are large-current drive type
G		- CMOS output - CMOS input - Hysteresis input (Resource input) - Analog input
H		CMOS input

Handling Devices

- Preventing Latch-up

Latch-up may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- and high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "Electrical Characteristics" is applied between Vcc and Vss.
When latch-up occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

- Treatment of Unused Input Pins

Leaving unused input terminals open may lead to permanent damage due to malfunction and latch-up; pull up or pull down the terminals through the resistors of $2 \mathrm{k} \Omega$ or more.
Make the unused I/O terminal in a state of output and leave it open or if it is in an input state, handle it with the same procedure as the input terminals.

- Treatment of NC Pins

Be sure to leave (internally connected) NC pins open.

- Power Supply Voltage Fluctuations

Although V cc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard Vcc value at the commercial frequency ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

- Precautions when Using an External Clock

When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and wake-up from stop mode.

- About the Wild Register Function

No wild register can be debugged on the MB89V201. For the operation check, test the MB89F202RA/F202RAY installed on a target system.

- Program Execution in RAM

When the MB89V201 is used, no program can be executed in RAM.

- Note to Noise in the External Reset Pin (RST)

If the reset pulse applied to the external reset pin ($\overline{\mathrm{RST}}$) does not meet the specifications, it may cause malfunctions. Use caution so that the reset pulse less than the specifications will not be fed to the external reset pin (RST).

- External pull-up for the External Reset Pin ($\overline{\mathrm{RST}}$)

Internal pull-up control for RST pin is not available for MB89F202RA/F202RAY. To ensure proper external reset control in MB89F202RA/F202RAY, an external pull-up (recommend $100 \mathrm{k} \Omega$) for RST pin must be required. Please also check section "Programming and Erase Flash Memory".

- Notes on selecting mask option

Please select "With reset output" by the mask option when power-on reset is generated at the power supply ON, and the device is used without inputting external reset.

Programming and Erase Flash Memory

1. Flash Memory

The flash memory incorporates a flash memory interface circuit that allows read access and program access from the CPU to be performed in the same way as mask ROM. Programming and erasing flash memory is also performed via the flash memory interface circuit by executing instructions in the CPU. This enables the flash memory to be updated in place under the control of the CPU, providing an efficient method of updating program and data.

2. Flash Memory Features

- 16 K byte $\times 8$-bit configuration or 8 K byte $\times 8$-bit configuration*
- Automatic programming algorithm (Embedded Algorithm)
- Data polling and toggle bit for detection of program/erase completion
- Detection of program/erase completion via CPU interrupt
- Compatible with JEDEC-standard commands
- No. of program / erase cycles: Minimum 10,000
*: Check section "Memory Space".

3. Procedure for Programming and Erasing Flash Memory

Programming and reading flash memory cannot be performed at the same time. Accordingly, to program or erase flash memory, the program must first be copied from flash memory to RAM so that programming can be performed without program access from flash memory. Also for flash memory program or erase, a high voltage (instead of an external pull-up) must be applied to external reset RST pin. Check section " 6. Flash Memory Program/Erase Characteristics" in "Electrical Characteristics".

4. Flash Memory Control Status Register (FMCS)

Address$0079 \mathrm{H}$	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value000X----в
	INTE	RDYINT	WE	RDY	-	-	-	-	
	R/W	R/W	R/W	R			-	-	

5. Memory Space

The series has 1 flash memory size configuration. The memory space for the CPU access and for the flash programmer access of the configuration is listed below. Check section " 6. Flash Memory Program/Erase Characteristics" in "Electrical Characteristics".

Part Number	Memory size	CPU address	Programmer address
MB89F202RA MB89F202RAY	16 K bytes	FFFFH to COOOH_{H}	$3 F F F_{H}$ to 0000_{H}

6. Flash Content Protection

Flash content can be read using parallel / serial programmer if the flash content protection mechanism is not activated.
One predefined area of the flash (FFFCH) is assigned to be used for preventing the read access of flash content. If the protection code " 01 H " is written in this address (FFFCH_{H}), the flash content cannot be read by any paralle// serial programmer.

Note: The program written into the flash cannot be verified once the flash protection code is written ("01н" in FFFCH). It is advised to write the flash protection code at last.

Programming to the EPROM with Evaluation Product Device

1. EPROM for Use

MBM27C256A (DIP-28)

2. Memory Space

3. Programming to the EPROM
(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0000н to 7FFFн.
(3) Program to $0000_{\text {н }}$ to 7 FFFH with the EPROM programmer.

Block Diagram

CPU Core

1. Memory Space

The microcontrollers of the MB89202R series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89202R series is structured as illustrated below.

Part Number	RAM size	Address\#0	Address\#1
MB89V201 MB89F202RA/F202RAY MB89202/202Y	512 bytes	$01 F_{H}$	027FH

Part Number	Memory Type\#	Address\#2
MB89V201	32 Kbytes External EPROM	8000 н
MB89F202RA/F202RAY	16 Kbytes Internal Flash Memory	C000н
MB89202/202Y	16 Kbytes ROM	C000н

2. Registers

The MB89202R series has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided :
Program counter (PC) : A 16-bit register for indicating instruction storage positions
Accumulator (A) : A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.
Temporary accumulator (T) : A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8-bit data processing instruction, the lower byte is used.
Index register (IX) : A 16-bit register for index modification
Extra pointer (EP): A 16-bit pointer for indicating a memory address
Stack pointer (SP) :
A 16-bit register for indicating a stack area
Program status (PS) : A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR) . (See the diagram below.)

- Structure of the Program Status Register

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

- Rule for Conversion of Actual Addresses of the General-purpose Register Area

Generated addresses

								RP				Lower OP codes			
"0"	"0"	"0"	"0"	"0"	"0"	"0"	"1"	R4	R3	R2	R1	R0	b2	b1	b0
\dagger	\downarrow	\dagger	\downarrow	\dagger	\downarrow	\downarrow	\downarrow	\dagger	\dagger	\dagger	\downarrow	\downarrow	\dagger	\downarrow	\dagger
A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.
H- flag: Set to "1" when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to " 0 " otherwise. This flag is for decimal adjustment instructions.
I-flag: Interrupt is enabled when this flag is set to " 1 ". Interrupt is disabled when the flag is cleared to " 0 ". Cleared to " 0 " at the reset.
IL1, 0 : Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		
1	0	2	
1	1	3	Low $=$ no interrupt

N-flag: Set to " 1 " if the MSB becomes to " 1 " as the result of an arithmetic operation. Cleared to " 0 " when the bit is cleared to " 0 ".

Z-flag : Set to " 1 " when an arithmetic operation results in 0 . Cleared to " 0 " otherwise.
V-flag : Set to " 1 " if the complement on 2 overflows as a result of an arithmetic operation. Cleared to " 0 " if the overflow does not occur.
C-flag : Set to " 1 " when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to " 0 " otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided :
General-purpose registers : An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 32 banks (in 512 RAM size) can be used in the MB89202R series. The bank currently in use is indicated by the register bank pointer (RP).

- Register Bank Configuration

[^0]
I/O Map

Address	Register name	Register description	Read/write	Initial value
0000н	PDR0	Port 0 data register	R/W	XXXXXXXX в
0001н	DDR0	Port 0 data direction register	W	00000000 в
0002н to 0006н	Reserved			
0007н	SYCC	System clock control register	R/W	1--11100 в
0008н	STBC	Standby control register	R/W	00010 - - в
0009н	WDTC	Watchdog timer control register	R/W	$0 \cdots \mathrm{XXXX}$ в
000Ан	TBTC	Time-base timer control register	R/W	00-- 000 в
000Вн	Reserved			
000 CH	PDR3	Port 3 data register	R/W	XXXXXXXX
000D	DDR3	Port 3 data direction register	W	00000000 в
000Ен	RSFR	Reset flag register	R	XXXX - - -
000F\%	PDR4	Port 4 data register	R/W	$\cdots \mathrm{XXXX}$ в
0010н	DDR4	Port 4 data direction register	R/W	- 0000 в
0011н	OUT4	Port 4 output format register	R/W	- - 0000 в
0012н	PDR5	Port 5 data register	R/W	- X в
0013н	DDR5	Port 5 data direction register	R/W	- - - 0 в
0014н	RCR21	12-bit PPG control register 1	R/W	00000000 в
0015н	RCR22	12-bit PPG control register 2	R/W	- 000000 в
0016н	RCR23	12-bit PPG control register 3	R/W	$0-000000$ в
0017 ${ }_{\text {н }}$	RCR24	12-bit PPG control register 4	R/W	- 000000 в
0018н	BZCR	Buzzer register	R/W	- - - 000 в
0019н	TCCR	Capture control register	R/W	00000000 в
001Ан	TCR1	Timer 1 control register	R/W	000-0000 в
001Вн	TCR0	Timer 0 control register	R/W	00000000 в
001 CH	TDR1	Timer 1 data register	R/W	XXXXXXXX в
001D	TDR0	Timer 0 data register	R/W	XXXXXXXX ${ }^{\text {¢ }}$
001Ен	TCPH	Capture data register H	R	XXXXXXXX ${ }^{\text {¢ }}$
001F	TCPL	Capture data register L	R	XXXXXXXX в
0020н	TCR2	Timer output control register	R/W	$\cdots{ }^{-\cdots}$
0021н	Reserved			
0022н	CNTR	PWM control register	R/W	$0-000000$ в
0023н	COMR	PWM compare register	W	X X X X X X ${ }^{\text {B }}$
0024н	EIC1	External interrupt 1 Control register 1	R/W	00000000 в

(Continued)

Address	Register name	Register description	Read/write	Initial value
0025 ${ }^{\text {H}}$	EIC2	External interrupt 1 Control register 2	R/W	- - 0000 в
0026н	Reserved			
0027				
0028н	SMC	Serial mode control register	R/W	00000-00 в
0029н	SRC	Serial rate control register	R/W	- - 011000 в
002Ан	SSD	Serial status and data register	R/W	00100-1 ${ }^{\text {¢ }}$ в
002 B	SIDR	Serial input data register	R	XXXXXXXX
	SODR	Serial output data register	W	XXXXXXXX
002CH	UPC	Clock division selection register	R/W	- 0010 в
002D to 002F	Reserved			
0030н	ADC1	A/D control register 1	R/W	- 0000000 в
0031н	ADC2	A/D control register 2	R/W	- 0000001 в
0032н	ADDH	A/D data register H	R	- $\mathrm{XX}^{\text {в }}$
0033н	ADDL	A/D data register L	R	XXXXXXXX
0034	ADEN	A/D enable register	R/W	00000000 в
0035н	Reserved			
0036н	EIE2	External interrupt 2 control register1	R/W	00000000 в
0037 ${ }^{\text {¢ }}$	EIF2	External interrupt 2 control register2	R/W	- 0 в
0038	Reserved			
0039н	SMR	Serial mode register	R/W	00000000 в
003Ан	SDR	Serial data register	R/W	X X X X X X в
003Вн	SSEL	Serial function switching register	R/W	- 0 в
003C to 003F\%	Reserved			
0040н	WRARH0	Upper-address setting register 0	R/W	XXXXXXXX
0041н	WRARLO	Lower-address setting register 0	R/W	XXXXXXXX
0042н	WRDR0	Data setting register 0	R/W	XXXXXXXX в
0043н	WRARH1	Upper-address setting register 1	R/W	XXXXXXXX
0044	WRARL1	Lower-address setting register 1	R/W	XXXXXXX в
0045н	WRDR1	Data setting register 1	R/W	XXXXXXXX
0046н	WREN	Address comparison EN register	R/W	XXXXXX00 в
0047	WROR	Wild-register data test register	R/W	$\cdots{ }^{\text {- }}$ - - 00 в
0048 to 005Fн	Reserved			

(Continued)
(Continued)

Address	Register name	Register description	Read/write	Initial value
0060н	PDR6	Port 6 data register	R/W	$\cdots{ }^{-\cdots}$
0061н	DDR6	Port 6 data direction register*	R/W	- 00 в
0062н	PUL6	Port 6 pull-up setting register*	R/W	00 в
0063н	PDR7	Port 7 data register	R/W	$\cdots \mathrm{XXX}$ в
0064н	DDR7	Port 7 data direction register	R/W	- - 000
0065н	PUL7	Port 7 pull-up setting register	R/W	- 000 в
0066н to 006Fн	Reserved			
0070н	PULO	Port 0 pull-up setting register	R/W	00000000
0071н	PUL3	Port 3 pull-up setting register	R/W	00000000
0072н	PUL5	Port 5 pull-up setting register	R/W	- - 0
0073 to 0078 ${ }^{\text {н }}$	Reserved			
0079н	FMCS	Flash memory control status register	R/W	000 X - -
007Ан	Reserved			
007Вн	ILR1	Interrupt level setting register1	W	11111111
007Сн	ILR2	Interrupt level setting register2	W	111111111
007D	ILR3	Interrupt level setting register3	W	111111111
007Ен	ILR4	Interrupt level setting register4	W	11111111
007F ${ }_{\text {H }}$	ITR	Interrupt test register	Not available	- - - 00

- : Unused, X : Undefined
* : No used in MB89F202RA/F202RAY

Note: Do not use prohibited areas.

Electrical Characteristics

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*	Vcc	$V_{\text {ss }}-0.3$	$V_{\text {ss }}+6.0$	V	
Input voltage*	V_{11}	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	Pins excluding $\overline{\mathrm{RST}}, \mathrm{P} 60$
	V_{12}	$V_{\text {ss }}-0.3$	12.25	V	For pins $\overline{\text { RST, P60 }}$
Output voltage*	Vo	Vss - 0.3	$\mathrm{V} \mathrm{cc}+6.0$	V	
"L" level maximum output current	lo	-	15	mA	
"L" level average output current	lolav1	-	4	mA	Average value (operating current \times operating rate) Pins excluding P40 to P43, P70 to P72
	lolav2	-	12	mA	Average value (operating current \times operating rate) Pins P40 to P43, P70 to P72
"L" level total maximum output current	Elo	-	100	mA	
"H" level maximum output current	Іон	-	-10	mA	Pins excluding P60, P61
"H" level average output current	lohav	-	-4	mA	Average value (operating current \times operating rate)
" H " level total maximum output current	Σ Ion	-	-50	mA	
Power consumption	Pd	-	200	mW	
Operating temperature	Ta	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*: This parameter is based on $\mathrm{Vss}=0.0 \mathrm{~V}$.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
2. Recommended Operating Conditions
$(\mathrm{Vss}=0.0 \mathrm{~V})$

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Power supply voltage	Vcc	2.2	5.5	V	MB89202/202Y
		3.5	5.5	V	MB89F202RA/F202RAY
		2.7	5.5	V	MB89V201
		1.5	5.5	V	Retains the RAM state in stop mode
"H" level input voltage	$\mathrm{V}_{\text {H }}$	0.7 Vcc	$\mathrm{Vcc}+0.3$	V	$\begin{aligned} & \text { P00 to P07, P31, P37, P40 to P43, P50, } \\ & \text { P61, P70 to P72 } \end{aligned}$
	Vihs	0.8 Vcc	V cc +0.3	V	EC, INT20 to INT27, UCK/SCK, INT10 to INT12, P30, P32 to P36, UI/SI
	Vннн	0.7 Vcc	12.25	V	P60. Under the normal operation, $\mathrm{V}_{\text {нн }}$ should not exceed Vcc +0.3 V . Setting of V Інн $>\mathrm{Vcc}+0.3 \mathrm{~V}$ is a reserved mode.
	Vıннs	0.8 Vcc	12.25	V	RST*
"L" level input voltage	VIL	Vss - 0.3	0.3 Vcc	V	$\begin{aligned} & \text { P00 to P07, P31, P37, P40 to P43, P50, } \\ & \text { P60, P61, P70 to P72 } \end{aligned}$
	Vııs	Vss - 0.3	0.2 Vcc	V	$\overline{\mathrm{RST}}, \mathrm{EC}, \overline{\mathrm{INT20}}$ to $\overline{\mathrm{NT} 27}$, UCK/SCK, INT10 to INT12, P30, P32 to P36, UI/SI
Open-drain output pin application voltage	V	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	P40 to P43, $\overline{\text { RST }}$
Operating temperature	Ta	-40	+85	${ }^{\circ} \mathrm{C}$	Room temperature is recommended for programming the flash memory on MB89F202RA/F202RAY

*: $\overline{\text { RST }}$ acts as high voltage supply for the flash memory during program and erase on MB89F202RA/F202RAY. It can tolerate high voltage input. Please check section "6. Flash Memory Program/Erase Characteristics".

Operating Assurance for MB89202/202Y and MB89V201

Operating Assurance for MB89F202RA/F202RAY

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

3. DC Characteristics

($\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~F}_{\mathrm{ch}}=12.5 \mathrm{MHz}$ (External clock), $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
"H" level input voltage	VIH	P00 to P07, P31, P37, P40 to P43, P50, P61, P70 to P72	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	
	Viнs	P30, P32 to P36, UCK/SCK,UI/SI, EC, INT20 to INT27, INT10 to INT12	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	
	Vוнн	P60	-	0.7 Vcc	-	12.25	V	Under the normal operation, Vінн should not exceed Vcc + 0.3 V. Setting of $\mathrm{V}_{\boldsymbol{\prime}}$ > $\mathrm{Vcc}+$ 0.3 V is a reserved mode.
	Vıнн	RST	-	0.8 Vcc	-	12.25	V	
"L" level input voltage	VIL	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P31, P37, P40 to P43, } \\ & \text { P50, P60, P61, } \\ & \text { P70 to P72 } \end{aligned}$	-	Vss - 0.3	-	0.3 Vcc	V	
	Vıs	P30, P32 to P36, RST, UCK/SCK, UI/SI, EC, INT20 to INT27, INT10 to INT12	-	Vss - 0.3	-	0.2 Vcc	V	
Open-drain output pin application voltage	V	P40 to P43, $\overline{\text { RST }}$	-	Vss - 0.3	-	$\mathrm{Vcc}+0.3$	V	
"H" level output voltage	Vон	P00 to P07, P30 to P37, P40 to P43, P50, P70 to P72	Іон $=-4.0 \mathrm{~mA}$	4.0	-	-	V	
"L" level output voltage	Vol1	$\begin{aligned} & \text { P00 to P07, P30 to P37, } \\ & \text { P50, } \overline{\text { RST }} \end{aligned}$	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	
	VoL2	P40 to P43, P70 to P72	$\mathrm{loL}=12.0 \mathrm{~mA}$	-	-	0.4	V	
Input leakage current	IL	```P00 to P07, P30 to P37, P40 to P43, P50 , P60, P61, RST, P70 to P72```	$\begin{aligned} & 0.45 \mathrm{~V}<\mathrm{V}_{1}< \\ & \mathrm{V}_{\text {cc }} \end{aligned}$	-	-	± 5	$\mu \mathrm{A}$	Without pull-up resistor
Pull-up resistance	Rpull	$\begin{array}{\|l} \hline \text { P00 to P07, P30 to P37, } \\ \text { P50, RST, P70 to P72 } \\ \hline \begin{array}{l} \text { P00 to P07, P30 to P37, } \\ \text { P50, P70 to P72 } \end{array} \\ \hline \end{array}$	$\mathrm{V}=0.0 \mathrm{~V}$	25	50	100	k Ω	MB89202/ 202Y MB89F202RA/ F202RAY

(Continued)
(Continued)

Parameter	Symbol	Pin name		Condition	Value			Unit	Remarks	
				Min	Typ	Max				
Power supply current	Icc	Vcc	Normal operation mode (External clock, highest gear speed)		When A/D converter stops	-	8	12	mA	$\begin{aligned} & \hline \text { MB89202/ } \\ & 202 \mathrm{Y} \end{aligned}$
				-		6	9	mA	MB89F202 RA/ F202RAY	
				When A/D converter starts	-	10	15	mA	$\begin{array}{\|l\|} \hline \text { MB89202/ } \\ \text { 202Y } \end{array}$	
					-	8	12	mA	$\begin{array}{\|l\|} \hline \text { MB89F202 } \\ \text { RA/ } \\ \text { F202RAY } \end{array}$	
	Iccs		Sleep mode (External clock, highest gear speed)	When A/D converter stops	-	4	6	mA	$\begin{aligned} & \text { MB89202/ } \\ & \text { 202Y } \end{aligned}$	
					-	3	5	mA	$\begin{aligned} & \hline \text { MB89F202 } \\ & \text { RA/ } \\ & \text { F202RAY } \end{aligned}$	
	Іссн		Stop mode$\begin{aligned} & \mathrm{Ta}=+25^{\circ} \mathrm{C} \\ & \text { (External clock) } \end{aligned}$	When A/D converter stops	-	-	1	$\mu \mathrm{A}$	$\begin{aligned} & \hline \text { MB89202/ } \\ & 202 \mathrm{Y} \end{aligned}$	
					-	-	10	$\mu \mathrm{A}$	$\begin{aligned} & \hline \text { MB89F202 } \\ & \text { RA/ } \\ & \text { F202RAY } \end{aligned}$	
Input capacitance	Cin	Other than C, Vcc, Vss		-	-	10	-	pF		

*: $\overline{\text { RST }}$ acts as high voltage supply for the flash memory during program and erase on MB89F202RA/F202RAY. It can tolerate high voltage input. Please check section "6. Flash Memory Program/Erase Characteristics".

4. AC Characteristics

(1) Reset Timing

$$
\text { (VSS }=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text {) }
$$

Parameter	Symbol	Condition	Value		Unit
			Min	Max	
RST "L" pulse width	tzızH	-	45	-	ns
Internal reset pulse extension	tirst	-	48 thcrı*	-	ns

*: thcyL 1 oscillating clock cycle time

Note: If the reset pulse applied to the external reset pin ($\overline{\mathrm{RST}}$) does not meet the specifications, it may cause malfunctions. Use caution so that the reset pulse less than the specifications will not be fed to the external reset pin (RST).

(2) Power-on Reset

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min	Max		
Power supply rising time	tR	-	-	50	ms	
Power supply cut-off time	toff		1	-	ms	Due to repeated operations

Note: : The supply voltage must be set to the minimum value required for operation within the prescribed default oscillation settling time.
(3) Clock Timing

- X0 and X1 Timing and Conditions

X0

- Main Clock Conditions

When a crystal or ceramic resonator is used

When an exernal clock is used

(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum executiontime)	tinst	4/Fсн, 8/Fсн, 16/Fсн, 64/Fсн	$\mu \mathrm{S}$	tinst $=0.32 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{ch}}=12.5 \mathrm{MHz}\left(4 / \mathrm{F}_{\mathrm{cH}}\right)$

(5) Peripheral Input Timing
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value		Unit
			Min	Max	
Peripheral input "H" pulse width	tıuн	INT10 to INT12, $\overline{\mathrm{NT} 20}$ to $\overline{\mathrm{NT} 27, ~ E C}$	2 tinst*	-	$\mu \mathrm{S}$
Peripheral input "L" pulse width	th\%		2 tinss*	-	$\mu \mathrm{S}$

*: For information on tinst see " (4) Instruction Cycle".

$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value			Unit
			Min	Typ	Max	
Peripheral input "H" noise limit	time	$\begin{gathered} \text { P00 to P07, P30 to P37, } \\ \text { P40 to P43, } \\ \text { P50, P60, P61, } \\ \text { P70 to P72, } \overline{\text { RST, }} \text { EC, } \\ \text { INT20 to } \overline{\text { NT27, }}, \\ \text { INT10 to INT12 } \end{gathered}$	-	45	-	ns
Peripheral input "L" noise limit	tınc		-	45	-	ns

(6) UART, Serial I/O Timing
$\left(\mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	tscrc	UCK/SCK	Internal shift clock mode	2 tinst*	-	$\mu \mathrm{S}$
UCK/SCK $\downarrow \rightarrow$ SOtime	tslov	UCK/SCK, SO		-200	+ 200	ns
Valid SI \rightarrow UCK/SCK \uparrow	tivsh	UCK/SCK, SI		1/2 tinst*	-	$\mu \mathrm{S}$
UCK/SCK $\uparrow \rightarrow$ Valid SI hold time	tshix	UCK/SCK, SI		1/2 tinst*	-	$\mu \mathrm{S}$
Serial clock "H" pulse width	tshsL	UCK/SCK	External shift clock mode	tinst*	-	$\mu \mathrm{S}$
Serial clock "L" pulse width	tstsh	UCK/SCK		tinst*	-	$\mu \mathrm{S}$
UCK/SCK $\downarrow \rightarrow$ SOtime	tslov	UCK/SCK, SO		0	200	ns
Valid SI \rightarrow UCK/SCK	tivsh	UCK/SCK, SI		1/2 tinst*	-	$\mu \mathrm{S}$
UCK/SCK $\uparrow \rightarrow$ Valid SI hold time	tshix	UCK/SCK, SI		1/2 tinst*	-	$\mu \mathrm{s}$

*: For information on tinst, see " (4) Instruction Cycle".

- Internal Shift Clock Mode

- External Shift Clock Mode

5. A / D Converter

$$
\left(\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

(1) A/D Converter Electrical Characteristics

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Resolution	-	-	-	10	bit
Total error		-5.0	-	+5.0	LSB
Linearity error		-3.0	-	+3.0	LSB
Differential linearity error		-2.5	-	+2.5	LSB
Zero transition voltage	Vot	Vss - 3.5 LSB	$\mathrm{V}_{\text {ss }}+0.5$ LSB	$\mathrm{V}_{\text {ss }}+4.5 \mathrm{LSB}$	V
Full-scale transition voltage	$V_{\text {FSt }}$	$\mathrm{V}_{\text {cc }}-6.5$ LSB	$\mathrm{V}_{\mathrm{cc}}-1.5 \mathrm{LSB}$	$\mathrm{V}_{\text {cc }}+2.0 \mathrm{LSB}$	V
A/D mode conversion time	-	-	-	38 tinst*	$\mu \mathrm{S}$
Analog port input current	IAIN	-	-	10	$\mu \mathrm{A}$
Analog input voltage range	-	0	-	Vcc	V
Power supply voltage for A/D accuracy assurance	Vcc	4.5	-	5.5	V

*: For information on tinst, see " (4) Instruction Cycle" in "4. AC Characteristics."

(2) A/D Converter Glossary

- Resolution

Analog changes that are identifiable with the A/D converter
When the number of bits is 10 , analog voltage can be divided into $2^{10}=1024$.

- Linearity error (unit : LSB)

The deviation of the straight line connecting the zero transition point ("00 00000000 " \leftrightarrow "00 00000001 ") with the full-scale transition point ("11 1111 1111" ↔"11 1111 1110") from actual conversion characteristics

- Differential linearity error (unit : LSB)

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

- Total error (unit : LSB)

The difference between theoretical and actual conversion values

(Continued)
(Continued)

(3) Notes on Using A/D Converter

- About the external impedance of analog input and its sampling time
- A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.
- Analog input circuit model

Analog input

MB89202/202Y
MB89F202RA/F202RAY
Note: The values are reference values.

- To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.
- The relationship between the external impedance and minimum sampling time

- If the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.

- About errors

As |Vcc - Vss| becomes smaller, values of relative errors grow larger.
6. Flash Memory Program/Erase Characteristics

Parameter	Value				Unit
Remarks					
	Min	Typ	Max		Excludes programming prior to erasure
Chip erase time (16 Kbytes)	-	0.5	7.5	s	Excludes system-level overhead
Byte programming time	-	32	3600	$\mu \mathrm{~s}$	E
Program/Erase cycle	10,000	-	-	cycle	
High voltage source on RST	11.75	12.00	12.25	V	High voltage must be applied to $\overline{\text { RST during }}$ flash memory program / erase
Current drawn on RST	-	-	5.0	mA	Current consumption of $\overline{\text { RST }}$ pin during flash memory program/erase

Example Characteristics

1. Power supply current

- MB89202/202Y/F202RA/F202RAY : 4 MHz (when external clock are used)

- MB89202/202Y/F202RA/F202RAY : 8 MHz (when external clock are used)

- MB89202/202Y/F202RA/F202RAY : 12.5 MHz (when external clock is used)

- MB89202/202Y/F202RA/F202RAY : 12.5 MHz (when external clock is used)

2. "L" level output voltage

3. "H" level output voltage

Mask Options

No.	Part number	$\begin{array}{r} \text { MB89202 } \\ \text { MB89202Y } \end{array}$	$\begin{aligned} & \text { MB89F202RA } \\ & \text { MB89F202RAY } \end{aligned}$	MB89V201
	Specified / Fixed	Specified when ordering masking	Fixed	
1	Selection of initial value of main clock oscillation settling time* (with $\mathrm{F}_{\mathrm{CH}}=12.5 \mathrm{MHz}$) 01 : $2^{14 /}$ / сн (Approx. 1.31 ms) $10: 2^{17 /} /$ नсн $_{\text {(}}$ (Approx. 10.5 ms) 11 : $2^{18 / F с н ~(A p p r o x . ~} 21.0 \mathrm{~ms}$)	Selectable	Fixed to $2^{18} /$ Fсн	Fixed to $2^{18} /$ Fch
2	Reset pin output With reset output Without reset output	Selectable	With reset output	With reset output
3	Power on reset selection With power on reset Without power on reset	Selectable	With power on reset	With power on reset

F_{ch} : Main clock oscillation frequency
*: Initial value to which the oscillation settling time bit (SYCC : WT1, WTO) in the system clock control register is set Note:

- Notes on selecting mask option

Please select "With reset output" by the mask option when power-on reset is generated at the power supply ON, and the device is used without inputting external reset.

Ordering Information

Part number	Package
MB89202P-SH	32-pin plastic SH-DIP (PDS032)
MB89F202RAP-SH	34-pin plastic SSOP *2 (FPT-34P-M03)
MB89202YPFV	64-pin plastic LQFP (LQD064)
MB89F202RAYPFV	
MB89V201PMC1*1	

*1: The evaluation chip is supplied only for MB2144-230.
*2: This package is manufacturing discontinuance.

Package Dimensions

Package Type	Package Code
SH-DIP 32pin	PDS032

Major Changes

Spansion Publication Number: DS07-12562-3E

Page	Section	Change Results
Revision **		
23	ELECTRICALCHARACTERISTICS 1. Absolute Maximum Ratings	Added the item of the symbol: Vi2 to "Input voltage". Changed the symbol V_{1} to V_{11}.
24	2. Recommended Operating Conditions	Added the item of symbols: $\mathrm{V}_{\boldsymbol{\prime}}$ н and $\mathrm{V}_{\text {וннs }}$ to ""H" level input voltage".
26	3. DC Characteristics	Added the item of symbols: $\mathrm{V}_{\text {нн }}$ and $\mathrm{V}_{\text {нннs }}$ to "" ${ }^{\prime}$ " level input voltage".
36	6. Flash Memory Program/Erase Characteristics	Deleted the note *1 and *2 related to "Chip erase time".
		Added the maximum and minimum value of "High voltage source on RST".
		Added the item of "Current drawn on $\overline{\mathrm{RST}}$ ".

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB89202, MB89202Y, MB89F202RA, MB89F202RAY, MB89V201, 8-bit Microcontroller F2MC-8L Family MB89202R Series
Document Number: 002-06680

Revision	ECN	Orig. of Change	Submission Date	Description of Change
$* *$	-	AKIH	$03 / 31 / 2009$	Migrated to Cypress and assigned document number 002-06680. No change to document contents or format.
$*$ A	5772241	AKIH	$06 / 21 / 2017$	Cypress format change Changed the package. DIP-32P-M06 \rightarrow PDS032 Changed the package. FPT-64P-M24 \rightarrow LQD064 Added a note for FPT-34P-M03:Manufacturing discontinuance of FPT-34P-M03 package.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}$ Microcontrollers

cypress.com/arm
Automotive
Clocks \& Buffers
cypress.com/clocks
Interface
cypress.com/interface
Internet of Things
cypress.com/iot
Memory
cypress.com/memory
Microcontrollers
PSoC
Power Management ICs
Touch Sensing
USB Controllers
Wireless/RF
cypress.com/mcu
cypress.com/psoc cypress.com/pmic cypress.com/touch cypress.com/usb cypress.com/wireless

PSoC ${ }^{\circledR}$ Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6
Cypress Developer Community
Forums | WICED IOT Forums | Projects | Video | Blogs |
Training | Components

Technical Support

cypress.com/support

ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.
All other trademarks or registered trademarks referenced herein are the property of their respective owners.

[^1]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for 8 -bit Microcontrollers - MCU category:
Click to view products by Cypress manufacturer:

Other Similar products are found below :

```
CY8C20524-12PVXIT MB95F013KPMC-G-SNE2 MB95F263KPF-G-SNE2 MB95F264KPFT-G-SNE2 MB95F398KPMC-G-SNE2
MB95F478KPMC2-G-SNE2 MB95F564KPF-G-SNE2 MB95F636KWQN-G-SNE1 MB95F696KPMC-G-SNE2 MB95F698KPMC2-G-SNE2
MB95F698KPMC-G-SNE2 MB95F818KPMC1-G-SNE2 901015X CY8C3MFIDOCK-125 403708R MB95F354EPF-G-SNE2
MB95F564KWQN-G-SNE1 MB95F636KP-G-SH-SNE2 MB95F694KPMC-G-SNE2 MB95F778JPMC1-G-SNE2 MB95F818KPMC-G-SNE2
LC87F0G08AUJA-AH CP8361BT CG8421AF MB95F202KPF-G-SNE2 DF36014FPV 5962-8768407MUA MB95F318EPMC-G-SNE2
MB94F601APMC1-GSE1 MB95F656EPF-G-SNE2 LC78615E-01US-H LC87F5WC8AVU-QIP-H MB95F108AJSPMC-G-JNE1 73S1210F-
68M/F/PJ MB89F538-101PMC-GE1 LC87F7DC8AVU-QIP-H MB95F876KPMC-G-SNE2 MB88386PMC-GS-BNDE1 LC87FBK08AU-
SSOP-H LC87F2C64AU-QFP-H MB95F636KNWQN-G-118-SNE1 MB95F136NBSTPFV-GS-N2E1 LC87F5NC8AVU-QIP-E
LC87F76C8AU-TQFP-E LC87F2G08AU-SSOP-E CP8085AT MB95F564KPF-G-UNE2 MC9S08QG8CDTE UPD78F0532AGA(S)-HAB-
AX PIC12CE674-04/P
```


[^0]: *: Check section "Memory Space"

[^1]: © Cypress Semiconductor Corporation, 2008-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of

 binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's
 reproduction, modification, translation, or compilation of the Software is prohibited.
 OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support

 can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

 Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

