

The following document contains information on Cypress products. The document has the series name, product name, and ordering part numbering with the prefix "MB". However, Cypress will offer these products to new and existing customers with the series name, product name, and ordering part number with the prefix "CY".

How to Check the Ordering Part Number

- 1. Go to <u>www.cypress.com/pcn</u>.
- 2. Enter the keyword (for example, ordering part number) in the **SEARCH PCNS** field and click **Apply**.
- 3. Click the corresponding title from the search results.
- 4. Download the Affected Parts List file, which has details of all changes

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress is the leader in advanced embedded system solutions for the world's most innovative automotive, industrial, smart home appliances, consumer electronics and medical products. Cypress' microcontrollers, analog ICs, wireless and USB-based connectivity solutions and reliable, high-performance memories help engineers design differentiated products and get them to market first. Cypress is committed to providing customers with the best support and development resources on the planet enabling them to disrupt markets by creating new product categories in record time. To learn more, go to www.cypress.com.

MB91460X Series

FR60 32-bit Microcontrollers

MB91460X series is a line of general-purpose 32-bit RISC microcontrollers designed for embedded control applications which require high-speed real-time processing, such as consumer devices and on-board vehicle systems. This series uses the FR60 CPU, which is compatible with the FR family of CPUs.

This series contains the LIN-USART, CAN and FlexRay controllers.

Features

FR60 CPU core

- 32-bit RISC, load/store architecture, five-stage pipeline
- 16-bit fixed-length instructions (basic instructions)
- Instruction execution speed: 1 instruction per cycle
- Instructions including memory-to-memory transfer, bit manipulation, and barrel shift instructions: Instructions suitable for embedded applications
- Function entry/exit instructions and register data multi-load store instructions: Instructions supporting C language
- Register interlock function: Facilitating assembly-language coding
- Built-in multiplier with instruction-level support
 Signed 32-bit multiplication: 5 cycles
 Signed 16-bit multiplication: 3 cycles
- Interrupts (save PC/PS): 6 cycles (16 priority levels)
- Harvard architecture enabling program access and data access to be performed simultaneously
- Instructions compatible with the FR family

Internal peripheral resources

- General-purpose ports : Maximum 73 ports
- DMAC (DMA Controller)
 - □ Maximum of 5 channels able to operate simultaneously
 - □ 2 transfer sources (internal peripheral/software) □ Activation source can be selected using software.
 - Addressing mode specifies full 32-bit addresses (increment/decrement/fixed)
 - Transfer mode (demand transfer/burst transfer/step transfer/block transfer)
 - □ Transfer data size selectable from 8/16/32-bit
 - □ Multi-byte transfer enabled (by software)
 - \square DMAC descriptor in I/O areas (200_H to 240_H, 1000_H to 1027_H)
- Flexray controller: 2 channels
 - Conformance with FlexRay protocol specification v2.1
 - □ Maximum transfer speed: 10 Mbps
 - □ Up to 128 transmission/reception message buffers
- A/D converter (successive approximation type)
 - □ 10-bit resolution: 17 channels
 - □ Conversion time: minimum 1 µs

- External interrupt inputs : 11 channels
 3 channels shared with CAN RX or I²C pins
- Bit search module (for REALOS)
 - Function to search from the MSB (most significant bit) for the position of the first "0", "1", or changed bit in a word
- LIN-USART (full duplex double buffer): 3 channels
 Clock synchronous/asynchronous selectable
 Sync-break detection
 - Internal dedicated baud rate generator
- I²C bus interface (supports 400 kbps): 1 channel
 Master/slave transmission and reception
 Arbitration function, clock synchronization function
- CAN controller (C-CAN): 2 channels
 Maximum transfer speed: 1 Mbps
 32 transmission/reception message buffers
- 16-bit PPG timer : 12 channels
- 16-bit reload timer: 8 channels
- 16-bit free-run timer: 8 channels (1 channel each for ICU and OCU)
- Input capture: 8 channels (operates in conjunction with the free-run timer)
- Output compare: 6 channels (operates in conjunction with the free-run timer)
- Watchdog timer
- Real-time clock
- Low-power consumption modes : Sleep/stop mode function
- Low voltage detection circuit
- Clock supervisor
 - Monitors the sub-clock (32 kHz) and the main clock (4 MHz), and switches to a recovery clock (CR oscillator, etc.) when the oscillations stop.
- Clock modulator
- Clock monitor
- Sub-clock calibration
 - Corrects the real-time clock timer when operating with the 32 kHz or CR oscillator
- Main oscillator stabilization timer
 - Generates an interrupt in sub-clock mode after the stabilization wait time has elapsed on the 23-bit stabilization wait time counter

198 Champion Court

- Sub-oscillator stabilization timer
 - Generates an interrupt in main clock mode after the stabilization wait time has elapsed on the 15-bit stabilization wait time counter

Package and technology

- Package: QFP-100
- CMOS 0.18 µm technology
- Power supply range 3 V to 5 V (1.8 V internal logic provided by a step-down voltage converter)
- Operating temperature range: between -40°C and +105°C

MB91460X Series

Contents

Product Lineup	4
Pin Assignment	6
MB91F465XA	6
Pin Description	7
MB91F465XA	7
I/O Circuit Types	11
Handling Devices	17
Preventing Latch-up	17
Handling of unused input pins	17
Power supply pins	17
Crystal oscillator circuit	17
Notes on using external clock	17
Mode pins (MD_x)	18
Notes on operating in PLL clock mode	18
Pull-up control	18
Notes on PS register	18
Notes on Debugger	19
Execution of the RETI Command	19
Break function	19
Operand break	19
Block Diagram	20
MB91F465XA	20
CPU and Control Unit	21
Features	21
Internal architecture	21
Programming model	22
Registers	23
Embedded Program/Data Memory (Flash)	26
Flash features	26
Operation modes	26
Flash access in CPU mode	27
Parallel Flash programming mode	30
Flash Security	32
Notes About Flash Memory CRC Calculation	34
Memory Space	35
Memory Maps	36
MB91F465XA	36
I/O Мар	37
MB91F465XA	37
Flash memory and external bus area	63
Interrupt Vector Table	65
Recommended Settings	70
PLL and Clockgear settings	70
Clock Modulator settings	71
FlexRay PLL, Clock and Port settings	76
Electrical Characteristics	78

Absolute maximum ratings	78
Recommended operating conditions	80
DC characteristics	81
A/D converter characteristics	85
FLASH memory program/erase characteristics	89
AC characteristics	90
E-Ray Overview	97
Block Diagram	98
Generic Interface	. 101
Generic CPU Interface	. 102
Internal Signal and Flag Interface	. 105
Physical Layer Interface	. 107
Interface to embedded RAM Blocks	. 108
Programmer's Model	.112
Register Map	. 112
Customer Registers	. 116
Special Registers	. 119
Interrupt Registers	. 125
CC Control Registers	. 139
CC Status Registers	. 153
Message Buffer Control Registers	. 163
Message Buffer Status Registers	. 166
Identification Registers	. 173
Input Buffer	. 174
Output Buffer	. 179
Functional Description	. 186
Communication Cycle	. 186
Communication Modes	. 188
Clock Synchronization	. 188
Error Handling	. 190
Communication Controller States	. 191
Network Management	. 204
Filtering and Masking	.205
Transmit Process	. 207
Receive Process	.209
FIFO Function	.210
Message Handling	.211
Message RAM	.218
Module Interrupt	. 224
Appendix	.226
Register Bit Overview	.226
Assignment of FlexRay Configuration Parameters	. 239
Ordering Information	.241
Package Dimension	. 242
Kevision History	.243
Main Changes	.243
Document history	. 244

1. Product Lineup

Feature MB91V460A		MB91F465XA		
Max. core frequency (CLKB)	80MHz	100MHz		
Max. resource frequency (CLKP)	40MHz	50MHz		
Max. external bus freq. (CLKT)	40MHz	-		
Max. CAN frequency (CLKCAN)	20MHz	50MHz		
Max. FlexRay frequency (SCLK)	-	80MHz		
Technology	0.35µm	0.18µm		
Watchdog	yes	yes		
Watchdog (RC osc. based)	yes (disengageable)	yes		
Bit Search	yes	yes		
Reset input (INITX)	yes	yes		
Hardware Standby input (HSTX)	yes	no		
Clock Modulator	yes	yes		
Clock Monitor	yes	yes		
Low Power Mode	yes	yes		
DMA	5 ch	5 ch		
MAC (µDSP)	no	no		
MMU/MPU	MPU (16 ch) ¹⁾	MPU (8 ch) ¹⁾		
FlexRay 2 channels (A/B)	no	yes		
Flash	Emulation SRAM 32bit read data	544 KByte		
Flash Protection	-	yes		
D-RAM	64 KByte	16 KByte		
ID-RAM	64 KByte	16 KByte		
Flash-Cache (Instruction cache)	16 KByte	8 KByte		
Boot-ROM / BI-ROM	4 KByte fixed	4 KByte		
RTC	1 ch	1 ch		
Free Running Timer	8 ch	8 ch		
ICU	8 ch	8 ch		
OCU	8 ch	6 ch		
Reload Timer	8 ch	8 ch		
PPG 16-bit	16 ch	12 ch		
PFM 16-bit	1 ch	-		
Sound Generator	1 ch	-		
Up/Down Counter (8/16-bit)	4 ch (8-bit) / 2 ch (16-bit) -			

Feature	MB91V460A	MB91F465XA		
C_CAN	CAN 6 ch (128msg)			
LIN-USART	4 ch + 4 ch FIFO + 8 ch	3 ch FIFO		
l ² C (400k)	4 ch	1 ch		
FR external bus	yes (32bit addr, 32bit data)	_		
External Interrupts	16 ch	11 ch		
NMI Interrupts	1 ch	-		
SMC	6 ch			
LCD controller (40x4)	1 ch	-		
		17 ab		
Abc (10 bit)				
	2 CN			
Supply Supervisor	ves	Ves		
Clock Supervisor	yes	yes		
Main clock oscillator	4MHz	4MHz		
Sub clock oscillator	32kHz	32kHz		
RC Oscillator	100kHz	100kHz / 2MHz		
_L x 20		x 25		
DSU4	yes	-		
EDSU	yes (32 BP) ^{*1}	yes (16 BP) ^{*1}		
Supply Voltage	3V / 5V	3V / 5V		
Regulator	yes	yes		
Power Consumption	n.a.	< 1 W		
Temperature Range (Ta)	070 C	-40105 C		
Package	BGA660	QFP100		
Power on to PLL run	< 20 ms	< 20 ms		
Flash Download Time	na	< 5 sec. typical		

*1: MPU channels use EDSU breakpoint registers (shared operation between MPU and EDSU).

2. Pin Assignment

2.1. MB91F465XA

3. Pin Description

3.1. MB91F465XA

Pin no.	Pin name	I/O	I/O circuit type*	Function	
	P23_0			General-purpose input/output port	
2	RX0	I/O	А	RX input/output pin of CAN0	
	INT8			External interrupt input pin	
0	P23_1	1/0	•	General-purpose input/output port	
3	TX0	1/0	A	TX output pin of CAN0	
4	P31_0	1/0	^	General-purpose input/output port	
4	TXDA	1/0	A	FlexRay transmit output pin	
-	P31_1	General-purpose input/outpu		General-purpose input/output port	
5	TXENA	1/0	A	FlexRay transmit enable output pin	
<u>^</u>	P31_2	1/0	•	General-purpose input/output port	
0	RXDA	1/0	A	FlexRay receive input pin	
-	P31_4	1/0		General-purpose input/output port	
1	TXDB	1/0	A	FlexRay Transmit output pin	
	P31_5	1/0		General-purpose input/output port	
8	TXENB	1/0	A	FlexRay transmit enable output pin	
	P31_6	1/0		General-purpose input/output port	
9	RXDB	1/0	A	FlexRay receive input pin	
	P15_4,P15_5			General-purpose input/output ports	
10, 11	OCU4, OCU5	I/O	А	Output compare output pins	
	TOT4, TOT5			Reload timer output pins	
40 to 40	P16_0 to P16_3	1/0	•	General-purpose input/output ports	
16 10 19	PPG8 to PPG11	1/0	A	Output pins of PPG timer	
00 to 00	P27_0 to P27_3	1/0	D	General-purpose input/output ports	
20 to 23	AN16 to AN19	1/0	В	Analog input pins of A/D converter	
24	P28_0	1/0	P	General-purpose input/output port	
24	AN8	1/0	В	Analog input pins of A/D converter	
07 to 20	P28_1 to P28_4	1/0	P	General-purpose input/output ports	
27 10 30	AN9 to AN12	1/0	В	Analog input pins of A/D converter	
24 to 44	P29_0 to P29_7	1/0	D	General-purpose input/output ports	
34 to 41	AN0 to AN7	1/0	В	Analog input pins of A/D converter	
	P22_4			General-purpose input/output port	
43	SDA0	I/O	С	I ² C bus data input/output pin	
	INT14	1		External interrupt input pin	
A A	P22_5	1/0	<u> </u>	General-purpose input/output port	
44	SCL0	1/0	U	I2C bus clock input/output pin	

MB91460X Series

Pin no.	Pin name	I/O	I/O circuit type*	Function		
45	P19_0	1/0	•	General-purpose input/output port		
45	SIN4	1/0	A	Data input pin of USART4		
40	P19_1	1/0	•	General-purpose input/output port		
40	SOT4	1/0	A	Data output pin of USART4		
	P19_2			General-purpose input/output port		
47	SCK4	I/O	А	Clock input/output pin of USART4		
	FRCK4			Free Run Timer external clock input pin		
40.40	P17_0, P17_1	1/0	^	General-purpose input/output ports		
48, 49	PPG0, PPG1	1/0	A	Output pins of PPG timer		
52	INITX	I	Н	External reset input pin		
50	P16_7	1/0	•	General-purpose input/output port		
53	ATGX	1/0	A	A/D converter external trigger input pin		
541, 50	P17_2 to P17_4	1/0		General-purpose input/output ports		
54 to 56	PPG2 to PPG4	1/0	A	Output pins of PPG timer		
	P18_0	1/0		General-purpose input/output port		
57	SIN6	1/0	A	Data input pin of USART6		
50	P18_1	1/0		General-purpose input/output port		
58	SOT6	1/0	A	Data output pin of USART6		
	P18_2			General-purpose input/output port		
59	SCK6	I/O	А	Clock input/output pin of USART6		
	FRCK6			Free Run Timer external clock input pin		
	P18_4	1/0		General-purpose input/output port		
60	SIN7	1/0	A	Data input pin of USART7		
64	P18_5	1/0	^	General-purpose input/output port		
01	SOT7	1/0	A	Data output pin of USART7		
	P18_6			General-purpose input/output port		
62	SCK7	I/O	А	Clock input/output pin of USART7		
	FRCK7			Free Run Timer external clock input pin		
	P17_5			General-purpose input/output port		
65	PPG5/ MONCLK	I/O	A	Output pin of PPG timer/ Clock monitor pin		
00.07	P17_6, P17_7	1/0	^	General-purpose input/output ports		
00, 07	PPG6, PPG7	1/0	A	Output pins of PPG timer		
	P15_0 to P15_3			General-purpose input/output ports		
68 to 71	OCU0 to OCU3	I/O	А	Output compare output pins		
	TOT0 to TOT3	1		Reload timer output pins		
	P22_0			General-purpose input/output port		
72	RX4	I/O	А	RX input/output pin of CAN4		
	INT12			External Interrupt input		

Pin no.	Pin name	I/O	I/O circuit type*	Function	
72	P22_1	1/0	^	General-purpose input/output port	
75	TX4	1/0		TX output pin of CAN4	
74 to 92	P24_0 to P24_7	I/O		General-purpose input/output ports	
74 10 03	INT0 to INT7		A	External interrupt input pins	
	P14_0 to P14_6			General-purpose input/output ports	
	ICU0 to ICU6			Input capture input pins	
84 to 90	TIN0 to TIN6	I/O	A	External trigger input pins of reload timer	
	TTG8/0, TTG9/1 to TTG14/6			External trigger input pins of PPG timer	
	P14_7			General-purpose input/output port	
	ICU7		Input capture input pin		
91	TIN7	I/O	A External trigger input pins of reload timer		
	TTG15/7			External trigger input pins of PPG timer	
	STOPWT			FlexRay Stop Watch input	
92	MD_0	I	G	Mode setting pin	
93	X0A	—	J2	Sub clock (oscillation) input	
94	X1A	—	J2	Sub clock (oscillation) output	
96	X1	—	J1	Clock (oscillation) output	
97	X0	—	J1	Clock (oscillation) input	
98	MD_1	I	G	Mode setting pin	
99	MD_2	I	G	Mode setting pin	

* : For information about the I/O circuit type, refer to "9. I/O Circuit Types".

[Power supply/Ground pins]

Pin no.	Pin name	I/O	Function
14, 26, 42, 51, 64, 75, 95, 100	VSS5		Ground pins
1, 15, 25, 50, 63, 76	VDD5		Power supply pins
12	VDD5R		Power supply pins for internal regulator
33	AVSS5	Supply	Analog ground pin for A/D converter
31	AVCC5		Power supply pin for A/D converter
32	AVRH5		Reference power supply pin for A/D converter
13	VCC18C		Capacitor connection pin for internal regulator

4. I/O Circuit Types

MB91460X Series

5. Handling Devices

5.1. Preventing Latch-up

Latch-up may occur in a CMOS IC if a voltage higher than (V_{DD} 5) or less than (V_{SS} 5) is applied to an input or output pin or if a voltage exceeding the rating is applied between the power supply pins and ground pins. If latch-up occurs, the power supply current increases rapidly, sometimes resulting in thermal breakdown of the device. Therefore, be very careful not to apply voltages in excess of the absolute maximum ratings.

5.2. Handling of unused input pins

If unused input pins are left open, abnormal operation may result. Any unused input pins should be connected to pull-up or pull-down resistor ($2K\Omega$ to $10K\Omega$) or enable internal pullup or pulldown resisters (PPER/PPCR) before the input enable (PORTEN) is activated by software. The mode pins MD_x can be connected to $V_{SS}5$ or $V_{DD}5$ directly. Unused ALARM input pins can be connected to $AV_{SS}5$ directly.

5.3. Power supply pins

In MB91460X series, devices including multiple power supply pins and ground pins are designed as follows; pins necessary to be at the same potential are interconnected internally to prevent malfunctions such as latch-up. All of the power supply pins and ground pins must be externally connected to the power supply and ground respectively in order to reduce unnecessary radiation, to prevent strobe signal malfunctions due to the ground level rising and to follow the total output current ratings. Furthermore, the power supply pins and ground pins and ground pins of the MB91460X series must be connected to the current supply source via a low impedance.

It is also recommended to connect a ceramic capacitor of approximately 0.1 µF as a bypass capacitor between power supply pin and ground pin near this device.

This series has a built-in step-down regulator. Connect a bypass capacitor of 4.7 μF (use a X7R ceramic capacitor) to VCC18C pin for the regulator.

5.4. Crystal oscillator circuit

Noise in proximity to the X0 (X0A) and X1 (X1A) pins can cause the device to operate abnormally. Printed circuit boards should be designed so that the X0 (X0A) and X1 (X1A) pins, and crystal oscillator, as well as bypass capacitors connected to ground, are located near the device and ground.

It is recommended that the printed circuit board layout be designed such that the X0 and X1 pins or X0A and X1A pins are surrounded by ground plane for the stable operation.

Please request the oscillator manufacturer to evaluate the oscillational characteristics of the crystal and this device.

5.5. Notes on using external clock

When using the external clock, it is necessary to simultaneously supply the X0 (X0A) and the X1 (X1A) pins. In the described combination, X1 (X1A) should be supplied with a clock signal which has the opposite phase to the X0 (X0A) pins. At X0 and X1, a frequency up to 16 MHz is possible.

Example of using opposite phase supply

(Continued)

5.6. Mode pins (MD_x)

These pins should be connected directly to the power supply or ground pins. To prevent the device from entering test mode accidentally due to noise, minimize the lengths of the patterns between each mode pin and power supply pin or ground pin on the printed circuit board as possible and connect them with low impedance.

5.7. Notes on operating in PLL clock mode

If the oscillator is disconnected or the clock input stops when the PLL clock is selected, the microcontroller may continue to operate at the free-running frequency of the self-oscillating circuit of the PLL. However, this self-running operation cannot be guaranteed.

5.8. Pull-up control

The AC standard is not guaranteed in case a pull-up resistor is connected to the pin serving as an external bus pin.

5.9. Notes on PS register

As the PS register is processed in advance by some instructions, when the debugger is being used, the exception handling may result in execution breaking in an interrupt handling routine or the displayed values of the flags in the PS register being updated. As the microcontroller is designed to carry out reprocessing correctly upon returning from such an EIT event, the operation before and after the EIT always proceeds according to specification.

The following behavior may occur if any of the following occurs in the instruction immediately after a DIV0U/DIV0S instruction:

- a. a user interrupt or NMI is accepted;
- b. single-step execution is performed;
- c. execution breaks due to a data event or from the emulator menu.
 - 1. D0 and D1 flags are updated in advance.
 - 2. An EIT handling routine (user interrupt/NMI or emulator) is executed.
 - 3. Upon returning from the EIT, the DIV0U/DIV0S instruction is executed and the D0 and D1 flags are updated to the same values as those in 1.

The following behavior occurs when an ORCCR, STILM, MOV Ri,PS instruction is executed to enable a user interrupt or NMI source while that interrupt is in the active state.

- 1. The PS register is updated in advance.
- 2. An EIT handling routine (user interrupt/NMI or emulator) is executed.
- 3. Upon returning from the EIT, the above instructions are executed and the PS register is updated to the same value as in 1.

6. Notes on Debugger

6.1. Execution of the RETI Command

If single-step execution is used in an environment where an interrupt occurs frequently, the corresponding interrupt handling routine will be executed repeatedly to the exclusion of other processing. This will prevent the main routine and the handlers for low priority level interrupts from being executed (For example, if the time-base timer interrupt is enabled, stepping over the RETI instruction will always break on the first line of the time-base timer interrupt handler).

Disable the corresponding interrupts when the corresponding interrupt handling routine no longer needs debugging.

6.2. Break function

If the range of addresses that cause a hardware break (including event breaks) is set to the address of the current system stack pointer or to an area that contains the stack pointer, execution will break after each instruction regardless of whether the user program actually contains data access instructions.

To prevent this, do not set (word) access to the area containing the address of the system stack pointer as the target of the hardware break (including an event breaks).

6.3. Operand break

It may cause malfunctions if a stack pointer exists in the area which is set as the DSU operand break. Do not set the access to the areas containing the address of system stack pointer as a target of data event break.

7. Block Diagram

7.1. MB91F465XA

8. CPU and Control Unit

The FR family CPU is a high performance core that is designed based on the RISC architecture with advanced instructions for embedded applications.

8.1. Features

- Adoption of RISC architecture
 Basic instruction: 1 instruction per cycle
- General-purpose registers: 32-bit × 16 registers
- 4 Gbytes linear memory space
- Multiplier installed 32-bit × 32-bit multiplication: 5 cycles 16-bit × 16-bit multiplication: 3 cycles
- Enhanced interrupt processing function Quick response speed (6 cycles) Multiple-interrupt support Level mask function (16 levels)
- Enhanced instructions for I/O operation Memory-to-memory transfer instruction Bit processing instruction Basic instruction word length: 16 bits
- Low-power consumption Sleep mode/stop mode

8.2. Internal architecture

- The FR family CPU uses the Harvard architecture in which the instruction bus and data bus are independent of each other.
- A 32-bit ↔ 16-bit buffer is connected to the 32-bit bus (D-bus) to provide an interface between the CPU and peripheral resources.
- A Harvard ↔ Princeton bus converter is connected to both the I-bus and D-bus to provide an interface between the CPU and the bus controller.

8.3. Programming model

8.3.1. Basic programming model

8.4. Registers

Registers R0 to R15 are general-purpose registers. These registers can be used as accumulators for computation operations and as pointers for memory access.

Of the 16 registers, enhanced commands are provided for the following registers to enable their use for particular applications.

- R13 : Virtual accumulator
- R14 : Frame pointer
- R15 : Stack pointer

Initial values at reset are undefined for R0 to R14. The value for R15 is 0000000_H (SSP value).

8.4.2. PS (Program Status)

This register holds the program status, and is divided into three parts, ILM, SCR, and CCR. All undefined bits (-) in the diagram are reserved bits. The read values are always "0". Write access to these bits is invalid.

8.4.3. CCR (Condition Code Register)

C : Carry flag

8.4.4. SCR (System Condition Register)

Flag for step division (D1, D0)

This flag stores interim data during execution of step division.

Step trace trap flag (T)

This flag indicates whether the step trace trap is enabled or disabled.

The step trace trap function is used by emulators. When an emulator is in use, it cannot be used in execution of user programs.

8.4.5. ILM (Interrupt Level Mask register)

bit 20 bit 19 bit 18 bit 17 bit 16	Initial value
ILM4 ILM3 ILM2 ILM1 ILM0	01111в

This register stores interrupt level mask values, and the values stored in ILM4 to ILM0 are used for level masking. The register is initialized to value " 01111_B " at reset.

8.4.6. PC (Program Counter)

bit	31 bit	<u>t</u> 0	Initial value
			ХХХХХХХХН

The program counter indicates the address of the instruction that is being executed. The initial value at reset is undefined.

8.4.7. TBR (Table Base Register)

bit	31 bit	0 Initial value	
		000FFC00н	

The table base register stores the starting address of the vector table used in EIT processing. The initial value at reset is $000FFC00_{H}$.

8.4.8. RP (Return Pointer)

bi	t 31	bit 0	Initial value
			ХХХХХХХАН

The return pointer stores the address for return from subroutines.

During execution of a CALL instruction, the PC value is transferred to this RP register.

During execution of a RET instruction, the contents of the RP register are transferred to PC. The initial value at reset is undefined.

8.4.9. USP (User Stack Pointer)

bi	t 31	bit 0	Initial value
			ХХХХХХХХН

The user stack pointer, when the S flag is "1", this register functions as the R15 register.

- The USP register can also be explicitly specified.
- The initial value at reset is undefined.
- This register cannot be used with RETI instructions.

8.4.10. Multiply & divide registers

bi	it 31 bit	0
MDH		
MDL		

These registers are for multiplication and division, and are each 32 bits in length. The initial value at reset is undefined.

9. Embedded Program/Data Memory (Flash)

9.1. Flash features

- 544 Kbytes (8 × 64 Kbytes + 4 × 8 Kbytes = 4.25 Mbits)
- Programmable wait state for read/write access
- Flash and Boot security with security vector at 0x0014:8000 0x0014:800F
- Boot security
- Basic specification: Same as MBM29LV400TC (except size and part of sector configuration)

9.2. Operation modes

- 1. 32-bit CPU mode :
 - · CPU reads and executes programs in word (32-bit) length units.
 - Flash writing is not possible
 - Actual Flash Memory access is performed in word (32-bit) length units.
- 2. 16-bit CPU mode :
 - CPU reads and writes in half-word (16-bit) length units.
 - · Program execution from the Flash is not possible.
 - · Actual Flash Memory access is performed in half-word (16-bit) length units.
- 3. Flash memory mode (external access to Flash memory enabled)
- Note: The operation mode of the flash memory can be selected using a Boot-ROM function. The function start address is 0xBF60. The parameter description is given in the Hardware Manual in chapter 54.6 "Flash Access Mode Switching".

9.3. Flash access in CPU mode

9.3.1. Flash configuration

Flash memory map MB91F465XA

Addr	_								
0014:FFFFh 0014:C000h		SA6	(8KB)						
0014:BFFFh 0014:8000h		SA4	(8KB)		SA5 (8KB)				ROMS7
0014:7FFFh 0014:4000h		SA2	(8KB)		SA3 (8KB)				
0014:3FFFh 0014:0000h		SA0	(8KB)			SA1	(8KB)		
0013:FFFFh 0012:0000h		SA22	(64KB)			SA23	(64KB)		DOMES
0011:FFFFh 0010:0000h		SA20	(64KB)			SA21	(64KB)		ROMS6
000F:FFFFh 000E:0000h		SA18	(64KB)		SA19 (64KB)				ROMS5
000D:FFFFh 000C:0000h		SA16	(64KB)		SA17 (64KB)				ROMS4
000B:FFFFh 000A:0000h		SA14	(64KB)		SA15 (64KB)				ROMS3
0009:FFFFh 0008:0000h		SA12	(64KB)		SA13 (64KB)				ROMS2
0007:FFFFh 0006:0000h		SA10	(64KB)		SA11 (64KB)				ROMS1
0005:FFFFh 0004:0000h		SA8 ((64KB)		SA9 (64KB)				ROMS0
	addr+0	addr+1	addr+2	addr+3	addr+4	addr+5	addr+6	addr+7	
16bit read/write	dat[31:16] dat[15:0]				dat[31:16] dat[15:0]			15:0]	
32bit read		dat[31:0]		dat[31:0]				
Legend	N	lemory not ava	ilable in this are	a	Memory available in this area				

9.3.2. Flash access timing settings in CPU mode

The following tables list all settings for a given maximum Core Frequency (through the setting of CLKB or maximum clock modulation) for Flash read and write access.

Flash read timing settings (synchronous read)

Core clock (CLKB)	ATD	ALEH	EQ	WEXH	WTC	Remark
to 24 MHz	0	0	0	-	1	
to 48 MHz	0	0	1	-	2	
to 100 MHz	1	1	3	-	4	

Flash write timing settings (synchronous write)

Core clock (CLKB)	ATD	ALEH	EQ	WEXH	WTC	Remark
to 16 MHz	0	-	-	0	3	
to 32 MHz	0	-	-	0	4	
to 48 MHz	0	-	-	0	5	
to 64 MHz	1	-	-	0	6	
to 96 MHz	1	-	-	0	7	
to 100 MHz	1	-	-	1	8	

9.3.3. Address mapping from CPU to parallel programming mode

The following tables show the calculation from CPU addresses to flash macro addresses which are used in parallel programming.

Address mapping MB91F465XA

CPU Address (addr)	Condition	Flash sectors	FA (flash address) Calculation
14:8000h to 14:FFFFh	addr[2]==0	SA4, SA6 (8 Kbyte)	FA := addr - addr%00:4000h + (addr%00:4000h)/2 - (addr/2)%4 + addr%4 - 0D:0000h
14:8000h to 14:FFFFh	addr[2]==1	SA5, SA7 (8 Kbyte)	FA := addr - addr%00:4000h + (addr%00:4000h)/2 + 00:2000h - (addr/2)%4 + addr%4 - 0D:0000h
08:0000h to 13:FFFFh	addr[2]==0	SA12, SA14, SA16, SA18 (64 Kbyte)	FA := addr - addr%02:0000 + (addr%02:0000h)/2 - (addr/2)%4 + addr%4
08:0000h to 13:FFFFh	addr[2]==1	SA13, SA15, SA17, SA19 (64 Kbyte)	FA := addr - addr%02:0000h + (addr%02:0000h)/2 + 01:0000h - (addr/2)%4 + addr%4

Note: FA result is without 10:0000h offset for parallel Flash programming.

Set offset by keeping FA[20] = 1 as described in section "Parallel Flash programming mode".

9.4. Parallel Flash programming mode

9.4.1. Flash configuration in parallel Flash programming mode

Parallel Flash programming mode (MD[2:0] = 111):

FA[20:0]							
001F:FFFFh 001F:0000h	SA19	(64KB)					
001E:FFFFh 001E:0000h	SA18	(64KB)					
001D:FFFFh 001D:0000h	SA17	(64KB)					
001C:FFFFh 001C:0000h	SA16	(64KB)					
001B:FFFFh 001B:0000h	SA15 (64KB)						
001A:FFFFh 001A:0000h	SA14 (64KB)						
0019:FFFFh 0019:0000h	SA13 (64KB)						
0018:FFFFh 0018:0000h	SA12 (64KB)						
	SA11	(64KB)					
	SA10	(64KB)					
	SA9 (64KB)					
	SA8 (64KB)					
0017:FFFFh 0017:E000h	SA7	(8KB)					
0017:DFFFh 0017:C000h	SA6	(8KB)					
0017:BFFFh 0017:A000h	SA5	(8KB)					
0017:9FFFh 0017:8000h	SA4	(8KB)					
	SA3 (8KB)						
	SA2 (8KB)						
	SA1 (8KB)						
	SA0 (8KB)						
	FA[1:0]=00	FA[1:0]=10					
16bit write mode	DQ[15:0]	DQ[15:0]					
	Remark: Always keep F	A[0] = 0 and FA[20] = 1					
Legend	Memory availa	ble in this area					
	Memory not avai	lable in this area					

MB91F465XA

9.4.2. Pin connections in parallel programming mode

Resetting after setting the MD[2:0] pins to [111] will halt CPU functioning. At this time, the Flash memory's interface circuit enables direct control of the Flash memory unit from external pins by directly linking some of the signals to General Purpose Ports. Please see table below for signal mapping.

In this mode, the Flash memory appears to the external pins as a stand-alone unit. This mode is generally set when writing/erasing using the parallel Flash programmer. In this mode, all operations of the 8.5 Mbits Flash memory's Auto Algorithms are available.

Correspondence between MBM29LV400TC and Flash Memory Control Signals

MBM29LV400TC		Μ	_		
External pins	FR-CPU mode	Flash memory mode	Normal function	Pin number	Comment
-	INITX	-	INITX	52	
RESET	-	FRSTX	P16_7	53	
-	-	MD2	MD_2	99	Set to '1'
-	-	MD1	MD_1	98	Set to '1'
-	-	MD0	MD_0	92	Set to '1'
RY/BY	FMCS:RDY bit	RY/BYX	P24_0	74	
BYTE	Internally fixed to 'H'	BYTEX	P24_2	78	
WE		WEX	P28_3	29	
OE		OEX	P28_2	28	
CE	Internal control signal + control via interface circuit	CEX	P28_1	27	
-		ATDIN	P22_1	73	Set to '0'
-		EQIN	P22_0	72	Set to '0'
-		TESTX	P24_3	79	Set to '1'
-		RDYI	P24_1	77	Set to '0'
A-1		FA0	P19_2	47	Set to '0'
A0 to A7		FA1 to FA8	P16_0 to P16_3, P27_0 to P27_3	16 to 23	
A8 to A15	Internal address bus	FA9 to FA16	P15_0 to P15_5, P18_0, P18_1	68 to 71,10, 11, 57, 58	
A16 to A18		FA17 to FA19	P18_2, P18_4, P18_5	59 to 61	
A19		FA20	P18_6	62	Set to '1'
DQ0 to DQ7	Internal data hus	DQ0 to DQ7	P17_0 to P17_7	48, 49, 54 to 56, 65 to 67	
DQ8 to DQ15		DQ8 to DQ15	P23_0, P23_1, P31_0 to P31_2, P31_4 to P31_6	2 to 9	

9.5. Flash Security

9.5.1. Vector addresses

Two Flash Security Vectors (FSV1, FSV2) are located parallel to the Boot Security Vectors (BSV1, BSV2) controlling the protection functions of the Flash Security Module:

FSV1: 0x14:8000	BSV1: 0x14:8004
FSV2: 0x14:8008	BSV2: 0x14:800C

9.5.2. Security Vector FSV1

The setting of the Flash Security Vector FSV1 is responsible for the read and write protection modes and the individual write protection of the 8 Kbytes sectors.

FSV1 (bit31 to bit16)

The setting of the Flash Security Vector FSV1 bits [31:16] is responsible for the read and write protection modes.

Explanation of the bits in the Flash Security Vector FSV1 [31:16]

FSV1[31:19]	FSV1[18] Write Protection Level	FSV1[17] Write Protection	FSV1[16] Read Protection	Flash Security Mode
set all to "0"	set to "0"	set to "0"	set to "1"	Read Protection (all device modes, except INTVEC mode MD[2:0] = "000")
set all to "0"	set to "0"	set to "1"	set to "0"	Write Protection (all device modes, without exception)
set all to "0"	set to "0"	set to "1"	set to "1"	Read Protection (all device modes, except INTVEC mode MD[2:0] = "000") and Write Protection (all device modes)
set all to "0"	set to "1"	set to "0"	set to "1"	Read Protection (all device modes, except INTVEC mode MD[2:0] = "000")
set all to "0"	set to "1"	set to "1"	set to "0"	Write Protection (all device modes, except INTVEC mode MD[2:0] = "000")
set all to "0"	set to "1"	set to "1"	set to "1"	Read Protection (all device modes, except INTVEC mode MD[2:0] = "000") and Write Protection (all device modes except INTVEC mode MD[2:0] = "000")

FSV1 (bit15 to bit0)

The setting of the Flash Security Vector FSV1 bits [15:0] is responsible for the individual write protection of the 8 Kbytes sectors. It is only evaluated if write protection bit FSV1[17] is set.

C 3/2	lonation	of the	hite in	the Fleeh	Coourity	$\sqrt{1}$	15.01
	Jianalion	or the	DILS III	пе газп	Security		10.0

FSV1 bit	Sector	Enable Write Protection	Disable Write Protection	Comment
FSV1[0]	—	set to "0"	set to "1"	not available
FSV1[1]	—	set to "0"	set to "1"	not available
FSV1[2]	—	set to "0"	set to "1"	not available
FSV1[3]	—	set to "0"	set to "1"	not available
FSV1[4]	SA4	set to "0"	—	Write protection is mandatory!
FSV1[5]	SA5	set to "0"	set to "1"	

FSV1 bit	Sector	Enable Write Protection	Disable Write Protection	Comment
FSV1[6]	SA6	set to "0"	set to "1"	
FSV1[7]	SA7	set to "0"	set to "1"	
FSV1[8]	—	set to "0"	set to "1"	not available
FSV1[9]	_	set to "0"	set to "1"	not available
FSV1[10]	—	set to "0"	set to "1"	not available
FSV1[11]	—	set to "0"	set to "1"	not available
FSV1[12]	—	set to "0"	set to "1"	not available
FSV1[13]	—	set to "0"	set to "1"	not available
FSV1[14]	—	set to "0"	set to "1"	not available
FSV1[15]	—	set to "0"	set to "1"	not available

Note : It is mandatory to always set the sector where the Flash Security Vectors FSV1 and FSV2 are located to write protected (here sector SA4). Otherwise it is possible to overwrite the Security Vector to a setting where it is possible to either read out the Flash content or manipulate data by writing.

See section "Flash access in CPU mode" for an overview about the sector organization of the Flash Memory.

9.5.3. Security Vector FSV2

The setting of the Flash Security Vector FSV2 bits [31:0] is responsible for the individual write protection of the 64 Kbytes sectors. It is only evaluated if write protection bit FSV1 [17] is set.

FSV2 bit	Sector	Enable Write Protection	Disable Write Protection	Comment
FSV2[0]	—	set to "0"	set to "1"	not available
FSV2[1]	—	set to "0"	set to "1"	not available
FSV2[2]	—	set to "0"	set to "1"	not available
FSV2[3]	_	set to "0"	set to "1"	not available
FSV2[4]	SA12	set to "0"	set to "1"	
FSV2[5]	SA13	set to "0"	set to "1"	
FSV2[6]	SA14	set to "0"	set to "1"	
FSV2[7]	SA15	set to "0"	set to "1"	
FSV2[8]	SA16	set to "0"	set to "1"	
FSV2[9]	SA17	set to "0"	set to "1"	
FSV2[10]	SA18	set to "0"	set to "1"	
FSV2[11]	SA19	set to "0"	set to "1"	
FSV2[31:12]	—	set to "0"	set to "1"	not available

Explanation of the bits in the Flash Security Vector FSV2[31:0]

Note : See section "Flash access in CPU mode" for an overview about the sector organization of the Flash Memory.

9.6. Notes About Flash Memory CRC Calculation

The Flash Security macro contains a feature to calculate the 32-bit checksum over addresses located in the Flash Memory address space. This feature is described in the MB91460 Series Hardware Manual, chapter 55.4.1 "Flash Security Control Register". Additional notes are given here:

The CRC calculation runs on the internal RC clock. It is recommended to switch the RC clock frequency to 2 MHz for shortening the calculation time. However, the CPU clock (CLKB) must be faster then RC clock, otherwise the CRC calculation may not start correctly.

10. Memory Space

The FR family has 4 Gbytes of logical address space (2³² addresses) available to the CPU by linear access.

Direct addressing area

The following address space area is used for I/O.

This area is called direct addressing area, and the address of an operand can be specified directly in an instruction.

The size of directly addressable area depends on the length of the data being accessed as shown below.

Byte data access $: 000_{\text{H}}$ to 0FF_{H}

Half word access $: 000_{H}$ to $1FF_{H}$

Word data access : 000_H to $3FF_H$

11. Memory Maps

11.1. MB91F465XA

0000000н	I/O (direct addressing area)
00000400н	I/O
00001000н	DMA
00002000н	
00004000н	Flash-Cache (8 KBytes)
00006000н	
00007000н	Flash memory control
00008000н	
0000В000н	Boot ROM (4 Kbytes)
0000С000н	CAN / FlexRay
0000DFFF _H	
0002C000н	D-RAM (0 wait, 16 Kbytes)
00030000н	ID-RAM (16 Kbytes)
00034000н	
00040000н	External bus area No External bus interface on MB91F465X
00080000н	Flash memory (512 Kbytes)
00100000н	External bus area No External bus interface on MB91F465X
00148000н	Flash memory (32 Kbytes)
00150000 _н	External bus area No External bus interface on MB91F465X
FFFFFFF	External data bus

Note:

Access prohibited areas

12. I/O Map

12.1. MB91F465XA

Note : Initial values of register bits are represented as follows:

- "1" : Initial value "1"
- "0" : Initial value "0"
- "X" : Initial value "undefined"
- "-" : No physical register at this location

Access is barred with an undefined data access attribute.

Address		Block			
	+0	+1	+2	+3	
000000 _H to 000008 _H		Rese	rved		Reserved
00000C _H	Reserved	Reserved	PDR14 [R/W] XXXXXXXX	PDR15 [R/W] XXXXXX	
000010 _H	PDR16 [R/W] X XXXX	PDR17 [R/W] XXXXXXXX	PDR18 [R/W] - XXX - XXX	PDR19 [R/W] XXX	
000014 _H	Reserved	Reserved	PDR22 [R/W] XX XX	PDR23 [R/W] XX	- R-bus Port Data Register
000018 _H	PDR24 [R/W] XXXXXXXX	Reserved	Reserved	PDR27 [R/W] XXXX	
00001C _H	PDR28 [R/W] XXXXX	PDR29 [R/W] XXXXXXXX	Reserved	PDR31 [R/W] - XXX - XXX	
000020 _H to 00002C _H		Rese	rved		Reserved
000030 _H	EIRR0 [R/W] ENIR0 [R/W] ELVR0 [R/W] XXXXXXXX 00000000 00000000				External interrupt (INT 0 to INT 7) NMI
000034 _H	EIRR1 [R/W] XXXXXXXX	ENIR1 [R/W] 00000000	ELVR1 00000000	[R/W] 00000000	External interrupt (INT 8 to INT 15)
000038 _H	DICR [R/W] 0	HRCL [R/W] 0 11111	RBS	YNC	Delay interrupt
00003C _H		Rese	erved		Reserved
000040 _H to 00005C _H		Rese	rved		Reserved
000060 _H	SCR04 [R/W,W] 00000000	SMR04 [R/W,W] 00000000	SSR04 [R/W,R] 00001000	RDR04/TDR04 [R/W] 00000000	LIN-USART 4
000064 _H	ESCR04 [R/W] 00000X00	ECCR04 [R/W,R,W] -00000XX	FSR04 [R] 00000	FCR04 [R/W] 0001 - 000	with FIFO
000068 _H to 00006C _H		Reserved			
000070 _H	SCR06 [R/W,W] 00000000	SMR06 [R/W,W] 00000000	SSR06 [R/W,R] 00001000	RDR06/TDR06 [R/W] 00000000	LIN-USART 6
000074 _H	ESCR06 [R/W] 00000X00	ECCR06 [R/W,R,W] -00000XX	FSR06 [R] 00000	FCR06 [R/W] 0001 - 000	with FIFO

Address		Block			
	+0	+1	+2	+3	
000078 _H	SCR07 [R/W,W] 00000000	SMR07 [R/W,W] 00000000	SSR07 [R/W,R] 00001000	RDR07/TDR07 [R/W] 00000000	LIN-USART 7
00007C _H	ESCR07 [R/W] 00000X00	ECCR07 [R/W,R,W] -00000XX	FSR07 [R] 00000	FCR07 [R/W] 0001 - 000	with FIFO
000080 _H to 000084 _H		Rese	erved		Reserved
000088 _H	BGR104 [R/W] 00000000	BGR004 [R/W] 00000000	Reserved	Reserved	Baud rate
00008C _H	BGR106 [R/W] 00000000	BGR006 [R/W] 00000000	BGR107 [R/W] 00000000	BGR007 [R/W] 00000000	LIN-USART 4, 6 to 7
000090 _H to 0000CC _H		Rese	erved		Reserved
0000D0 _H	IBCR0 [R/W] 00000000	IBSR0 [R] 00000000	ITBAH0 [R/W] 00	ITBAL0 [R/W] 00000000	
0000D4 _H	ITMKH0 [R/W] 00 11	ITMKL0 [R/W] 11111111	ISMK0 [R/W] 01111111	ISBA0 [R/W] - 0000000	l ² C 0
0000D8 _H	Reserved	IDAR0 [R/W] 00000000	ICCR0 [R/W] - 0011111	Reserved	
0000DC _H to 0000FC _H		Reserved			
000100 _H	GCN10 00110010) [R/W] 00010000	Reserved	GCN20 [R/W] 0000	PPG Control 0 to 3
000104 _H	GCN11 00110010	[R/W] 00010000	Reserved	GCN21 [R/W] 0000	PPG Control 4 to 7
000108 _H	GCN12 00110010	2 [R/W] 00010000	Reserved	GCN22 [R/W] 0000	PPG Control 8 to 11
000110 _H	PTMR 11111111	00 [R] 11111111	PCSR0 XXXXXXXX	00 [W] XXXXXXXX	PPC 0
000114 _H	PDUT00 [W] XXXXXXXX XXXXXXX		PCNH00 [R/W] 0000000 -	PCNL00 [R/W] 000000 - 0	1100
000118 _H	PTMR01 [R] 11111111 11111111		PCSR0 XXXXXXXX	01 [W] XXXXXXXX	PPC 1
00011C _H	PDUT01 [W] XXXXXXXX XXXXXXX		PCNH01 [R/W] 0000000 -	PCNL01 [R/W] 000000 - 0	
000120 _H	PTMR 11111111	02 [R] 11111111	PCSR0 XXXXXXXX	02 [W] XXXXXXXX	PPC 2
000124 _H	PDUT XXXXXXXX	D2 [W] XXXXXXXX	PCNH02 [R/W] 0000000 -	PCNL02 [R/W] 000000 - 0	1102

Address	Register				Block
	+0	+1	+2	+3	
000128 _H	PTMR 11111111	03 [R] 11111111	PCSR0 XXXXXXXX	03 [W] XXXXXXXX	
00012C _H	PDUT(XXXXXXXX)3 [W] XXXXXXXX	PCNH03 [R/W] 0000000 -	PCNL03 [R/W] 000000 - 0	
000130 _H	PTMR 11111111	04 [R] 11111111	PCSR(XXXXXXXX	04 [W] XXXXXXXX	
000134 _H	PDUT(XXXXXXXX	04 [W] XXXXXXXX	PCNH04 [R/W] 0000000 -	PCNL04 [R/W] 000000 - 0	- PPG 4
000138 _H	PTMR 11111111	05 [R] 11111111	PCSR(XXXXXXXX	05 [W] XXXXXXXX	
00013C _H	PDUT(XXXXXXXX	05 [W] XXXXXXXX	PCNH05 [R/W] 0000000 -	PCNL05 [R/W] 000000 - 0	
000140 _H	PTMR 11111111	06 [R] 11111111	PCSR(XXXXXXXX	06 [W] XXXXXXXX	
000144 _H	PDUT(XXXXXXXX	06 [W] XXXXXXXX	PCNH06 [R/W] 0000000 -	PCNL06 [R/W] 000000 - 0	
000148 _H	PTMR07 [R] PCSR07 [W] 11111111 1111111 XXXXXXXX XXXXXXX				
00014C _H	PDUT(XXXXXXXX	07 [W] XXXXXXXX	PCNH07 [R/W] 0000000 -	PCNL07 [R/W] 000000 - 0	
000150 _H	PTMR 11111111	08 [R] 11111111	PCSR(XXXXXXXX	08 [W] XXXXXXXX	PPC 9
000154 _H	PDUT(XXXXXXXX	08 [W] XXXXXXXX	PCNH08 [R/W] 0000000 -	PCNL08 [R/W] 000000 - 0	1100
000158 _H	PTMR 11111111	09 [R] 11111111	PCSR(XXXXXXXX	09 [W] XXXXXXXX	PPC 0
00015C _H	PDUT(XXXXXXXX	9 [W] XXXXXXXX	PCNH09 [R/W] 0000000 -	PCNL09 [R/W] 000000 - 0	1103
000160 _H	PTMR 11111111	10 [R] 11111111	PCSR [*] XXXXXXXX	10 [W] XXXXXXXX	
000164 _H	PDUT [.] XXXXXXXX	10 [W] XXXXXXXX	PCNH10 [R/W] 0000000 -	PCNL10 [R/W] 000000 - 0	
000168 _H	PTMR 11111111	11 [R] 11111111	R] PCSR11 [W] 111111 XXXXXXXX XXXXXXX		
00016C _H	PDUT [.] XXXXXXXX	11 [W] XXXXXXXXX	PCNH11 [R/W] 0000000 -	PCNL11 [R/W] 000000 - 0	
000170 _H to 00017C _H		F	Reserved		Reserved

Address		Block			
	+0	+1	+2	+3	
000180 _H	Reserved	ICS01 [R/W] 00000000	Reserved	ICS23 [R/W] 00000000	
000184 _H	IPCP XXXXXXXX	0 [R] XXXXXXXX	IPCP XXXXXXXX	1 [R] XXXXXXXX	Input Capture 0 to 3
000188 _H	IPCP XXXXXXXX	2 [R] XXXXXXXX	IPCP XXXXXXXX	3 [R] XXXXXXXX	
00018C _H	OCS0 ⁷ 0 00	[R/W] 0000 00	OCS23 0 00	3 [R/W] 0000 00	
000190 _H	OCCP(XXXXXXXX) [R/W] XXXXXXXX	OCCP ² XXXXXXXX	1 [R/W] XXXXXXXX	Output Compare
000194 _H	OCCP2 XXXXXXXX	2 [R/W] XXXXXXXX		3 [R/W] XXXXXXXX	
000198 _H to 00019C _H		Rese	erved		Reserved
0001A0 _H	ADERH 00000000	I [R/W] 00000000	ADERL 00000000	_ [R/W] 00000000	
0001A4	ADCS1 [R/W] 00000000	ADCS0 [R/W] 00000000	ADCR1 [R] 000000XX	ADCR0 [R] XXXXXXXX	A/D Converter
0001A8 _H	ADCT1 [R/W] 00010000	ADCT0 [R/W] 00101100	ADSCH [R/W] 00000	ADECH [R/W] 00000	
0001AC _H		Rese	erved		Reserved
0001B0 _H	TMRLF XXXXXXXX	R0 [W] XXXXXXXX	TMR0 [R] XXXXXXXX XXXXXXXX		Reload Timer 0
0001B4 _H	Rese	erved	TMCSRH0 [R/W] 00000	TMCSRL0 [R/W] 0 - 000000	(PPG 0, PPG 1)
0001B8 _H	TMRLF XXXXXXXX	R1 [W] XXXXXXXX	TMR1 XXXXXXXX	I [R] XXXXXXXX	Reload Timer 1
0001BC _H	Rese	erved	TMCSRH1 [R/W] 00000	TMCSRL1 [R/W] 0 - 000000	(PPG 2, PPG 3)
0001C0 _H	TMRLF XXXXXXXX	2 [W] XXXXXXXX	TMR2 XXXXXXXX	2 [R] XXXXXXXX	Reload Timer 2
0001C4 _H	Reserved		TMCSRH2 [R/W] 00000	TMCSRL2 [R/W] 0 - 000000	(PPG 4, PPG 5)
0001C8 _H	TMRLF	R3 [W] XXXXXXXX	TMR3 XXXXXXXX	³ [R] XXXXXXXX	Reload Timer 3
0001CC _H	Rese	erved	TMCSRH3 [R/W] 00000	TMCSRL3 [R/W] 0 - 000000	(PPG 6,PPG 7)

Address		Register			
	+0	+1	+2	+3	
0001D0 _H	TMRLR XXXXXXXX	4 [W] XXXXXXXX	TMR4 XXXXXXXX	[R] XXXXXXXX	Reload Timer 4
0001D4 _H	Rese	rved	TMCSRH4 [R/W] 00000	TMCSRL4 [R/W] 0 - 000000	(PPG 8, PPG 9)
0001D8 _H	TMRLR XXXXXXXX	5 [W] XXXXXXXX	TMR8 XXXXXXXX	5 [R] XXXXXXXX	Reload Timer 5
0001DC _H	Rese	rved	TMCSRH5 [R/W] 00000	TMCSRL5 [R/W] 0 - 000000	(PPG 10, PPG 11)
0001E0 _H	TMRLR XXXXXXXX	6 [W] XXXXXXXX	TMR6 XXXXXXXX	6 [R] XXXXXXXX	Polood Timor 6
0001E4 _H	Reserved		TMCSRH6 [R/W] 00000	TMCSRL6 [R/W] 0 - 000000	Reload Timer o
0001E8 _H	TMRLR XXXXXXXX	7 [W] XXXXXXXX	TMR7 [R] XXXXXXXX XXXXXXX		Reload Timer 7
0001EC _H	Reserved		TMCSRH7 [R/W] 00000	TMCSRL7 [R/W] 0 - 000000	(A/D Convertor)
0001F0 _H	TCDT0 [R/W] XXXXXXXX XXXXXXX		Reserved	TCCS0 [R/W] 00000000	Free Running Timer 0 (ICU 0, ICU 1)
0001F4 _H	TCDT1 [R/W] XXXXXXXX XXXXXXX		Reserved	TCCS1 [R/W] 00000000	Free Running Timer 1 (ICU 2, ICU 3)
0001F8 _H	TCDT2 [R/W] XXXXXXXX XXXXXXXX		Reserved	TCCS2 [R/W] 00000000	Free Running Timer 2 (OCU 0, OCU 1)
0001FC _H	TCDT3 XXXXXXXX	[R/W] XXXXXXXX	Reserved	TCCS3 [R/W] 00000000	Free Running Timer 3 (OCU 2, OCU 3)

Address		Block					
	+0	+0 +1 +2 +3					
000200 _H	C	DMACA0 [R/W] 00000000 0000XXXX XXXXXXXX XXXXXXXX					
000204 _H	(DMACB0 00000000 0000000 X) [R/W] XXXXXXX XXXXXXXX				
000208 _H	C	DMACA2 00000000 0000XXXX X	1 [R/W] XXXXXXXX XXXXXXX	ζ			
00020C _H	(DMACB ² 00000000 0000000 X	1 [R/W] XXXXXXX XXXXXXXX				
000210 _H	C	DMACA2 00000000 0000XXXX X	2 [R/W] XXXXXXXX XXXXXXX	(DMAC		
000214 _H	(DMACB2 00000000 0000000 X	2 [R/W] XXXXXXX XXXXXXXX		- DMAC		
000218 _H	C	DMACA3 0000000 0000XXXX X	3 [R/W] XXXXXXXX XXXXXXX	<			
00021C _H	(DMACB3 00000000 0000000 X	3 [R/W] XXXXXXX XXXXXXXX				
000220 _H	C	DMACA4 [R/W] 00000000 0000XXXX XXXXXXXX XXXXXXXX					
000224 _H	(DMACB4 [R/W] 00000000 00000000 XXXXXXXX XXXXXXX					
000228 _H to 00023C _H		Reserved					
000240 _H	DMACR [R/W] 00 0000		Reserved		Reserved		
000244 _H to 0002CC _H		Reserved					
0002D0 _H	Reserved	ICS045 [R/W] 00000000	Reserved	ICS67 [R/W] 00000000			
0002D4 _H	IPCP XXXXXXXX	IPCP4 [R] IPCP5 [R] XXXXXXXX XXXXXXX XXXXXXX					
0002D8 _H	IPCP XXXXXXXX	6 [R] XXXXXXXX					
0002DC _H	OCS4 0 00	5 [R/W] 0000 00	Rese	rved	Output		
0002E0 _H	OCCP4 XXXXXXXX	i [R/W] XXXXXXXX	OCCP5 XXXXXXXX	[R/W] XXXXXXXX	4 to 5		

Address		Register					
	+0	+1	+2	+3			
0002E4 _H to 0002EC _H		Re	served		Reserved		
0002F0 _H	TCDT4 XXXXXXXX	4 [R/W] XXXXXXXX	Reserved	TCCS4 [R/W] 00000000	Free Running Timer 4		
0002F4 _H	TCDT: XXXXXXXX	TCDT5 [R/W] XXXXXXXX XXXXXXX		TCCS5 [R/W] 00000000	Free Running Timer 5		
0002F8 _H	TCDT6 XXXXXXXX	6 [R/W] XXXXXXXX	Reserved	TCCS6 [R/W] 00000000	Free Running Timer 6 (OCU 4-, OCU)		
0002FC _H	TCDT XXXXXXXX	7 [R/W] XXXXXXXX	Reserved	TCCS7 [R/W] 00000000	Free Running Timer 7		
000300 _H to 00038C _H		Reserved					
000390 _H	ROM 11111111	IS [R] 01000011	Res	erved	ROM Select Register		
000394 _H to 0003EC _H		Re	served		Reserved		
0003F0 _H	X	BSE XXXXXXX XXXXXXX	00 [W] X XXXXXXX XXXXXX	xx			
0003F4 _H	X	BSD1 [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX					
0003F8 _H	X	BSDC [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX					
0003FC _H	X	BSRR [R] XXXXXXXX XXXXXXXX XXXXXXXXXXXXXXXXXXX					
000400 _H to 00043C _H		Re	served		Reserved		

Address		Block			
	+0	+1	+2	+3	
000440 _H	ICR00 [R/W] 11111	ICR01 [R/W] 11111	ICR02 [R/W] 11111	ICR03 [R/W] 11111	
000444 _H	ICR04 [R/W] 11111	ICR05 [R/W] 11111	ICR06 [R/W] 11111	ICR07 [R/W] 11111	
000448 _H	ICR08 [R/W] 11111	ICR09 [R/W] 11111	ICR10 [R/W] 11111	ICR11 [R/W] 11111	
00044C _H	ICR12 [R/W] 11111	ICR13 [R/W] 11111	ICR14 [R/W] 11111	ICR15 [R/W] 11111	
000450 _H	ICR16 [R/W] 11111	ICR17 [R/W] 11111	ICR18 [R/W] 11111	ICR19 [R/W] 11111	
000454 _H	ICR20 [R/W] 11111	ICR21 [R/W] 11111	ICR22 [R/W] 11111	ICR23 [R/W] 11111	
000458 _H	ICR24 [R/W] 11111	ICR25 [R/W] 11111	ICR26 [R/W] 11111	ICR27 [R/W] 11111	
00045C _H	ICR28 [R/W] 11111	ICR29 [R/W] 11111	ICR30 [R/W] 11111	ICR31 [R/W] 11111	Interrupt
000460 _H	ICR32 [R/W] 11111	ICR33 [R/W] 11111	ICR34 [R/W] 11111	ICR35 [R/W] 11111	Unit
000464 _H	ICR36 [R/W] 11111	ICR37 [R/W] 11111	ICR38 [R/W] 11111	ICR39 [R/W] 11111	
000468 _H	ICR40 [R/W] 11111	ICR41 [R/W] 11111	ICR42 [R/W] 11111	ICR43 [R/W] 11111	
00046C _H	ICR44 [R/W] 11111	ICR45 [R/W] 11111	ICR46 [R/W] 11111	ICR47 [R/W] 11111	
000470 _H	ICR48 [R/W] 11111	ICR49 [R/W] 11111	ICR50 [R/W] 11111	ICR51 [R/W] 11111	
000474 _H	ICR52 [R/W] 11111	ICR53 [R/W] 11111	ICR54 [R/W] 11111	ICR55 [R/W] 11111	
000478 _H	ICR56 [R/W] 11111	ICR57 [R/W] 11111	ICR58 [R/W] 11111	ICR59 [R/W] 11111	
00047C _H	ICR60 [R/W] 11111	ICR61 [R/W] 11111	ICR62 [R/W] 11111	ICR63 [R/W] 11111	
000480 _H	RSRR [R/W] 10000000	STCR [R/W] 00110011	TBCR [R/W] X0000X00	CTBR [W] XXXXXXXX	Clock
000484 _H	CLKR [R/W] 00000000	WPR [W] XXXXXXXX	DIVR0 [R/W] 00000011	DIVR1 [R/W] 00000000	Unit
000488 _H		Rese	erved		Reserved
00048C _H	PLLDIVM [R/W] 0000	PLLDIVN [R/W] 000000	PLLDIVG [R/W] 0000	PLLMULG [R/W] 00000000	PLL Clock
000490 _H	PLLCTRL [R/W] 0000	Reserved	Reserved	Reserved	Gear Unit

Address		Block			
	+0	+1	+2	+3	
000494 _H	OSCC1 [R/W] 010	OSCS1 [R/W] 00001111	OSCC2 [R/W] 010	OSCS2 [R/W] 00001111	Main/Sub Oscillator Control
000498 _H	PORTEN [R/W] 00	Reserved	Reserved	Reserved	Port Input Enable Con- trol
0004A0 _H	Reserved	WTCER [R/W] 00	WTCR 00000000	[R/W] 000 - 00 - 0	
0004A4 _H	Reserved	XX>	WTBR [R/W] (XX XXXXXXXX XX	xxxxx	Real Time Clock (Watch Timer)
0004A8 _H	WTHR [R/W] 00000	WTMR [R/W] 000000	WTSR [R/W] 000000	Reserved	
0004AC _H	CSVTR [R/W] 00010	CSVCR [R/W] 00011100	CSCFG [R/W] 0X000000	Reserved	Clock- Supervisor / Selector
0004B0 _H	CUCR	[R/W] 0 00	CUTD 10000000	[R/W] 00000000	Calibration Unit of Sub
0004B4 _H	CUTF	R1 [R] 00000000	CUTF 00000000	R2 [R] 00000000	Oscillation
0004B8 _H	CMPR [R/W] 000010 11111101		Reserved	CMCR [R/W] - 001 00	Clock
0004BC _H	CMT1 00000000	[R/W] 1 0000	CMT2 [R/W] 000000 000000		Modulator
0004C0 _H	CANPRE [R/W] 00000	CANCKD [R/W] 00 ^{*1}	Reserved	Reserved	CAN Clock Control
0004C4 _H	LVSEL [R/W] 00000111	LVDET [R/W] 00000-00	HWWDE [R/W] 00	HWWD [R/W,W] 00011000	LV Detection / Hardware- Watchdog
0004C8 _H	OSCRH [R/W] 000 001	OSCRL [R/W] 000	WPCRH [R/W] 00 000	WPCRL [R/W] 00	Main/Sub-Oscillation Stabilization Timer
0004CC _H	OSCCR [R/W] 00	Reserved	REGSEL [R/W] 000110	REGCTR [R/W] 000	Main/Sub-Oscillation Standby Control / Main/Sub Regulator Control
0004D0 _H to 0004D8 _H	Reserved				Reserved
0004DC _H	PLL2DIVM [R/W] 0000	PLL2DIVN [R/W] 000000	PLL2DIVG [R/W] 0000	PLL2MULG [R/W] 00000000	PLL2 Clock
0004E0 _H	PLL2CTRL [R/W] 0000	Reserved	CLKR2 [R/W] 00000	Reserved	(FlexRay)
0004E4 _H to 000BFC _H		Reserved			

Address		Regi	ister		Block
	+0	+1	+2	+3	
000C00 _H	Reserved	Reserved	Reserved	IOS [R/W] 0	I-Unit
000C04 _H to 000D08 _H		Rese	erved		Reserved
000D0C _H	Reserved	Reserved	PDRD14 [R] XXXXXXXX	PDRD15 [R] XXXXXX	
000D10	PDRD16 [R] X XXXX	PDRD17 [R] XXXXXXXX	PDRD18 [R] - XXX - XXX	PDRD19 [R] XXX	R-bus
000D14 _H	Reserved	Reserved	PDRD22 [R] XX XX	PDRD23 [R] XX	Port Data Direct Read
000D18 _H	PDRD24 [R] XXXXXXXX	Reserved	Reserved	PDRD27 [R] XXXX	Register
000D1C _H	PDRD28 [R] XXXXX	PDRD29 [R] XXXXXXXX	Reserved	PDRD31 [R] - XXX - XXX	
000D20 _H to 000D48 _H		Rese	erved		Reserved
000D4C _H	Reserved	Reserved	DDR14 [R/W] 00000000	DDR15 [R/W] 000000	
000D50 _H	DDR16 [R/W] 0 0000	DDR17 [R/W] 00000000	DDR18 [R/W] - 000 - 000	DDR19 [R/W] 000	
000D54 _H	Reserved	Reserved	DDR22 [R/W] 00 00	DDR23 [R/W] 00	R-bus Port Direction Register
000D58 _H	DDR24 [R/W] 00000000	Reserved	Reserved	DDR27 [R/W] 0000	
000D5C _H	DDR28 [R/W] 00000	DDR29 [R/W] 00000000	Reserved	DDR31 [R/W] - 000 - 000	
000D60 _H to 000D88 _H		Reserved			

Address		Block			
	+0	+1	+2	+3	
000D8C _H	Reserved	Reserved	PFR14 [R/W] 00000000	PFR15 [R/W] 000000	
000D90 _H	PFR16 [R/W] 0 0000	PFR17 [R/W] 00000000	PFR18 [R/W] - 000 - 000	PFR19 [R/W] 000	
000D94 _H	Reserved	Reserved	PFR22 [R/W] 00 00	PFR23 [R/W] 00	R-bus Port Function Register
000D98 _H	PFR24 [R/W] 00000000	Reserved	Reserved	PFR27 [R/W] 0000	
000D9C _H	PFR28 [R/W] 00000	PFR29 [R/W] 00000000	Reserved	PFR31 [R/W] - 000 - 000	
000DA0 _H to 000DC8 _H		Rese	erved		Reserved
000DCC _H	Reserved	Reserved	EPFR14 [R/W] 00000000	EPFR15 [R/W] 000000	
000DD0 _H	EPFR16 [R/W] 0	Reserved	EPFR18 [R/W] - 0 0	EPFR19 [R/W] 0	R-bus Port Extra Function
000DD4 _H	Reserved	Reserved	Reserved	Reserved	
000DD8 _H	Reserved	Reserved	Reserved	EPFR27 [R/W] 0000	Register
000DDC _H	Reserved	Reserved	Reserved	EPFR31 [R/W] - 000 - 000	
000DE0 _H to 000E08 _H		Rese	erved		Reserved
000E0C _H	Reserved	Reserved	PODR14 [R/W] 00000000	PODR15 [R/W] 000000	
000E10 _H	PODR16 [R/W] 0 0000	PODR17 [R/W] 00000000	PODR18 [R/W] - 000 - 000	PODR19 [R/W] 000	
000E14 _H	Reserved	Reserved	PODR22 [R/W] 00 00	PODR23 [R/W] 00	R-bus Port Output Drive Select Register
000E18 _H	PODR24 [R/W] 00000000	Reserved	Reserved	PODR27 [R/W] 0000	
000E1C _H	PODR28 [R/W] 00000	PODR29 [R/W] 00000000	Reserved	PODR31 [R/W] - 000 - 000	
000E20 _H to 000E48 _H		Reserved			

Address	Register				Block
	+0	+1	+2	+3	
000E4C _H	Reserved	Reserved	PILR14 [R/W] 00000000	PILR15 [R/W] 000000	
000E50 _H	PILR16 [R/W] 0 0000	PILR17 [R/W] 00000000	PILR18 [R/W] - 000 - 000	PILR19 [R/W] 000	
000E54 _H	Reserved	Reserved	PILR22 [R/W] 00 00	PILR23 [R/W] 00	R-bus Port Input Level Select Register
000E58 _H	PILR24 [R/W] 00000000	Reserved	Reserved	PILR27 [R/W] 0000	
000E5C _H	PILR28 [R/W] 00000	PILR29 [R/W] 00000000	Reserved	PILR31 [R/W] - 000 - 000	
000E60 _H to 000E88 _H		Rese	erved		Reserved
000E8C _H	Reserved	Reserved	EPILR14 [R/W] 00000000	EPILR15 [R/W] 000000	
000E90 _H	EPILR16 [R/W] 0 0000	EPILR17 [R/W] 00000000	EPILR18 [R/W] - 000 - 000	EPILR19 [R/W] 000	
000E94 _H	Reserved	Reserved	EPILR22 [R/W] 00 00	EPILR23 [R/W] 00	R-bus Port Extra Input Level Select Register
000E98 _H	EPILR24 [R/W] 00000000	Reserved	Reserved	EPILR27 [R/W] 0000	
000E9C _H	EPILR28 [R/W] 00000	EPILR29 [R/W] 00000000	Reserved	EPILR31 [R/W] - 000 - 000	
000EA0 _H to 000EC8 _H		Rese	erved		Reserved
000ECC _H	Reserved	Reserved	PPER14 [R/W] 00000000	PPER15 [R/W] 000000	
000ED0 _H	PPER16 [R/W] 0 0000	PPER17 [R/W] 00000000	PPER18 [R/W] - 000 - 000	PPER19 [R/W] 000	
000ED4 _H	Reserved	Reserved	PPER22 [R/W] 00 00	PPER23 [R/W] 00	R-bus Port Pull-Up/Down Enable Register
000ED8 _H	PPER24 [R/W] 00000000	Reserved	Reserved	PPER27 [R/W] 0000	
000EDC _H	PPER28 [R/W] 00000	PPER29 [R/W] 00000000	Reserved	PPER31 [R/W] - 000 - 000	
000EE0 _H to 000F08 _H		Rese	erved		Reserved

Address		Block				
	+0	+1	+2	+3		
000F0C _H	Reserved	Reserved	PPCR14 [R/W] 11111111	PPCR15 [R/W] 111111		
000F10 _H	PPCR16 [R/W] 1 1111	PPCR17 [R/W] 11111111	PPCR18 [R/W] - 111 - 111	PPCR19 [R/W] 111		
000F14 _H	Reserved	Reserved	PPCR22 [R/W] 11 11	PPCR23 [R/W] 11	R-bus Port Pull-Up/Down Control Register	
000F18 _H	PPCR24 [R/W] 11111111	Reserved	Reserved	PPCR27 [R/W] 1111		
000F1C _H	PPCR28 [R/W] 11111	PPCR29 [R/W] 11111111	Reserved	PPCR31 [R/W] - 111 – 111		
000F20 _H to 000F3C _H	Reserved				Reserved	
001000 _H	XX	DMASA0 [R/W] XXXXXXXX XXXXXXX XXXXXXX XXXXXXXX				
001004 _H	XX					
001008 _H	DMASA1 [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX					
00100C _H	XX	DMADA1 [R/W] XXXXXXXX XXXXXXX XXXXXXX XXXXXXXX				
001010 _H	XX	DMASA2 [R/W] XXXXXXXX XXXXXXX XXXXXXX XXXXXXXX				
001014 _H	XX	DMADA XXXXXXX XXXXXXXX	A2 [R/W] XXXXXXXX XXXXXX	(X	- DMAC	
001018 _H	XX	DMASA3 [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
00101C _H	DMADA3 [R/W] XXXXXXXX XXXXXXX XXXXXXX XXXXXXXX					
001020 _H	DMASA4 [R/W] XXXXXXXX XXXXXXX XXXXXXX XXXXXXX					
001024 _H	XX	DMADA XXXXXXX XXXXXXXX	4 [R/W] XXXXXXXX XXXXXX	(X]	
001028 _H to 006FFC _H	Reserved				Reserved	

Address	Register			Block	
	+0	+1	+2	+3	
007000 _H	FMCS [R/W] 01101000	FMCR [R] 00000	FCHCF 00	R[R/W] 10000011	
007004 _H	FMWT 11111111	[R/W] 11111111	FMWT2 [R] - 001	FMPS [R/W] 000	Flash Memory/ Cache Control Register
007008 _H	FMAC [R] 00000000 00000000 00000000				
00700C _H to 007FFC _H	Reserved			Reserved	
008000 _H to 00BFFC _H	MB91F465XA Boot-ROM size is 4KB : 00B000 _H to 00BFFC _H (instruction access is 1 waitcycle, data access is 1 waitcycle)			Boot ROM area	
00C000 _H	CTRLR 00000000	0 [R/W] 00000001	STATR 00000000	0 [R/W] 00000000	
00C004 _H	ERRCNT0 [R] BTR0 [R/W] 00000000 00000000 00100011		CAN 0		
00C008 _H	INTR 00000000	80 [R] 00000000	TESTR0 [R/W] 00000000 X0000000		Register
00C00C _H	BRPE0 00000000	0 [R/W] 00000000	CBSY	/NC0	

Address		Reg	ister		Block
	+0	+1	+2	+3	
00C010 _H	IF1CRE 00000000	Q0 [R/W] 00000001	IF1CMSI 00000000	<0 [R/W] 00000000	-
00C014 _H	IF1MSK 11111111	20 [R/W] 11111111	IF1MSK ⁻ 11111111	10 [R/W] 11111111	
00C018 _H	IF1ARB 00000000	20 [R/W] 00000000	IF1ARB ² 00000000	10 [R/W] 00000000	
00C01C _H	IF1MCT 00000000	IF1MCTR0 [R/W] Reserved			
00C020 _H	IF1DTA 00000000	IF1DTA10 [R/W] IF1DTA20 00000000 00000000 00000000 00000000		20 [R/W] 00000000	
00C024 _H	IF1DTB10 [R/W] 00000000 00000000		IF1DTB2 00000000	20 [R/W] 00000000	CAN 0 IF 1 Register
00C028 _H to 00C02C _H		Reserved			
00C030 _H	IF1DTA: 00000000	20 [R/W] 00000000	IF1DTA ² 00000000	10 [R/W] 00000000	
00C034 _H	IF1DTB 00000000	IF1DTB20 [R/W] IF1DTB10 [R/W] 00000000 00000000			
00C038 _H to 00C03C _H	Reserved				

Address	Register			Block	
	+0	+1	+2	+3	
00C040 _H	IF2CRE0 00000000	20 [R/W] 00000001	IF2CMSI 00000000	K0 [R/W] 00000000	
00C044 _H	IF2MSK 11111111	20 [R/W] 11111111	IF2MSK 11111111	10 [R/W] 11111111	
00C048 _H	IF2ARB 00000000	20 [R/W] 00000000	IF2ARB 00000000	10 [R/W] 00000000	
00C04C _H	IF2MCTI 00000000	R0 [R/W] 00000000	Rese	erved	
00C050 _H	IF2DTA 00000000	10 [R/W] 00000000	IF2DTA2 00000000	20 [R/W] 00000000	_
00C054 _H	IF2DTB 00000000	10 [R/W] 00000000	IF2DTB2 00000000	20 [R/W] 00000000	CAN 0 IF 2 Register
00C058 _H to 00C05C _H		Res	erved		
00C060 _H	IF2DTA: 00000000	20 [R/W] 00000000	IF2DTA 00000000	10 [R/W] 00000000	
00C064 _H	IF2DTB2 00000000	20 [R/W] 00000000	IF2DTB ² 00000000	10 [R/W] 00000000	
00C068 _H to 00C07C _H		Reserved			
00C080 _H	TREQ 00000000	R20 [R] 00000000	TREQF 00000000	R10 [R] 00000000	
00C084 _H to 00C08C _H		Res	erved		
00C090 _H	NEWD 00000000	T20 [R] 00000000	NEWD 00000000	T10 [R] 00000000	
00C094 _H to 00C09C _H		Res	erved		CAN 0
00C0A0 _H	INTPN 00000000	D20 [R] 00000000	INTPNI 00000000	D10 [R] 00000000	Status Flags
00C0A4 _H to 00C0AC _H		Res	served		
00C0B0 _H	MSGVA 00000000	L20 [R] 00000000	MSGVA 00000000	L10 [R] 00000000	
00C0B4 _H to 00C3FC _H		Res	erved		

Address		Register			
	+0	+1	+2	+3	
00C400 _H	CTRLR 00000000	4 [R/W] 00000001	STATR 00000000	4 [R/W] 00000000	
00C404 _H	ERRCI 00000000	NT4 [R] 00000000	BTR4 00100011	[R/W] 00000001	CAN 4
00C408 _H	INTR 00000000	24 [R] 00000000	TESTR 00000000	4 [R/W] X0000000	Register
00C40C _H	BRPE4 00000000	4 [R/W] 00000000	CBSY	YNC4	
00C410 _H	IF1CRE0 00000000	Q4 [R/W] 00000001	IF1CMSI 00000000	K4 [R/W] 00000000	
00C414 _H	IF1MSK 11111111	24 [R/W] 11111111	IF1MSK 11111111	14 [R/W] 11111111	
00C418 _H	IF1ARB 00000000	IF1ARB24 [R/W] IF1ARB14 [R/W] 00000000 00000000		14 [R/W] 00000000	
00C41C _H	IF1MCTI 00000000	R4 [R/W] 00000000	Rese	erved	
00C420 _H	IF1DTA 00000000	14 [R/W] 00000000	IF1DTA24 [R/W] 00000000 00000000		
00C424 _H	IF1DTB 00000000	14 [R/W] 00000000	IF1DTB2 00000000	24 [R/W] 00000000	CAN 4 IF 1 Register
00C428 _H to 00C42C _H		Reserved			
00C430 _H	IF1DTA: 00000000	IF1DTA24 [R/W] IF1DTA14 [R/W] 00000000 00000000			
00C434 _H	IF1DTB2 00000000	IF1DTB24 [R/W] IF1DTB14 [R/W] 00000000 00000000			
00C438 _H to 00C43C _H		Rese	erved		

Address	Register			Block	
	+0	+1	+2	+3	
00C440 _H	IF2CRE0 00000000	Q4 [R/W] 00000001	IF2CMSI 00000000	K4 [R/W] 00000000	
00C444 _H	IF2MSK: 11111111	24 [R/W] 11111111	IF2MSK [*] 11111111	14 [R/W] 11111111	
00C448 _H	IF2ARB2 00000000	24 [R/W] 00000000	IF2ARB ⁻ 00000000	14 [R/W] 00000000	
00C44C _H	IF2MCTI 00000000	R4 [R/W] 00000000	Rese	erved	
00C450 _H	IF2DTA ⁻ 00000000	14 [R/W] 00000000	IF2DTA2 00000000	24 [R/W] 00000000	
00C454 _H	IF2DTB ⁻ 00000000	14 [R/W] 00000000	IF2DTB2 00000000	24 [R/W] 00000000	CAN 4 IF 2 Register
00C458 _H to 00C45C _H		Res	served		
00C460 _H	IF2DTA2 00000000	24 [R/W] 00000000	IF2DTA ² 00000000	14 [R/W] 00000000	
00C464 _H	IF2DTB2 00000000	24 [R/W] 00000000	IF2DTB ² 00000000	14 [R/W] 00000000	
00C468 _H to 00C47C _H	Reserved				
00C480 _H	TREQF 00000000	R24 [R] 00000000	TREQF 00000000	R14 [R] 00000000	
00C484 _H to 00C48C _H		Res	served		
00C490 _H	NEWD 00000000	T24 [R] 00000000	NEWD 00000000	T14 [R] 00000000	
00C494 _H to 00C49C _H		Res	served		CAN 4
00C4A0 _H	INTPNI 00000000	D24 [R] 00000000	INTPNI 00000000	D14 [R] 00000000	Status Flags
00C4A4 _H to 00C4AC _H		Res	served		
00C4B0 _H	MSGVA 00000000	L24 [R] 00000000	MSGVA 00000000	L14 [R] 00000000	
00C4B4 _H to 00CFFC _H		Res	served		

Address		Register			Block	
	+0	+1	+2	+3		
00D000 _H		CIF0 [R] 00000100 11111111 01011011 11111111 FlexRav				
00D004 _H		CIF1 00000000 0000000	[R/W] 00000000 00000000		CIF	
00D008 _H to 00D00C _H		Reser	ved (2)		Reserved	
00D010 _H		TEST ⁻ 00000000 0000000	1 [R/W] 00000011 00000000			
00D014 _H		TEST2 00000000 00000000	2 [R/W] 00000000 00000000		FlexRay	
00D018 _H		Reser	ved (1)			
00D01C _H		LCK 00000000 0000000	[R/W] 00000000 00000000			
00D020 _H		EIR 00000000 0000000	[R/W] 00000000 00000000			
00D024 _H		SIR 00000000 0000000	[R/W] 00000000 00000000			
00D028 _H		EILS 00000000 00000000	[R/W] 00000000 00000000			
00D02C _H		SILS [R/W] 00000011 00000011 11111111 11111111				
00D030 _H		EIES 00000000 00000000	[R/W] 00000000 00000000			
00D034 _H		EIER 00000000 00000000	[R/W] 00000000 00000000			
00D038 _H		SIES 00000000 00000000	[R/W] 00000000 00000000		FlexRay INT	
00D03C _H		SIER 00000000 00000000	[R/W] 00000000 00000000			
00D040 _H		ILE 00000000 0000000	[R/W] 00000000 00000000			
00D044 _H	T0C [R/W] 00000000 00000000 00000000					
00D048 _H		T1C 00000000 00000010	[R/W] 00000000 00000000			
00D04C _H		STPW 00000000 00000000	1 [R/W] 00000000 00000000			
00D050 _H		STPW: 00000000 00000000	2 [R/W] 00000000 00000000			

Address	Register			Block	
	+0	+1	+2	+3	
00D050 _H to 00D07C _H		Reserv	red (11)		Reserved
00D080 _H		SUCC 00001100 01000000	1 [R/W] 00010000 00000000		
00D084 _H		SUCC: 00000001 0000000	2 [R/W] 00000101 00000100		FlexRay SUC
00D088 _H		SUCC: 00000000 00000000	3 [R/W] 00000000 00010001		
00D08C _H		NEMC 00000000 00000000	C [R/W] 00000000 00000000		FlexRay NEM
00D090 _H		PRTC ² 00001000 01001100	1 [R/W] 00000110 00110011		FlexRay
00D094 _H		PRTC2 [R/W] 00001111 00101101 00001010 00001110			
00D098 _H	MHDC [R/W] 00000000 0000000 00000000000000000000				FlexRay MHD
00D09C _H	Reserved (1)				Reserved
00D0A0 _H		GTUC 00000000 00000000	1 [R/W] 00000010 10000000		
00D0A4 _H		GTUC: 00000000 00000010	2 [R/W] 00000000 00001010		
00D0A8 _H		GTUC: 00000010 00000010	3 [R/W] 00000000 00000000		
00D0AC _H		GTUC4 00000000 00001000	4 [R/W] 00000000 00000111		
00D0B0 _H		GTUC5 00001110 0000000	5 [R/W] 00000000 00000000		
00D0B4 _H		GTUC 00000000 00000010	6 [R/W] 00000000 00000000		FlexRay GTU
00D0B8 _H		GTUC 00000000 00000010	7 [R/W] 00000000 00000100		
00D0BC _H		GTUC 00000000 00000000	8 [R/W] 00000000 00000010		
00D0C0 _H		GTUC 00000000 0000000	9 [R/W]) 0000001 00000001		
00D0C4 _H		GTUC1 00000000 00000010	0 [R/W] 00000000 00000101		
00D0C8 _H		GTUC1 00000000 00000000	1 [R/W] 00000000 00000000		

Address	Register				Block
	+0	+1	+2	+3	
00D0CC _H to 00D0FC _H		Reserved (11)			
00D100 _H		CC 00000000 0001000	SV [R] 00 01000000 00000000		FlexRay
00D104 _H		CC 0000000 0000000	EV [R] 00 00000000 00000000		SUC
00D108 _H to 00D10C _H		Reserved (2)			
00D110 _H		S(00000000 000000	CV [R] 00 00000000 00000000		
00D114 _H		MT(0000000 000000	CCV [R] 00 00000000 00000000		
00D118 _H		RCV [R] 00000000 00000000 00000000			
00D11C _H	OCV [R] 00000000 00000000 00000000				
00D120 _H		SFS [R] 00000000 00000000 00000000			
00D124 _H		SW 00000000 000000	/NIT [R] 00 00000000 00000000		GTU
00D128 _H		AC: 0000000 0000000	S [R/W] 00 00000000 00000000		
00D12C _H		Rese	erved (1)		
00D130 _{H-} 00D168 _H		ESIDr 00000000 0000000	n[1-15] [R] 00 00000000 00000000		
00D16C _H		Reserved (1)			
00D170 _H 00D1A8 _H	OSIDn[1-15] [R] 00000000 0000000 00000000 00000000				
00D1AC _H		Rese	erved (1)		Reserved
00D1B0 _H 00D1B8 _H		NMVn[1-3] [R] 00000000 00000000 00000000 00000000		FlexRay NEM	
00D1BC _H - 00D2FC _H		Rese	rved (81)		Reserved

Address		Register			Block
	+0	+1	+2	+3	
00D300 _H		MRC 00000001 10000000	[R/W] 00000000 00000000		
00D304 _H		FRF 00000001 10000000	[R/W] 00000000 00000000		
00D308 _H		FRFM 00000000 00000000	I [R/W] 00000000 00000000		FlexRay
00D30C _H		FCL 00000000 0000000	[R/W] 0000000 10000000		MHD
00D310 _H		MHDS 00000000 00000000	5 [R/W] 00000000 10000000		
00D314 _H		LDT: 00000000 00000000	S [R] 00000000 00000000		
00D318 _H		FSF 00000000 00000000	R [R] 00000000 00000000		
00D31C _H		MHDF 00000000 00000000	[R/W] 00000000 00000000		
00D320 _H		TXR0 00000000 00000000	Q1 [R] 00000000 00000000		
00D324 _H		TXR0 00000000 00000000	22 [R] 00000000 00000000		
00D328 _H		TXR0 00000000 00000000	23 [R] 00000000 00000000		
00D32C _H		TXR0 00000000 00000000	24 [R] 00000000 00000000		
00D330 _H		NDA 00000000 0000000	F1 [R] 00000000 00000000		FlexRay
00D334 _H		NDA 00000000 0000000	F2 [R] 00000000 00000000		MHD
00D338 _H		NDA 00000000 0000000	ГЗ [R] 00000000 00000000		
00D33C _H		NDA 00000000 0000000	F4 [R] 00000000 00000000		
00D340 _H		MBS0 00000000 00000000	C1 [R] 00000000 00000000		
00D344 _H		MBSC 00000000 00000000	2 [R] 00000000 00000000		
00D348 _H		MBS0 00000000 00000000	C3 [R] 00000000 00000000		
00D34C _H		MBS0 00000000 00000000	C4 [R] 00000000 00000000		
00D350 _H to 00D3EC _H		Reserv	ed (40)		Reserved

Address	Register	Block
	+0 +1 +2 +3	
00D3F0 _H	CREL [R] 00010000 00000110 0000101 00011001	FlexRay
00D3F4 _H	ENDN [R] 10000111 01100101 0100011 00100001	GIF
00D3F8 _H to	Reserved (2)	Reserved
00D3FC _H	· · · · · · · · · · · · · · · · · · ·	
00D400 _H	WRDSn[1-64] [R/W]	
00D4FC _H	00000000 0000000 0000000 0000000	
00D500 _H	WRHS1 [R/W] 00000000 00000000 00000000 00000000	
00D504 _H	WRHS2 [R/W] 00000000 00000000 00000000 00000000	FlexRay
00D508 _H	WRHS3 [R/W] 00000000 00000000 00000000 00000000	IBF
00D50C _H	Reserved (1)	
00D510 _H	IBCM [R/W] 00000000 00000000 00000000 00000000	
00D514 _H	IBCR [R/W] 00000000 00000000 00000000 00000000	
00D518 _H to 00D5FC _H	Reserved (58)	Reserved
00D600 _H to 00D6FC _H	RDDSn[1-64] [R] 00000000 00000000 00000000 00000000	
00D700 _H	RDHS1 [R] 00000000 00000000 00000000 00000000	
00D704 _H	RDHS2 [R] 00000000 00000000 00000000 00000000	
00D708 _H	RDHS3 [R] 00000000 00000000 00000000 00000000	OBF
00D70C _H	MBS [R] 00000000 00000000 00000000 00000000	
00D710 _H	OBCM [R/W] 00000000 00000000 00000000 00000000	
00D714 _H	OBCR [R/W] 00000000 00000000 00000000	
00D718 _H		Deserved
00D7FC _H	Keserved (58)	Reserved
00D800 _H to 00EFFC _H	Reserved	Reserved

Address			Block		
	+0	+1	+2	+3	
00F000 _H	-	BCTRL	[R/W] 11111100 0000000)	
00F004 _H	-	BSTAT	[R/W] 00000000 10 000	0	_
00F008 _H		BIAC	[R] 00000000 00000000		_
00F00C _H		BOAC	C [R]		
00F010 _H		BIRQ	[R/W] 00000000 00000000		
00F014 _H to 00F01C _H		Rese	erved		
00F020 _H		BCR0	[R/W] 00000000 00000000		
00F024 _H		BCR1	[R/W] 00000000 00000000		
00F028 _H		BCR2	[R/W] 0 0000000 00000000		
00F02C _H		BCR3	[R/W] 0 0000000 00000000		-
00F030 _H to 00F07C _H		Rese	erved		EDSU / MPU
00F080 _H	XXX	BAD0 XXXXXX XXXXXXXX	[R/W] XXXXXXXX XXXXX	xxx	-
00F084 _H	XXX	BAD1 XXXXXX XXXXXXXX	[R/W] XXXXXXXX XXXXX	xxx	
00F088 _H	XXX	BAD2 XXXXXX XXXXXXXX	[R/W] XXXXXXXX XXXXX	xxx	
00F08C _H	XXX	BAD3 XXXXXX XXXXXXXX	[R/W] XXXXXXXX XXXXX	xxx	
00F090 _H	XXX	BAD4 XXXXXX XXXXXXXX	[R/W] XXXXXXXX XXXXX	xxx	-
00F094 _H	XXX	BAD5 XXXXXX XXXXXXXX	[R/W] XXXXXXXX XXXXX	xxx	
00F098 _H	XXX	BAD6 XXXXXX XXXXXXXX	[R/W] XXXXXXXX XXXXX	xxx	-
00F09C _H	ХХХ	BAD7 XXXXXX XXXXXXXX	[R/W] XXXXXXXX XXXXX	xxx	
00F0A0 _H	XXX	BAD8 XXXXXX XXXXXXXX	[R/W] XXXXXXXX XXXXX	xxx	
00F0A4 _H	XXX	BAD9 XXXXXX XXXXXXXX	[R/W] XXXXXXXX XXXXX	xxx]

Address		Reg		Block			
	+0	+1	+2	+3			
00F0A8 _H	XXX	BAD10 XXXXXX XXXXXXXX	[R/W] XXXXXXXX XXX	xxxx			
00F0AC _H	XXX	BAD11 XXXXXX XXXXXXXX	[R/W] XXXXXXXX XXX	xxxx			
00F0B0 _H	XXX	BAD12 XXXXXX XXXXXXXX	[R/W] XXXXXXXX XXX	XXXX			
00F0B4 _H	XXX	BAD13 XXXXXX XXXXXXXX	[R/W] XXXXXXXX XXX	XXXX	EDSU / MPU		
00F0B8 _H	XXX	BAD14 XXXXXX XXXXXXXX	[R/W] XXXXXXXX XXX	XXXX			
00F0BC _H	XXX	BAD15 XXXXXX XXXXXXXX	[R/W] XXXXXXXX XXX	XXXX			
00F0C0 _H - 01FFFC _H		Rese	erved				
020000 _H to 02FFFC _H	MB91F4	MB91F465XA D-RAM size is 16 Kbytes: 02C000 _H to 02FFFC _H (data access is 0 waitcycles)					
030000 _H to 03FFFC _H	MB91F4 (instruct	65XA ID-RAM size is 1 ion access is 0 waitcyc	l6 Kbytes: 030000 _H t cles, data access is 1	o 033FFC _H waitcycle)	ID-RAM area		

*1 : depends on the number of available CAN channels.

12.2. Flash memory and external bus area

32bit read/write		dat[31:0]			dat[
16bit read/write	dat[3	81:16]	dat[15:0]	dat[3	31:16]	dat[15:0]		
Addross				Reg	ister				Block	
Address	+ 0	+ 1	+ 2	+ 3	+ 4	+ 5	+ 6	+ 7	BIOCK	
040000 _H to 05FFFF _H		Reserved								
060000 _H to 07FFFF _H		Reserved							ROMS1	
080000 _H to 09FFFF _H		SA12	(64KB)		SA13 (64KB)				ROMS2	
0A0000 _H to 0BFFFC _H	SA14 (64KB)				SA15 (64KB)				ROMS3	
0C0000 _H to 0DFFFC _H		SA16	(64KB)		SA17 (64KB)				ROMS4	
0E0000 _H to 0FFFF4 _H		SA18	(64KB)		SA19 (64KB)				DOMOS	
0FFFF8 _H to 0FFFFC _H	FMV [R] 06 00 00 00 _H				FRV [R] 00 00 BF F8 _H			KOWISS		
100000 _H to 11FFFF _H	Reserved							ROMS6		
120000 _H to 13FFFF _H				Rese	erved					

32bit read/write		dat[31:0]			dat[
16bit read/write	dat[3	1:16]	dat[15:0]	dat[3	31:16]	dat[15:0]		
Address										
Address	+ 0	+ 1	+ 2	+ 3	+ 4	+ 5	+ 6	+ 7	BIOCK	
140000 _H to 143FFF _H		Reserved								
144000 _H to 147FFF _H		Reserved								
148000 _H to 14BFFF _H		SA4	(8KB)			SA5		DOM67		
14C000 _H to 14FFFF _H		SA6 (8KB) SA7 (8KB)							KOM37	
150000 _H to 17FFFF _H		Reserved								
180000 _H to FFFFFF _H				Rese	erved					

Notes: Write operations to address 0FFF8_H and 0FFFC_H are not possible. When reading these addresses, the values shown above will be read.

13. Interrupt Vector Table

la to mund	Inter nun	rupt 1ber	Interru	pt level ^{*1}	Inter	Resource	
interrupt	Decimal	Hexa- decimal	Setting Register	Register address	Offset	Default Vector address	number
Reset	0	00	_	_	3FC _H	000FFFFC	
Mode vector	1	01	_	—	3F8 _H	000FFFF8	
System reserved	2	02	_	—	3F4 _H	000FFFF4	
System reserved	3	03	_	—	3F0 _H	000FFFF0	
System reserved	4	04	_	—	3EC _H	000FFFEC	
CPU supervisor mode (INT #5 instruction) *2	5	05	_	_	3E8 _H	000FFFE8	
Memory Protection exception *2	6	06	—	_	3E4 _H	000FFFE4	
System reserved	7	07	—	_	3E0 _H	000FFFE0	
System reserved	8	08	_	—	3DC _H	000FFFDC	
System reserved	9	09	_	—	3D8 _H	000FFFD8	
System reserved	10	0A	_	—	3D4 _H	000FFFD4	
System reserved	11	0B	—	—	3D0 _H	000FFFD0	
System reserved	12	0C	—	_	3CC _H	000FFFCC	
System reserved	13	0D	_	—	3C8 _H	000FFFC8	
Undefined instruction exception	14	0E	_	—	3C4 _H	000FFFC4	
NMI request	15	0F	F _H fixed		3C0 _H	000FFFC0	
External Interrupt 0	16	10		440	3BC _H	000FFFBC	0, 16
External Interrupt 1	17	11	ICRUU	440 _H	3B8 _H	000FFFB8	1, 17
External Interrupt 2	18	12		111	3B4 _H	000FFFB4	2, 18
External Interrupt 3	19	13	ICRUI	44 ' _H	3B0 _H	000FFFB0	3, 19
External Interrupt 4	20	14		440	3AC _H	000FFFAC	20
External Interrupt 5	21	15	ICRUZ	442 _H	3A8 _H	000FFFA8	21
External Interrupt 6	22	16		113	3A4 _H	000FFFA4	22
External Interrupt 7	23	17	101(03	++0H	3A0 _H	000FFFA0	23
External Interrupt 8	24	18		444	39C _H	000FFF9C	
System reserved	25	19	10104	+++H	398 _H	000FFF98	
System reserved	26	1A		445	394 _H	000FFF94	
System reserved	27	1B	ICK05	440H	390 _H	000FFF90	
External Interrupt 12	28	1C		116.	38C _H	000FFF8C	
System reserved	29	1D		440H	388 _H	000FFF88	
External Interrupt 14	30	1E		447	384 _H	000FFF84	
System reserved	31	1F		++ / H	380 _H	000FFF80	
Reload Timer 0	32	20	ICR08	448.	37C _H	000FFF7C	4, 32
Reload Timer 1	33	21	101100	Нотт	378 _H	000FFF78	5, 33

Interrupt	Inter num	rupt iber	Interrup	ot level ^{*1}	Inter	rupt vector ^{*2}	Resource
interrupt	Decimal	Hexa- decimal	Setting Register	Register address	Offset	Default Vector address	number
Reload Timer2	34	22		440	374 _H	000FFF74	34
Reload Timer 3	35	23	ICRU9	449 _H	370 _H	000FFF70	35
Reload Timer 4	36	24		440	36C _H	000FFF6C	36
Reload Timer 5	37	25	ICKIU	44A _H	368 _H	000FFF68	37
Reload Timer 6	38	26		440	364 _H	000FFF64	38
Reload Timer 7	39	27	ICRII	44D _H	360 _H	000FFF60	39
Free Run Timer 0	40	28		440	35C _H	000FFF5C	40
Free Run Timer 1	41	29	ICR 12	440 _H	358 _H	000FFF58	41
Free Run Timer 2	42	2A		440	354 _H	000FFF54	42
Free Run Timer 3	43	2B	ICRIS	440 _H	350 _H	000FFF50	43
Free Run Timer 4	44	2C		445	34C _H	000FFF4C	44
Free Run Timer 5	45	2D		44⊏ _H	348 _H	000FFF48	45
Free Run Timer 6	46	2E	ICR15		344 _H	000FFF44	46
Free Run Timer 7	47	2F		44r _H	340 _H	000FFF40	47
CAN 0	48	30	10540	450	33C _H	000FFF3C	
System reserved	49	31	ICKIO	430H	338 _H	000FFF38	
System reserved	50	32	10047	451	334 _H	000FFF34	
System reserved	51	33		451 _H	330 _H	000FFF30	
CAN 4	52	34		452	32C _H	000FFF2C	
System reserved	53	35		452H	328 _H	000FFF28	
System reserved	54	36		453	324 _H	000FFF24	6, 48
System reserved	55	37	ICK19	400H	320 _H	000FFF20	7, 49
System reserved	56	38		454	31C _H	000FFF1C	8, 50
System reserved	57	39	10120	404H	318 _H	000FFF18	9, 51
System reserved	58	3A		455	314 _H	000FFF14	52
System reserved	59	3B	ICR21	400H	310 _H	000FFF10	53
System reserved	60	3C		456.	30C _H	000FFF0C	54
System reserved	61	3D	10122	430H	308 _H	000FFF08	55
System reserved	62	3E	ICP23 *4	457	304 _H	000FFF04	
Delayed Interrupt	63	3F	101/20	407H	300 _H	000FFF00	
System reserved *3	64	40		(458)	2FC _H	000FFEFC	
System reserved *3	65	41	(101/24)	(450)H	2F8 _H	000FFEF8 _H	
LIN-USART (FIFO) 4 RX	66	42	ICP25	450.	2F4 _H	000FFEF4 _H	10, 56
LIN-USART (FIFO) 4 TX	67	43	101/20	409H	2F0 _H	000FFEF0 _H	11, 57
System reserved	68	44	ICR26	454	2EC _H	000FFEEC _H	12, 58
System reserved	69	45	101/20	τνΛΗ	2E8 _H	000FFEE8 _H	13, 59

Interviet	Inter num	rupt iber	Interrup	ot level ^{*1}	Inter	rupt vector ^{*2}	Resource
interrupt	Decimal	Hexa- decimal	Setting Register	Register address	Offset	Default Vector address	number
LIN-USART (FIFO) 6 RX	70	46		450	2E4 _H	000FFEE4 _H	60
LIN-USART (FIFO) 6 TX	71	47	ICR21	40D _H	2E0 _H	000FFEE0 _H	61
LIN-USART (FIFO) 7 RX	72	48		450	2DC _H	000FFEDC _H	62
LIN-USART (FIFO) 7 TX	73	49	ICR20	450 _H	2D8 _H	000FFED8 _H	63
I ² C 0	74	4A	ICB20	450	2D4 _H	000FFED4 _H	
System reserved	75	4B	ICR29	450 _H	2D0 _H	000FFED0 _H	
System reserved	76	4C		450	2CC _H	000FFECC _H	64
System reserved	77	4D	ICR30	49⊏ _H	2C8 _H	000FFEC8 _H	65
System reserved	78	4E		455	2C4 _H	000FFEC4 _H	66
System reserved	79	4F	ICR31	40FH	2C0 _H	000FFEC0 _H	67
System reserved	80	50		460	2BC _H	000FFEBC _H	68
System reserved	81	51	ICR32	400 _H	2B8 _H	000FFEB8 _H	69
System reserved	82	52		461	2B4 _H	000FFEB4 _H	70
System reserved	83	53	10R33 401 _H	401 _H	2B0 _H	000FFEB0 _H	71
FlexRay 0	84	54	ICR34	462 _H	2AC _H	000FFEAC _H	72 116 (IBF) 117 (OBF)
FlexRay Timer 0	85	55			2A8 _H	000FFEA8 _H	73
FlexRay 1	86	56	ICR35	463 _H	2A4 _H	000FFEA4 _H	74 116 (IBF) 117 (OBF)
FlexRay Timer 1	87	57			2A0 _H	000FFEA0 _H	75
System reserved	88	58		464	29C _H	000FFE9C _H	76
System reserved	89	59	ICR30	404 _H	298 _H	000FFE98 _H	77
System reserved	90	5A		165	294 _H	000FFE94 _H	78
System reserved	91	5B	10837	400 _H	290 _H	000FFE90 _H	79
Input Capture 0	92	5C		466	28C _H	000FFE8C _H	80
Input Capture 1	93	5D	10,430	400H	288 _H	000FFE88 _H	81
Input Capture 2	94	5E		467	284 _H	000FFE84 _H	82
Input Capture 3	95	5F	ICR39	407 _H	280 _H	000FFE80 _H	83
Input Capture 4	96	60		169	27C _H	000FFE7C _H	84
Input Capture 5	97	61	10140	400H	278 _H	000FFE78	85
Input Capture 6	98	62		460	274 _H	000FFE74	86
Input Capture 7	99	63	10841	409 _H	270 _H	000FFE70	87
Output Compare 0	100	64		464	26C _H	000FFE6C	88
Output Compare 1	101	65	101742	40AH	268 _H	000FFE68	89
Output Compare 2	102	66		ARD	264 _H	000FFE64	90
Output Compare 3	103	67	101143	HOOH	260 _H	000FFE60	91

Interrupt	Interrupt number		Interrupt level ^{*1}		Inter	Resource	
interrupt	Decimal	Hexa- decimal	Setting Register	Register address	Offset	Default Vector address	number
Output Compare 4	104	68		460	25C _H	000FFE5C	92
Output Compare 5	105	69	ICR44	400 _H	258 _H	000FFE58	93
System reserved	106	6A		460	254 _H	000FFE54	94
System reserved	107	6B	10143	40DH	250 _H	000FFE50	95
System reserved	108	6C		465	24C _H	000FFE4C	
System reserved	109	6D	10140	40⊏ <u>H</u>	248 _H	000FFE48	
System reserved	110	6E	ICD47 *4	465	244 _H	000FFE44	
System reserved	111	6F	10147	40FH	240 _H	000FFE40	
PPG0	112	70		470	23C _H	000FFE3C	15, 96
PPG1	113	71	10140	2R40 470 _H	238 _H	000FFE38	97
PPG2	114	72		471	234 _H	000FFE34	98
PPG3	115	73	ICR49	ICR49 471 _H	230 _H	000FFE30	99
PPG4	116	74		470	22C _H	000FFE2C	100
PPG5	117	75	ICKOU	472 _H	228 _H	000FFE28	101
PPG6	118	76	ICR51	472	224 _H	000FFE24	102
PPG7	119	77		473 _H	220 _H	000FFE20	103
PPG8	120	78		474	21C _H	000FFE1C	104
PPG9	121	79	ICR02	474 _H	218 _H	000FFE18	105
PPG10	122	7A		475	214 _H	000FFE14	106
PPG11	123	7B	10,603	475 _H	210 _H	000FFE10	107
System reserved	124	7C		476.	20C _H	000FFE0C	108
System reserved	125	7D	101/04	470H	208 _H	000FFE08	109
System reserved	126	7E		477	204 _H	000FFE04	110
System reserved	127	7F	10100	4//H	200 _H	000FFE00	111
System reserved	128	80		479	1FC _H	000FFDFC	
System reserved	129	81	10130	470H	1F8 _H	000FFDF8	
System reserved	130	82		470	1F4 _H	000FFDF4	
System reserved	131	83	10137	479H	1F0 _H	000FFDF0	
Real Time Clock	132	84		470	1EC _H	000FFDEC	
Calibration Unit	133	85	10,630	47 AH	1E8 _H	000FFDE8	
A/D Converter 0	134	86		47D	1E4 _H	000FFDE4	14, 112
System reserved	135	87	10409	47 DH	1E0 _H	000FFDE0	
System reserved	136	88		470	1DC _H	000FFDDC	
System reserved	137	89		+/∪ _H	1D8 _H	000FFDD8	
Low Voltage Detection	138	8A	ICR61	47D _H	1D4 _H	000FFDD4	
System reserved	139	8B			1D0 _H	000FFDD0	

Interrupt	Interrupt number		Interrupt level ^{*1}		Interi	Resource	
interrupt	Decimal	Hexa- decimal	Setting Register	Register address	Offset	Default Vector address	number
Timebase Overflow	140	8C	ICR62		1CC _H	000FFDCC	
PLL Clock Gear / PLL2 Clock Gear (FlexRay)	141	8D		47E _H	1C8 _H	000FFDC8	
DMA Controller	142	8E	ICD63	47E	1C4 _H	000FFDC4	
Main/Sub OSC stability wait	143	8F	10100	4/FH	1C0 _H	000FFDC0	
Security vector	144	90	_		1BC _H	000FFDBC	
Used by the INT instruction.	145 to 255	91 to FF	_	_	1B8 _H to 000 _H	000FFDB8 to 000FFC00	

*1 : The ICRs are located in the interrupt controller and set the interrupt level for each interrupt request. An ICR is provided for each interrupt request.

*2 : The vector address for each EIT (exception, interrupt or trap) is calculated by adding the listed offset to the table base register value (TBR). The TBR specifies the top of the EIT vector table. The addresses listed in the table are for the default TBR value (000FFC00_H). The TBR is initialized to this value by a reset. The TBR is set to 000FFC00_H after the internal boot ROM is executed.

*3 : ICR23 and ICR47 can be exchanged by setting the REALOS compatibility bit (addr 0C03_H : IOS[0])

*4 : Used by REALOS

14. Recommended Settings

14.1. PLL and Clockgear settings

Please note that for MB91F465XA the core base clock frequencies are valid in the 1.8V operation mode of the Main regulator and Flash.

PLL Input (CLK)	Frequency	Parameter	Clockgear Parameter		PLL Output (X) [MHz]	Remarks	
[WHZ]	DIVM	DIVN	DIVG	MULG	MU	LG	
4	2	25	16	24	200	100	
4	2	24	16	24	192	96	
4	2	23	16	24	184	92	
4	2	22	16	24	176	88	
4	2	21	16	20	168	84	
4	2	20	16	20	160	80	
4	2	19	16	20	152	76	
4	2	18	16	20	144	72	
4	2	17	16	16	136	68	
4	2	16	16	16	128	64	
4	2	15	16	16	120	60	
4	2	14	16	16	112	56	
4	2	13	16	12	104	52	
4	2	12	16	12	96	48	
4	2	11	16	12	88	44	
4	4	10	16	24	160	40	
4	4	9	16	24	144	36	
4	4	8	16	24	128	32	
4	4	7	16	24	112	28	
4	6	6	16	24	144	24	
4	8	5	16	28	160	20	
4	10	4	16	32	160	16	
4	12	3	16	32	144	12	

Recommended PLL divider and clockgear settings

14.2. Clock Modulator settings

The following table shows all possible settings for the Clock Modulator in a base clock frequency range from 32MHz up to 88MHz. The Flash access time settings need to be adjusted according to Fmax while the PLL and clockgear settings should be set according to base clock frequency.

Modulation Degree (k)	Random No (N)	CMPR [hex]	Baseclk [MHz]	Fmin [MHz]	Fmax [MHz]	Remarks
1	3	026F	88	79.5	98.5	
1	3	026F	84	76.1	93.8	
1	3	026F	80	72.6	89.1	
1	5	02AE	80	68.7	95.8	
2	3	046E	80	68.7	95.8	
1	3	026F	76	69.1	84.5	
1	5	02AE	76	65.3	90.8	
1	7	02ED	76	62	98.1	
2	3	046E	76	65.3	90.8	
3	3	066D	76	62	98.1	
1	3	026F	72	65.5	79.9	
1	5	02AE	72	62	85.8	
1	7	02ED	72	58.8	92.7	
2	3	046E	72	62	85.8	
3	3	066D	72	58.8	92.7	
1	3	026F	68	62	75.3	
1	5	02AE	68	58.7	80.9	
1	7	02ED	68	55.7	87.3	
1	9	032C	68	53	95	
2	3	046E	68	58.7	80.9	
2	5	04AC	68	53	95	
3	3	066D	68	55.7	87.3	
4	3	086C	68	53	95	
1	3	026F	64	58.5	70.7	
1	5	02AE	64	55.3	75.9	
1	7	02ED	64	52.5	82	
1	9	032C	64	49.9	89.1	
1	11	036B	64	47.6	97.6	
2	3	046E	64	55.3	75.9	
2	5	04AC	64	49.9	89.1	
3	3	066D	64	52.5	82	
4	3	086C	64	49.9	89.1	
5	3	0A6B	64	47.6	97.6	

Clock Modulator settings, frequency range and supported supply voltage

Modulation Degree (k)	Random No (N)	CMPR [hex]	Baseclk [MHz]	Fmin [MHz]	Fmax [MHz]	Remarks
1	3	026F	60	54.9	66.1	
1	5	02AE	60	51.9	71	
1	7	02ED	60	49.3	76.7	
1	9	032C	60	46.9	83.3	
1	11	036B	60	44.7	91.3	
2	3	046E	60	51.9	71	
2	5	04AC	60	46.9	83.3	
3	3	066D	60	49.3	76.7	
4	3	086C	60	46.9	83.3	
5	3	0A6B	60	44.7	91.3	
1	3	026F	56	51.4	61.6	
1	5	02AE	56	48.6	66.1	
1	7	02ED	56	46.1	71.4	
1	9	032C	56	43.8	77.6	
1	11	036B	56	41.8	84.9	
1	13	03AA	56	39.9	93.8	
2	3	046E	56	48.6	66.1	
2	5	04AC	56	43.8	77.6	
2	7	04EA	56	39.9	93.8	
3	3	066D	56	46.1	71.4	
3	5	06AA	56	39.9	93.8	
4	3	086C	56	43.8	77.6	
5	3	0A6B	56	41.8	84.9	
6	3	0C6A	56	39.9	93.8	
1	3	026F	52	47.8	57	
1	5	02AE	52	45.2	61.2	
1	7	02ED	52	42.9	66.1	
1	9	032C	52	40.8	71.8	
1	11	036B	52	38.8	78.6	
1	13	03AA	52	37.1	86.8	
1	15	03E9	52	35.5	96.9	
2	3	046E	52	45.2	61.2	
2	5	04AC	52	40.8	71.8	
2	7	04EA	52	37.1	86.8	
3	3	066D	52	42.9	66.1	
3	5	06AA	52	37.1	86.8	
4	3	086C	52	40.8	71.8	
5	3	0A6B	52	38.8	78.6	

Modulation Degree (k)	Random No (N)	CMPR [hex]	Baseclk [MHz]	Fmin [MHz]	Fmax [MHz]	Remarks
6	3	0C6A	52	37.1	86.8	
7	3	0E69	52	35.5	96.9	
1	3	026F	48	44.2	52.5	
1	5	02AE	48	41.8	56.4	
1	7	02ED	48	39.6	60.9	
1	9	032C	48	37.7	66.1	
1	11	036B	48	35.9	72.3	
1	13	03AA	48	34.3	79.9	
1	15	03E9	48	32.8	89.1	
2	3	046E	48	41.8	56.4	
2	5	04AC	48	37.7	66.1	
2	7	04EA	48	34.3	79.9	
3	3	066D	48	39.6	60.9	
3	5	06AA	48	34.3	79.9	
4	3	086C	48	37.7	66.1	
5	3	0A6B	48	35.9	72.3	
6	3	0C6A	48	34.3	79.9	
7	3	0E69	48	32.8	89.1	
1	3	026F	44	40.6	48.1	
1	5	02AE	44	38.4	51.6	
1	7	02ED	44	36.4	55.7	
1	9	032C	44	34.6	60.4	
1	11	036B	44	33	66.1	
1	13	03AA	44	31.5	73	
1	15	03E9	44	30.1	81.4	
2	3	046E	44	38.4	51.6	
2	5	04AC	44	34.6	60.4	
2	7	04EA	44	31.5	73	
2	9	0528	44	28.9	92.1	
3	3	066D	44	36.4	55.7	
3	5	06AA	44	31.5	73	
4	3	086C	44	34.6	60.4	
4	5	08A8	44	28.9	92.1	
5	3	0A6B	44	33	66.1	
6	3	0C6A	44	31.5	73	
7	3	0E69	44	30.1	81.4	
8	3	1068	44	28.9	92.1	
1	3	026F	40	37	43.6	

Modulation Degree (k)	Random No (N)	CMPR [hex]	Baseclk [MHz]	Fmin [MHz]	Fmax [MHz]	Remarks
1	5	02AE	40	34.9	46.8	
1	7	02ED	40	33.1	50.5	
1	9	032C	40	31.5	54.8	
1	11	036B	40	30	59.9	
1	13	03AA	40	28.7	66.1	
1	15	03E9	40	27.4	73.7	
2	3	046E	40	34.9	46.8	
2	5	04AC	40	31.5	54.8	
2	7	04EA	40	28.7	66.1	
2	9	0528	40	26.3	83.3	
3	3	066D	40	33.1	50.5	
3	5	06AA	40	28.7	66.1	
3	7	06E7	40	25.3	95.8	
4	3	086C	40	31.5	54.8	
4	5	08A8	40	26.3	83.3	
5	3	0A6B	40	30	59.9	
6	3	0C6A	40	28.7	66.1	
7	3	0E69	40	27.4	73.7	
8	3	1068	40	26.3	83.3	
9	3	1267	40	25.3	95.8	
1	3	026F	36	33.3	39.2	
1	5	02AE	36	31.5	42	
1	7	02ED	36	29.9	45.3	
1	9	032C	36	28.4	49.2	
1	11	036B	36	27.1	53.8	
1	13	03AA	36	25.8	59.3	
1	15	03E9	36	24.7	66.1	
2	3	046E	36	31.5	42	
2	5	04AC	36	28.4	49.2	
2	7	04EA	36	25.8	59.3	
2	9	0528	36	23.7	74.7	
3	3	066D	36	29.9	45.3	
3	5	06AA	36	25.8	59.3	
3	7	06E7	36	22.8	85.8	
4	3	086C	36	28.4	49.2	
4	5	08A8	36	23.7	74.7	
5	3	0A6B	36	27.1	53.8	
6	3	0C6A	36	25.8	59.3	

Modulation Degree (k)	Random No (N)	CMPR [hex]	Baseclk [MHz]	Fmin [MHz]	Fmax [MHz]	Remarks
7	3	0E69	36	24.7	66.1	
8	3	1068	36	23.7	74.7	
9	3	1267	36	22.8	85.8	
1	3	026F	32	29.7	34.7	
1	5	02AE	32	28	37.3	
1	7	02ED	32	26.6	40.2	
1	9	032C	32	25.3	43.6	
1	11	036B	32	24.1	47.7	
1	13	03AA	32	23	52.5	
1	15	03E9	32	22	58.6	
2	3	046E	32	28	37.3	
2	5	04AC	32	25.3	43.6	
2	7	04EA	32	23	52.5	
2	9	0528	32	21.1	66.1	
2	11	0566	32	19.5	89.1	
3	3	066D	32	26.6	40.2	
3	5	06AA	32	23	52.5	
3	7	06E7	32	20.3	75.9	
4	3	086C	32	25.3	43.6	
4	5	08A8	32	21.1	66.1	
5	3	0A6B	32	24.1	47.7	
5	5	0AA6	32	19.5	89.1	
6	3	0C6A	32	23	52.5	
7	3	0E69	32	22	58.6	
8	3	1068	32	21.1	66.1	
9	3	1267	32	20.3	75.9	
10	3	1466	32	19.5	89.1	

14.3. FlexRay PLL, Clock and Port settings

0004DC _H	PLL2DIVM [R/W] 0000	PLL2DIVN [R/W] 000000	PLL2DIVN [R/W] PLL2DIVG [R/W] 0000000000		PLL2 Clock
0004E0 _H	PLL2CTRL [R/W] 0000	Reserved	CLKR2 [R/W] 00000	Reserved	(FlexRay)

14.3.1. Recommended FlexRay PLL divider and clockgear settings

PLL Input (CK) [MHz]	Frequency Pa	rameter	Clockgear Parameter		PLL2 Output (X) [MHz]	FlexRay SCLK Clock [MHz]
	DIVM2	DIVN2	DIVG2	MULG2		
4	2	20	0	0	160	80

Note: It is recommended to follow the same PLL startup procedure and lock wait time as recommended for the main PLL1.

14.3.2. Recommended FlexRay clock settings

Specification of the CLKR2 registers is as follows:

REGISTER CLKR2 addr 0x04E2

	15	14	13	12	11	10	9	8	bit
	7	6	5	4	3	2	1	0	
CLKR2					CKDBL	PLL2EN	CLKS1	CLKS0	
	0	0	0	0	0	0	0	0	Initial
					R/W	R/W	R/W	R/W	Attribute

Note: It is recommended to follow the same PLL startup procedure and lock wait time as recommended for the main PLL1.

CLKS1, CLKS0: FlexRay SCLK Source Selection

CLKS[1:0] = 00 : SCLK is operated with CLKB (core clock) CLKS[1:0] = 01 : SCLK is operated with Main PLL (base clock) CLKS[1:0] = 10 : SCLK is operated with FlexRay PLL <- recommended setting CLKS[1:0] = 11 : Test mode only, do not set !

PLL2EN: FlexRay PLL enable

PLL2EN = 0 : FlexRay PLL is disabled PLL2EN = 1 : FlexRay PLL is enabled

CKDBL: FlexRay Clock disable (BCLK and SCLK)

CKDBL = 0 : FlexRay clocks are enabled CKDBL = 1 : FlexRay clocks are disabled

14.3.3. Recommended FlexRay port settings

Channel A

TXDA: FlexRay channel A transmit (P31_0) To enable TXDA set PFR31_0 = 1 and EPFR31_0 = 1
TXENA: FlexRay channel A enable (P31_1) To enable TXENA set PFR31_1 = 1 and EPFR31_1 = 1
RXDA: FlexRay channel A receive (P31_2) To enable RXDA set PFR31_2 = 1 and EPFR31_2 = 1

Channel B

TXDB: FlexRay channel B transmit (P31_4) To enable TXDB set PFR31_4 = 1 and EPFR31_4 = 1
TXENB: FlexRay channel B enable (P31_5) To enable TXENB set PFR31_5 = 1 and EPFR31_5 = 1
RXDB: FlexRay channel B receive (P31_6) To enable RXDB set PFR31_6 = 1 and EPFR31_6 = 1

15. Electrical Characteristics

15.1. Absolute maximum ratings

Baramotor	Symbol	Rat	ting	Unit	Remarks	
Falameter	Symbol	Min	Мах		Remarks	
Power supply slew rate	—	_	50	V/ms		
Power supply voltage 1*1	V _{DD} 5R	- 0.3	+ 6.0	V		
Power supply voltage 2*1	V _{DD} 5	- 0.3	+ 6.0	V		
	A) (V _{DD} 5-0.3	V _{DD} 5+0.3	V	At least one pin of the Ports 27 to 29 (ANn) is used as digital input or output.	
Relationship of the supply voltages	AV _{CC} 5	V _{SS} 5-0.3	V _{DD} 5+0.3	v	$\frac{\text{All pins}}{(\text{ANn})}$ of the Ports 27 to 29 (ANn) follow the condition of V_{IA}	
Analog power supply voltage*1	AV _{CC} 5	- 0.3	+ 6.0	V	*2	
Analog reference power supply voltage* ¹	AVRH5	- 0.3	+ 6.0	V	*2	
Input voltage 1* ¹	V _{I1}	Vss5 - 0.3	$V_{DD}5 + 0.3$	V		
Analog pin input voltage*1	V _{IA}	AVss5 - 0.3	AVcc5 + 0.3	V		
Output voltage 1* ¹	V _{O1}	Vss5 - 0.3	$V_{DD}5 + 0.3$	V		
Maximum clamp current	I _{CLAMP}	- 4.0	+ 4.0	mA	*3	
Total maximum clamp current	$\Sigma I_{CLAMP} $	_	20	mA	*3	
"L" level maximum output current* ⁴	I _{OL}	_	10	mA		
"L" level average output current* ⁵	I _{OLAV}	_	8	mA		
"L" level total maximum output current	ΣI _{OL}	_	100	mA		
"L" level total average output current* ⁶	ΣI_{OLAV}	_	50	mA		
"H" level maximum output current ^{*4}	I _{OH}	_	- 10	mA		
"H" level average output current* ⁵	I _{OHAV}	_	- 4	mA		
"H" level total maximum output current	Σl _{OH}	_	- 100	mA		
"H" level total average output current*6	ΣΙ _{ΟΗΑV}	_	- 25	mA		
Power consumption	P _D	—	1000	mW		
Operating temperature	Τ _Α	- 40	+ 105	°C		
Storage temperature	Tstg	- 55	+ 150	°C		

- *1 : The parameter is based on $V_{SS}5 = HV_{SS}5 = AV_{SS}5 = 0.0$ V.
- *2 : AV_{CC}5 and AVRH5 must not exceed V_{DD}5 + 0.3 V.
- *3 : Use within recommended operating conditions.
 - Use with DC voltage (current).
 - + B signals are input signals that exceed the V_{DD}5 voltage. +B signals should always be applied by connecting a limiting resistor between the +B signal and the microcontroller.
 - The value of the limiting resistor should be set so that the current input to the microcontroller pin does not exceed the rated value at any time, either instantaneously or for an extended period, when the +B signal is input.
 - Note that when the microcontroller drive current is low, such as in the low power consumption modes, the +B input potential can increase the potential at the power supply pin via a protective diode, possibly affecting other devices.
 - Note that if the +B signal is input when the microcontroller is off (not fixed at 0 V), power is supplied through the +B input pin; therefore, the microcontroller may partially operate.
 - Note that if the +B signal is input at power-on, since the power is supplied through the pin, the power-on reset may not function in the power supply voltage.
 - Do not leave +B input pins open.
 - Example of recommended circuit:

- *4 : Maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.
- *5 : Average output current is defined as the value of the average current flowing through any one of the corresponding pins for a 100 ms period.
- *6 : Total average output current is defined as the value of the average current flowing through all of the corresponding pins for a 100 ms period.
- WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

(1/1) = - (1/1) = - (1/1)

15.2. Recommended operating conditions

				(1550 /11550 0.0 1)		
Paramotor	Symbol		Value		Unit	Pomarka
Farameter	Symbol	Min	Тур	Max	Unit	Remarks
	V _{DD} 5	3.0	—	5.5	V	
Power supply voltage	V _{DD} 5R	3.0	—	5.5	V	Internal regulator
	AV _{CC} 5	3.0	—	5.5	V	A/D converter
Smoothing capacitor at VCC18C pin	C _S	_	4.7	_	μF	Use a X7R ceramic capacitor or a capacitor that has similar frequency characteristics.
Power supply slew rate		_	_	50	V/ms	
Operating temperature	T _A	- 40	_	+ 105	°C	
Main Oscillation Stabilization time		10			ms	
Lock-up time PLL (4 MHz ->16100MHz)				0.6	ms	
ESD Protection (Human body model)	V _{surge}	2			kV	$R_{discharge} = 1.5 k\Omega$ $C_{discharge} = 100 pF$
RC Oscillator	f _{RC100kHz} f _{RC2MHz}	50 1	100 2	200 4	kHz MHz	VDD _{CORE} ≥ 1.65V

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

15.3. DC characteristics

Note: In the following tables, "V_{SS}" means V_{SS}5 for the other pins. $(V_{DD}5 = AV_{CC}5 = 3.0 \text{ V to } 5.5 \text{ V}, \text{ V}_{SS}5 = AV_{SS}5 = 0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } + 105^{\circ}\text{C})$

	0	D :	O a sa ditti a sa		Value			Pomorko	
Parameter	Symbol	Pin name	Condition	Min	Тур	Мах	Unit	Remarks	
		_	Port inputs if CMOS Hysteresis 0.8/0.2 input is selected	0.8 × V _{DD}	_	V _{DD} + 0.3	V	CMOS hysteresis input	
			Port inputs if CMOS	$0.7 \times V_{DD}$		V_{DD} + 0.3	V	$4.5~V \leq V_{DD} \leq 5.5~V$	
	V _{IH}	_	Hysteresis 0.7/0.3 input is selected	$0.74 \times V_{DD}$		V_{DD} + 0.3	V	$3 \text{ V} \leq \text{V}_{DD}$ < 4.5 V	
Input "H" voltage		_	AUTOMOTIVE Hysteresis input is selected	0.8 × V _{DD}	_	V _{DD} + 0.3	V		
		_	Port inputs if TTL input is selected	2.0		V _{DD} + 0.3	V		
	V _{IHR}	INITX	-	$0.8 \times V_{DD}$		V _{DD} + 0.3	V	INITX input pin (CMOS Hysteresis)	
	V _{IHM}	MD_2 to MD_0	—	$V_{DD}-0.3$	_	V _{DD} + 0.3	V	Mode input pins	
	V _{IHX0S}	X0, X0A	_	2.5	_	V _{DD} + 0.3	V	External clock in "Oscillation mode"	
	V _{IHX0F}	X0	_	0.8 × V _{DD}	_	V _{DD} + 0.3	V	External clock in "Fast Clock Input mode"	
			_	Port inputs if CMOS Hysteresis 0.8/0.2 input is selected	V _{SS} - 0.3		0.2 × V _{DD}	V	
		_	Port inputs if CMOS Hysteresis 0.7/0.3 input is selected	V _{SS} - 0.3	_	0.3 × V _{DD}	V		
	۷IL		Port inputs if	$V_{SS}-0.3$		$0.5 \times V_{DD}$	V	$4.5~V \leq V_{DD} \leq 5.5~V$	
Input "I "		_	Hysteresis input is selected	V _{SS} - 0.3	_	0.46 × V _{DD}	V	$3 \text{ V} \leq \text{V}_{\text{DD}}$ < 4.5 V	
voltage		_	Port inputs if TTL input is selected	V _{SS} – 0.3		0.8	V		
	V_{ILR}	INITX	—	V _{SS} – 0.3	_	$0.2 \times V_{DD}$	V	INITX input pin (CMOS Hysteresis)	
	V _{ILM}	MD_2 to MD_0	_	$V_{SS}-0.3$		V_{SS} + 0.3	V	Mode input pins	
	V _{ILXDS}	X0, X0A	_	V _{SS} - 0.3	_	0.5	V	External clock in "Oscillation mode"	
	V _{ILXDF}	XO	_	V _{SS} - 0.3		0.2 × V _{DD}	V	External clock in "Fast Clock Input mode"	

Paramotor	Symbol	Pin name	Condition		Value		Unit	Pomarke
Farameter	Symbol		Condition	Min	Тур	Мах	Unit	Remarks
Output "H" voltage V	N/	Normal outputs	$4.5V \le V_{DD} \le 5.5V,$ I_{OH} = $-2mA$	V _{DD} – 0.5			V	Driving strength set to
	VOH2		$\begin{array}{l} 3.0 V \leq V_{DD} \leq 4.5 \text{V}, \\ \text{I}_{OH} = \ - \ 1.6 \text{mA} \end{array}$				v	2 mA
	Varia	Normal outputs	$4.5V \le V_{DD} \le 5.5V$, I _{OH} = - 5mA	V _{DD} - 0.5			v	Driving strength set to
	V OH5		$3.0V \le V_{DD} \le 4.5V,$ I_{OH} = $-3mA$					5 mA
	V _{OH3}	I ² C outputs	$\begin{array}{l} 3.0V \leq V_{DD} \leq 5.5V, \\ I_{OH} = -3mA \end{array}$	V _{DD} - 0.5	_	_	V	

Baramatar	Symbol	Pin	Condition		Value		Unit	Pomarke
Parameter	Symbol	name	Condition	Min	Тур	Мах	Unit	Remarks
	V _{OL2}	Normal outputs	$\begin{array}{l} 4.5V \leq V_{DD} \leq 5.5V, \\ I_{OH} = \ + \ 2mA \\ 3.0V \leq V_{DD} \leq 4.5V, \\ I_{OH} = \ + \ 1.6mA \end{array}$	_	_	0.4	V	Driving strength set to 2 mA
Output "L" voltage	V _{OL5}	Normal outputs	$\begin{array}{l} 4.5V \leq V_{DD} \leq 5.5V, \\ I_{OH} = \ + \ 5mA \\ \\ 3.0V \leq V_{DD} \leq \ 4.5V, \\ I_{OH} = \ + \ 3mA \end{array}$			0.4	V	Driving strength set to 5 mA
	V _{OL3}	I ² C outputs	$\begin{array}{l} 3.0V \leq V_{DD} \leq 5.5V, \\ I_{OH} = \ + \ 3mA \end{array}$	_	_	0.4	V	
Input leakage current I _{IL}	Pnn_m	$\begin{array}{l} 3.0V \leq V_{DD} \leq 5.5V \\ V_{SS}5 < V_I < V_{DD} \\ T_A = 25^\circ C \end{array}$	– 1	_	+ 1			
	ΊL	L *I	$\begin{array}{l} 3.0V \leq V_{DD} \leq 5.5V \\ V_{SS}5 < V_{I} < V_{DD} \\ T_{A} \mbox{=} 105^{\circ} \mbox{C} \end{array}$	- 3	_	+ 3	μΑ	
Analog input		AND *3	$\begin{array}{l} 3.0V \leq V_{DD} \leq 5.5V \\ V_{SS}5 < V_I < V_{DD} \\ T_A = 25^\circ C \end{array}$	- 1	_	+ 1		
leakage current	'AIN		$\begin{array}{l} 3.0V \leq V_{DD} \leq 5.5V \\ V_{SS}5 < V_{I} < V_{DD} \\ T_{A} \mbox{=} 105^{\circ} \mbox{C} \end{array}$	- 3	_	+ 3	μΑ	
Pull-up	D	Pnn_m* ¹	$3.0V \le V_{DD} \le 3.6V$	40	100	160	۲O	
resistance	νυp	, INITX	$4.5V \leq V_{DD} \leq 5.5V$	25	50	100	1122	
Pull-down	P	Pnn m* ¹	$3.0V \leq V_{DD} \leq 3.6V$	40	100	180	۲O	
resistance	DOWN	1 1111_111	$4.5V \leq V_{DD} \leq 5.5V$	25	50	100	K12	
Input capacitance	C _{IN}	$\begin{array}{c} \text{All} \\ \text{except} \\ \text{V}_{\text{DD}}\text{5}\text{R}, \\ \text{V}_{\text{SS}}\text{5}, \\ \text{AV}_{\text{CC}}\text{5}, \\ \text{AV}_{\text{SS}}, \\ \text{AVRH5} \end{array}$	f = 1 MHz	_	5	15	pF	

(V_{DD}5 = AV_{CC}5 = 3.0 V to 5.5 V, V_{SS}5 = AV_{SS}5 = 0 V, T_A = -40°C to + 105°C)

Paramatar	Symbol Pin		Condition		Value		Unit	Bomarks	
Farameter	Symbol	name	Condition	Min	Тур	Мах	Unit	Remarks	
	I _{CC}	V _{DD} 5R	MB91F465XA CLKB: 100 MHz CLKP: 50 MHz CLKT: 50 MHz CLKCAN: 50 MHz	_	125	155	mA	Code fetch from Flash	
			$T_A = +25^{\circ}C$	_	30	150	μA	At stop mode $*^2$	
			$T_A = +105^{\circ}C$	_	300	2000	μA		
			$T_A = +25^{\circ}C$	_	100	500	μA	RTC : 4 MHz mode ^{*2}	
Power	'CCH	VDDOK	$T_A = +105^{\circ}C$	_	500	2400	μA		
supply current			$T_A = +25^{\circ}C$	_	50	250	μA	RTC :	
MB91F465XA			$T_{A} = +105^{\circ}C$	_	400	2200	μA	100 kHz mode ^{*2}	
	I _{LVE}	V _{DD} 5	_		70	150	μA	External low voltage detection	
	I _{LVI}	V _{DD} 5R	_	_	50	100	μA	Internal low voltage detection	
	I _{OSC}	I _{OSC} V _{DD} 5	_	_	250	500	μA	Main clock (4 MHz)	
			_	_	20	40	μA	Sub clock (32 kHz)	

*1: Pnn_m includes all pins unless the pins, which include analog inputs.

*2: Main regulator OFF, sub regulator set to 1.2V, Low voltage detection disabled.

*3: ANn includes all pins where AN channels are enabled.

15.4. A/D converter characteristics

Baramatar	Symbol	Din nomo		Value		Unit	Remarks
Fardineter	Symbol	Pill liaine	Min	Тур	Max	Unit	Remarks
Resolution	—	_	_	—	10	bit	
Total error	—	_	- 3	—	+ 3	LSB	
Nonlinearity error	—	_	- 2.5	—	+ 2.5	LSB	
Differential nonlinearity error	—	_	– 1.9	—	+ 1.9	LSB	
Zero reading voltage	V _{OT}	ANn	AVRL - 1.5 LSB	AVRL + 0.5 LSB	AVRL + 2.5 LSB	V	
Full scale reading voltage	V _{FST}	ANn	AVRH - 3.5 LSB	AVRH - 1.5 LSB	AVRH + 0.5 LSB	V	
Compare time	т		0.6	_	16,500	μs	$\begin{array}{l} 4.5 \text{ V} \leq \text{AV}_{CC} 5 \leq \\ 5.5 \text{ V} \end{array}$
Compare time	I _{comp}	_	2.0	_		μs	$\begin{array}{l} 3.0 \text{ V} \leq \text{AV}_{CC} 5 \leq \\ 4.5 \text{ V} \end{array}$
	T _{samp}	_	0.4	_	l	μs	$\begin{array}{l} \text{4.5 V} \leq \text{AV}_{CC} \text{5} \leq \\ \text{5.5 V,} \\ \text{R}_{EXT} \leq 2 \ \text{k} \Omega \end{array}$
			1.0	_		μs	$\begin{array}{l} 3.0 \text{ V} \leq \text{AV}_{CC} 5 \leq \\ 4.5 \text{ V}, \\ \text{R}_{EXT} \leq 1 \text{ k}\Omega \end{array}$
Conversion time	- -		1.0	_		μs	$\begin{array}{l} 4.5 \text{ V} \leq \text{AV}_{CC} 5 \leq \\ 5.5 \text{ V} \end{array}$
	' conv	_	3.0	_	_	μs	$\begin{array}{l} 3.0 \text{ V} \leq \text{AV}_{CC} 5 \leq \\ 4.5 \text{ V} \end{array}$
Input capacitance	C _{IN}	ANn		—	11	pF	
Input resistance	R	ANIn		_	2.6	kΩ	$\begin{array}{l} 4.5 \text{ V} \leq \text{AV}_{CC} 5 \leq \\ 5.5 \text{ V} \end{array}$
Input resistance	' NN			_	12.1	kΩ	$\begin{array}{l} 3.0 \text{ V} \leq \text{AV}_{CC} 5 \leq \\ 4.5 \text{ V} \end{array}$
Analog input leakage	Luni	ΔNn	- 1		+ 1	μA	$T_A = +25^{\circ}C$
current	'AIN		- 3	_	+ 3	μA	$T_A = +105^{\circ}C$
Analog input voltage range	V _{AIN}	ANn	AVRL	—	AVRH	V	
Offset between input channels	_	ANn	—	—	4	LSB	

 $(V_{DD}5 = AV_{CC}5 = 3.0 \text{ V to } 5.5 \text{ V}, V_{SS}5 = AV_{SS}5 = 0 \text{ V}, T_A = -40^{\circ}\text{C to } + 105^{\circ}\text{C})$

(Continued)

Note : The accuracy gets worse as AVRH - AVRL becomes smaller

(Continued)

Paramotor	Symbol	Din namo	lin namo			Unit	Remarks
Falanetei	Symbol		Min	Min Typ Max		onit	Remarks
Reference voltage range	AVRH	AVRH5	0.75 × AV _{CC} 5		AV _{CC} 5	\sim	
	AVRL	AV _{SS} 5	AV _{SS} 5	_	$AV_{CC}5\times0.25$	V	
Power supply current	I _A	AV _{CC} 5	_	2.5	5	mA	A/D Converter active
Power supply current	I _{AH}	AV _{CC} 5	_	_	5	μA	A/D Converter not operated *1
Reference voltage current	I _R	AVRH5	_	0.7	1	mA	A/D Converter active
Therefore voltage current	I _{RH}	AVRH5	_	_	5	μA	A/D Converter not operated * ²

*¹: Supply current at AV_{CC}5, if A/D converter and ALARM comparator are not operating, (V_{DD}5 = AV_{CC}5 = AVRH = 5.0 V)

 *2 : Input current at AVRH5, if A/D converter is not operating, (V_{DD}5 = AV_{CC}5 = AVRH = 5.0 V)

 $\begin{array}{l} \text{Sampling Time Calculation} \\ \text{T}_{samp} = (\ 2.6 \ \text{kOhm} + \text{R}_{EXT}) \ \times \ 11 \text{pF} \ \times \ 7; \ \text{for} \ 4.5 \text{V} \leq \text{AV}_{CC} 5 \leq 5.5 \text{V} \\ \text{T}_{samp} = (\ 12.1 \ \text{kOhm} + \text{R}_{EXT}) \ \times \ 11 \text{pF} \ \times \ 7; \ \text{for} \ 3.0 \text{V} \leq \text{AV}_{CC} 5 \leq 4.5 \text{V} \\ \end{array}$

Conversion Time Calculation

 $T_{conv} = T_{samp} + T_{comp}$

Definition of A/D converter terms

Resolution

Analog variation that is recognizable by the A/D converter.

· Linearity error

Deviation between actual conversion characteristics and a straight line connecting the zero transition point (00 0000 $0000_B \leftrightarrow 00\ 0000\ B)$ and the full scale transition point (11 1111 $1110_B \leftrightarrow 11\ 1111\ 1111_B)$.

Differential nonlinearity error
 Deviation of the input values fr

Deviation of the input voltage from the ideal value that is required to change the output code by 1 LSB.

Total error

This error indicates the difference between actual and theoretical values, including the zero transition error, full scale transition error, and nonlinearity error.

(Continued)

15.5. FLASH memory program/erase characteristics

15.5.1. MB91F465XA

 $(T_A = 25^{\circ}C, Vcc = 5.0V)$

Parameter	Value			Unit	Bemerke	
Falameter	Min	Тур	Max	Unit	Rellidiks	
Sector erase time	-	0.9	3.6	S	Erasure programming time not included	
Chip erase time	-	n*0.9	n*3.6	s	n is the number of Flash sector of the device	
Word (16-bit width) programming time	-	23	370	μs	System overhead time not included	
Programme/Erase cycle	10 000			cycle		
Flash data retention time	20			year	*1	

*1: This value was converted from the results of evaluating the reliability of the technology (using Arrhenius equation to convert high temperature measurements into normalized value at 85°C).

15.6. AC characteristics

15.6.1. Clock timing

$(V_{DD}5 = 3.0 \text{ V to } 5.5 \text{ V}, \text{ Vss5} = \text{AVss5} = 0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } + 1$	105°C))
--	-------	----

Baramatar	Symbol	Pin name	Value			Unit	Condition	
Falameter	Symbol		Min	Тур	Мах	Unit	Condition	
Clock frequency	f	X0 X1	3.5	4	16	MHz	Opposite phase external supply or crystal	
	т _С	X0A X1A	32	32.768	100	kHz		

Clock timing condition

15.6.2. Reset input ratings

Parameter	Symbol	Bin namo	Condition	Va	Unit	
Falanielei	Symbol	Fiii lidilie	Condition	Min	Мах	Onit
INITX input time (at power-on)	+	INITX		8	_	ms
INITX input time (other than the above)	4NTL			20		μs

$(V_{DD}5 = 3.0 \text{ V to } 5.5 \text{ V}, V_{SS}5 = AV_{SS}5 = 0 \text{ V}, T_A = -40^{\circ}\text{C to } + 105^{\circ}\text{C})$

15.6.3. LIN-USART Timings at $V_{DD}5 = 3.0$ to 5.5 V

- Conditions during AC measurements
- All AC tests were measured under the following conditions:
- IO_{drive} = 5 mA
- V_{DD} 5 = 3.0 V to 5.5 V, I_{load} = 3 mA
- V_{SS}5 = 0 V
- $-T_a = -40^{\circ}C \text{ to } +105^{\circ}C$
- - C_l = 50 pF (load capacity value of pins when testing)
- - VOL = $0.2 \times V_{DD}5$
- - VOH = $0.8 \times V_{DD}5$
- - EPILR = 0, PILR = 1 (Automotive Level = worst case)

Paramotor	Symbol	Pin namo	Condition	V _{DD} 5 = 3.0	V to 4.5 V	V to 4.5 V V_{DD} 5 = 4.5 V to 5.5 V		Unit
Faldilleter	Symbol	Fill lidille	Condition	Min		Min	Max	Unit
Serial clock cycle time	t _{scyci}	SCKn		4 t _{CLKP}	_	4 t _{CLKP}	_	ns
$SCK \downarrow \rightarrow SOT$ delay time	t _{SLOVI}	SCKn SOTn	Internal	- 30	30	- 20	20	ns
$\begin{array}{l} \text{SOT} \rightarrow \text{SCK} \downarrow \\ \text{delay time} \end{array}$	t _{ovshi}	SCKn SOTn	clock operation (master	m × t _{CLKP} – 30*	_	m × t _{CLKP} – 20*	_	ns
Valid SIN → SCK ↑ setup time	t _{IVSHI}	SCKn SINn	mode)	t _{CLKP} + 55	_	t _{CLKP} + 45	_	ns
$\begin{array}{l} \text{SCK} \uparrow \rightarrow \text{valid SIN} \\ \text{hold time} \end{array}$	t _{SHIXI}	SCKn SINn		0	_	0	_	ns
Serial clock "H" pulse width	t _{SHSLE}	SCKn		t _{CLKP} + 10	_	t _{CLKP} + 10	_	ns
Serial clock "L" pulse width	t _{SLSHE}	SCKn		t _{CLKP} + 10	_	t _{CLKP} + 10	_	ns
$SCK \downarrow \rightarrow SOT$ delay time	t _{SLOVE}	SCKn SOTn	External clock	_	2 t _{CLKP} + 55	_	2 t _{CLKP} + 45	ns
Valid SIN \rightarrow SCK \uparrow setup time	t _{IVSHE}	SCKn SINn	operation (slave mode)	10	_	10	_	ns
$\begin{array}{l} \text{SCK} \uparrow \rightarrow \text{valid SIN} \\ \text{hold time} \end{array}$	t _{SHIXE}	SCKn SINn		t _{CLKP} + 10	_	t _{CLKP} + 10	_	ns
SCK rising time	t _{FE}	SCKn		_	20		20	ns
SCK falling time	t _{RE}	SCKn		_	20	_	20	ns

(V_{DD}5 = 3.0 V to 5.5 V, V_{SS}5 = AV_{SS}5 = 0 V, T_A = -40° C to $+105^{\circ}$ C)

 * : Parameter m depends on t_{SCYCI} and can be calculated as :

• if t_{SCYCI} = 2*k*t_{CLKP}, then m = k, where k is an integer > 2

• if $t_{SCYCI} = (2^{k} + 1)^{t} t_{CLKP}$, then m = k + 1, where k is an integer > 1

Notes : • The above values are AC characteristics for CLK synchronous mode.

• t_{CLKP} is the cycle time of the peripheral clock.

Internal clock mode (master mode)

External clock mode (slave mode)

15.6.4. I^2C AC Timings at $V_{DD}5 = 3.0$ to 5.5 V

Conditions during AC measurements

All AC tests were measured under the following conditions:

- IO_{drive} = 3 mA
- $V_{DD}^{a,c}$ = 3.0 V to 5.5 V, I_{load} = 3 mA (V_{DD} = 4.5 V to 5.5 V for MB91F465XA)
- $V_{SS}5 = 0 V$
- Ta = -40° C to $+105^{\circ}$ C
- C_I = 50 pF
- VOL = $0.3 \times V_{DD}5$
- VOH = $0.7 \times V_{DD}5$
- EPILR = 0, PILR = 0 (CMOS Hysteresis $0.3 \times V_{DD}5/0.7 \times V_{DD}5)$

Fast mode:

Deremeter	Symbol	Din nome	Val	ue	Unit	Domork
Parameter	Symbol	Pin name	Min	Max	Unit	Remark
SCL clock frequency	f _{SCL}	SCLn	0	400	kHz	
Hold time (repeated) START condition. After this period, the first clock pulse is generated	t _{hd;sta}	SCLn, SDAn	0.6	_	μs	
LOW period of the SCL clock	t _{LOW}	SCLn	1.3	—	μs	
HIGH period of the SCL clock	t _{HIGH}	SCLn	0.6	—	μs	
Setup time for a repeated START condition	t _{SU;STA}	SCLn, SDAn	0.6	—	μs	
Data hold time for I ² C-bus devices	t _{HD;DAT}	SCLn, SDAn	0	0.9	μs	
Data setup time	t _{SU;DAT}	SCLn SDAn	100	—	ns	
Rise time of both SDA and SCL signals	t _r	SCLn, SDAn	20 + 0.1Cb	300	ns	
Fall time of both SDA and SCL signals	t _f	SCLn, SDAn	20 + 0.1Cb	300	ns	
Setup time for STOP condition	t _{SU;STO}	SCLn, SDAn	0.6	—	μs	
Bus free time between a STOP and START condition	t _{BUF}	SCLn, SDAn	1.3	—	μs	
Capacitive load for each bus line	Cb	SCLn, SDAn	—	400	pF	
Pulse width of spike suppressed by input filter	t _{SP}	SCLn, SDAn	0	(11.5) × t _{CLKP}	ns	*1

(V_{DD}5 = 3.5 V to 5.5 V, V_{SS}5 = AV_{SS}5 = 0 V, T_A = –40°C to + 105°C)

*1 : The noise filter will suppress single spikes with a pulse width of 0ns and between (1 to 1.5) cycles of peripheral clock, depending on the phase relationship between I²C signals (SDA, SCL) and peripheral clock.

Note: t_{CLKP} is the cycle time of the peripheral clock.

15.6.5. Free-run timer clock

		(V _{DD} 5 = 3.0 V	/ to 5.5 V, V _{SS} 5 =	AV _{SS} 5 = 0 V, T	$A = -40^{\circ}C \text{ to } +$	105°C)
Parameter	Symbol	Pin namo	Condition	Va	Unit	
	Symbol	Finnanie	Condition	Min	Max	Onit
Input pulse width	t _{TIWH} t _{TIWL}	CKn	_	4t _{CLKP}	_	ns

Note : t_{CLKP} is the cycle time of the peripheral clock.

15.6.6. Trigger input timing

(V_{DD}5 = 3.0 V to 5.5 V, V_{SS}5 = AV_{SS}5 = 0 V, T_A = -40^{\circ}C to ~+ 105 $^{\circ}C)$

Paramotor	Symbol Pin name		Condition	Va	Unit	
Farameter	Symbol	Finnanie	Condition	Min	Max	Onit
Input capture input trigger	t _{INP}	ICUn	—	5t _{CLKP}	—	ns
A/D converter trigger	t _{ATGX}	ATGX	_	5t _{CLKP}	—	ns

Note : t_{CLKP} is the cycle time of the peripheral clock.

16. E-Ray Overview

The E-Ray module is a FlexRay IP-module that can be integrated as stand-alone device or as part of an ASIC. It is described in VHDL on RTL level, prepared for synthesis. The E-Ray IP-module performs communication according to the FlexRay protocol specification v2.1. With maximum specified sample clock the bitrate is 10 MBits. Additional bus driver (BD) hardware is required for connection to the physical layer.

For communication on a FlexRay network, individual message buffers with up to 254 data bytes are configurable. The message storage consists of a single-ported Message RAM that holds up to 128 message buffers. All functions concerning the handling of messages are implemented in the Message Handler. Those functions are the acceptance filtering, the transfer of messages between the two FlexRay Channel Protocol Controllers and the Message RAM, maintaining the transmission schedule as well as providing message status information.

The register set of the E-Ray IP-module can be accessed directly by an external Host via the module's Host interface. These registers are used to control/configure/monitor the FlexRay Channel Protocol Controllers, Message Handler, Global Time Unit, System Universal Control, Frame and Symbol Processing, Network Management, Interrupt Control, and to access the Message RAM via Input / Output Buffer.

The E-Ray IP-module can be connected to a wide range of customer-specific Host CPUs via its 8/16/32-bit Generic CPU Interface.

The E-Ray IP-module supports the following features:

- · Conformance with FlexRay protocol specification v2.1
- · Data rates of up to 10 Mbit/s on each channel
- · Up to 128 message buffers configurable
- 8 Kbyte of Message RAM for storage of e.g. 128 message buffers with max. 48 byte data section or up to 30 message buffers with 254 byte data section
- · Configuration of message buffers with different payload lengths possible
- One configurable receive FIFO
- · Each message buffer can be configured as receive buffer, as transmit buffer or as part of the receive FIFO
- Host access to message buffers via Input and Output Buffer Input Buffer: Holds message to be transferred to the Message RAM Output Buffer: Holds message read from the Message RAM
- Filtering for slot counter, cycle counter, and channel
- · Maskable module interrupts
- Network Management supported
- 8/16/32-bit Generic CPU Interface, connectable to a wide range of customer-specific Host CPUs

16.1. Block Diagram

E-Ray Block Diagram

Customer CPU Interface (CIF)

Connects a customer specific Host CPU to the E-Ray IP-module via the Generic CPU Interface.

Generic CPU Interface (GIF)

The E-Ray IP-module is provided with an 8/16/32-bit Generic CPU Interface prepared for the connection to a wide range of customer-specific Host CPUs. Configuration registers, status registers, and interrupt registers are attached to the respective blocks and can be accessed via the Generic CPU Interface.

Input Buffer (IBF)

For write access to the message buffers configured in the Message RAM, the Host can write the header and data section for a specific message buffer to the Input Buffer. The Message Handler then transfers the data from the Input Buffer to the selected message buffer in the Message RAM.

Output Buffer (OBF)

For read access to a message buffer configured in the Message RAM the Message Handler transfers the selected message buffer to the Output Buffer. After the transfer has completed, the Host can read the header and data section of the transferred message buffer from the Output Buffer.

Message Handler (MHD)

The E-Ray Message Handler controls data transfers between the following components:

- Input / Output Buffer and Message RAM
- · Transient Buffer RAMs of the two FlexRay Protocol Controllers and Message RAM

Message RAM (MRAM)

The Message RAM consists of a single-ported RAM that stores up to 128 FlexRay message buffers together with the related configuration data (header and data partition).

Transient Buffer RAM (TBF A/B)

Stores the data section of two complete messages.

FlexRay Channel Protocol Controller (PRT A/B)

The FlexRay Channel Protocol Controllers consist of shift register and FlexRay protocol FSM. They are connected to the Transient Buffer RAMs for intermediate message storage and to the physical layer via bus driver BD.

They perform the following functionality:

- · Control and check of bit timing
- · Reception / transmission of FlexRay frames and symbols
- · Check of header CRC
- Generation / check of frame CRC
- · Interfacing to bus driver

The FlexRay Channel Protocol Controllers have interfaces to:

- · Physical Layer (bus driver)
- Transient Buffer RAM
- Message Handler
- Global Time Unit
- System Universal Control
- · Frame and Symbol Processing
- Network Management
- Interrupt Control

Global Time Unit (GTU)

The Global Time Unit performs the following functions:

- Generation of microtick
- · Generation of macrotick
- Fault tolerant clock synchronization by FTM algorithm
 rate correction
 - offset correction
- Cycle counter
- · Timing control of static segment
- Timing control of dynamic segment (minislotting)
- Support of external clock correction

System Universal Control (SUC)

The System Universal Control controls the following functions:

- Configuration
- Wakeup
- Startup
- Normal Operation
- · Passive Operation
- Monitor Mode

Frame and Symbol Processing (FSP)

The Frame and Symbol Processing controls the following functions:

- Checks the correct timing of frames and symbols
- · Tests the syntactical and semantical correctness of received frames
- · Sets the slot status flags

Network Management (NEM)

Handles the network management vector.

Interrupt Control (INT)

The Interrupt Controller performs the following functions:

- Provides error and status interrupt flags
- Enable / disable interrupt sources
- · Assignment of interrupt sources to one of the two module interrupt lines
- · Enable / disable module interrupt lines
- Manages the two interrupt timers
- Stop watch time capturing

17. Generic Interface

The Generic Interface encapsulates the synthesizable code of the E-Ray design (E-Ray core). All customer specific components like Customer CPU Interfaces and RAM blocks are connected to the Generic Interface. The following figure shows the connection of the E-Ray core to the external world via its Generic Interface.

Generic interface of E-Ray core

The Generic Interface consists of the Generic CPU Interface, the interfaces to the embedded RAMs, the Internal Signal and Flag Interface, and the Physical Layer Interface.

17.1. Generic CPU Interface

The Generic CPU Interface connects the E-Ray module to a customer specific Host CPU via the Customer CPU Interface. The Generic CPU Interface was designed for connection of the E-Ray module to a wide range of customer-specific CPUs. It supports 8/16/32-bit accesses.

Generic CPU interface

Signal	Direction	Description
eray_sclk		Sample Clock, 80 MHz
eray_bclk		Bus Clock
eray_reset		Module Reset, configurable via constant reset_active_c, default is LOW active
eray_select		Module Select
eray_addr[10:0]		Address Input
eray_byten[3:0]		Byte Enable
eray_write		Write/Read Control: '1' = write, '0' = read
eray_wdata[31:0]		Write Data Input
eray_stpwt		Stop Watch Trigger Input
eray_scanmode		Scan Mode Enable Input
eray_wrdy	0	Write Ready Output
eray_rrdy	0	Read Ready Output
eray_rdata[31:0]	0	Read Data Output
eray_int0	0	Interrupt Line 0 Output, HIGH active
eray_int1	0	Interrupt Line 1 Output, HIGH active
eray_tint0	0	Timer Interrupt 0 Output, HIGH active
eray_tint1	0	Timer Interrupt 1 Output, HIGH active
eray_ibusy	0	Transfer Input Buffer RAM to Message RAM busy, active while bit IBCR.IBSYH is set
eray_obusy	0	Transfer Message RAM to Output Buffer RAM busy, active while bit OBCR.OBSYS is set

17.1.1. Reset Timing

To perform a reset of the E-Ray module, signal eray_reset needs to be active for at least:

- Two eray_bclk cycles, clock period of eray_bclk ≥ eray_sclk
- Two eray_sclk cycles, clock period of eray_bclk < eray_sclk

When leaving hard reset, an internal procedure is started that initializes the seven module-internal RAM blocks to zero. The module-internal RAMs can also be cleared by CHI command CLEAR_RAMS

(SUCC1.CMD[3:0] = "1100") when the CC is in DEFAULT_CONFIG or CONFIG state. The initialization of the E-Ray internal RAM blocks requires 2048 eray_bclk cycles.

No Host access to IBF or OBF is possible during initialization of the internal RAM blocks after hard reset or after assertion of CHI command CLEAR_RAMS. Access to the configuration and status registers is possible during execution of CHI command CLEAR_RAMS.

After hard reset all registers hold the reset values as summarized in the table E-Ray register map.

17.1.2. Write Access

The byte position(s) for a write access is defined by the byte-enable signals eray_byten[3:0].

For 8-bit write accesses only one of the four byte-enable signals may be active:

- eray_byten[3:0] = "0001": Update register / RAM bits 7 downto 0 from eray_wdata[7:0]
- eray_byten[3:0] = "0010": Update register / RAM bits 15 downto 8 from eray_wdata[15:8]
- eray_byten[3:0] = "0100": Update register / RAM bits 23 downto 16 from eray_wdata[23:16]
- eray_byten[3:0] = "1000": Update register / RAM bits 31 downto 24 from eray_wdata[31:24]

For 16-bit write accesses either the two lower or the two higher byte-enable signals have to be active:

- eray_byten[3:0] = "0011": Update register / RAM bits 15 downto 0 from eray_wdata[15:0]
- eray_byten[3:0] = "1100": Update register / RAM bits 31 downto 16 from eray_wdata[31:16]
- For a 32-bit write access all four byte-enable signals have to be active:
 - eray_byten[3:0] = "1111": Update register / RAM bits 31 downto 0 from eray_wdata[31:0] Signals eray_addr[1:0] are not used.

When writing to Write Data Section [1...64] of the Input Buffer (see 18.10.1.Write Data Section [1...64] (WRDSn)), each 32-bit word has to be filled up by one 32-bit access OR two consecutive 16-bit accesses OR four consecutive 8-bit accesses before the transfer from the Input Buffer to the Message RAM is started by writing the number of the target message buffer in the Message RAM to register IBCR. If not all bytes of a 32-bit word have been written by the Host (8/16-bit access only), partly old data is transferred to the Message RAM.

Write access to E-Ray registers and Input Buffer RAM

Write accesses to register and RAM locations take one **eray_bclk** cycle each.

17.1.3. Read Access

Read access to E-Ray registers and Input / Output Buffer RAM

A read access from the internal RAM blocks takes two **eray_bclk** cycles (because the RAM is synchronous), while data from registers is valid within one **eray_bclk** cycle. For read accesses signal **eray_byten[3:0]** is ignored.

Note: With 8/16-bit read accesses the register contents may change in between two read accesses (non-atomic read access).

17.1.4. Timing of IBF / OBF Transfer Busy Signals

A data transfer from Input Buffer (IBF) to the Message RAM or from Message RAM to Output Buffer (OBF) is initiated by a write access to the respective command request register (IBCR / OBCR).

Signal **eray_ibusy** is activated when a write access to **IBCR.IBRH[6:0]** occurs while a transfer between Input Buffer Shadow and Message RAM is ongoing. This will also set bit **IBCR.IBSYH** to '1'. After completion of the ongoing transfer, Input Buffer Host and Input Buffer Shadow are swapped, **IBCR.IBSYH** is reset to '0', and **eray_ibusy** is deactivated.

Signal **eray_obusy** is active as long as a transfer between Message RAM and Output Buffer Shadow is ongoing. This is signalled by bit **OBCR.OBSYS**.

In addition the status interrupt flags **SIR.TIBC** and **SIR.TOBC** are set whenever a data transfer has completed. If enabled, an interrupt is generated.

eray_bclk eray_select eray_write eray_ibusy / eray_obusy Start Transfer Write Command Request (IBCR / OBCR)

Data transfer between IBF Shadow / OBF Shadow and Message RAM

The delay time until the respective busy signal (eray_ibusy or eray_obusy) is reset depends on the eray_bclk frequency, the length of the data section of the message buffer to be accessed, and the actual state of the Message Handler. A formula for calculation of this delay can be found in the Addendum to E-Ray FlexRay IP-Module Specification.

17.2. Internal Signal and Flag Interface

The Internal Signal and Flag Interface is intended for E-Ray licensees who want to enhance their customer interface by additional functionality. The usage of these signals is optional. Signals (nets, ports) which are not connected to module-external logic will be removed by synthesis.

Internal Signals

All internal signals which belong to the internal signal and flag interface are directly routed from their source to the top level of the E-Ray core. Signals with suffix '_sclk' origin from the sclk domain while all other signals origin from the bclk domain. The signals are active (HIGH) for one eray_bclk cycle resp. one eray_sclk cycle.

Internal Flags

The bits of selected registers are routed to the internal signal and flag interface to make status information from these registers directly accessible for further processing. The assignment to bit positions and the behaviour with respect to set and reset is the same as for the respective register bits. The signals origin from the bclk domain.

Internal signal and flag interface

Signal	Direction	Description	
Internal Signals			
eray_cycs	0	Cycle Start	
eray_cycs_sclk	0	Cycle Start, sclk domain	
eray_mt	0	Macrotick Start	
eray_mt_sclk	0	Macrotick Start, sclk domain	
eray_sds	0	Start of Dynamic Segment	
eray_mbsu_mbn1[6:0]	0	Message Buffer Status Updated for Message Buffer Number (0127) on Chan- nel A. Valid if either eray_mbsu_tx1 or eray_mbsu_rx1 is '1'.	
eray_mbsu_tx1	0	Message Buffer Status Updated for Transmit Buffer Channel A	
eray_mbsu_rx1	0	Message Buffer Status Updated for Receive Buffer Channel A	
eray_mbsu_mbn2[6:0]	0	Message Buffer Status Updated for Message Buffer Number (0127) on Chan- nel B. Valid if either eray_mbsu_tx2 or eray_mbsu_rx2 is '1'.	
eray_mbsu_tx2	0	Message Buffer Status Updated for Transmit Buffer Channel B	
eray_mbsu_rx2	0	Message Buffer Status Updated for Receive Buffer Channel B	
eray_mbsu_mbs[31:0]	0	Message Buffer Status Vector written to the Message Buffer referenced by eray_mbsu_mbn1,2[6:0]. Valid if either eray_mbsu_tx1,2 or eray_mbsu_rx1,2 is '1'. Assignment to bit positions same as for register MBS.	
eray_mbsu_txo[1:0]	0	Transmission of data frame Occurred on Channel A (bit #0) and/or B (bit #1) in the actual cycle. Valid if either eray_mbsu_tx1,2 or eray_mbsu_rx1,2 is '1'.	
eray_eir[31:0]	0	Error Interrupt Flags	
eray_sir[31:0]	0	Status Interrupt Flags	
eray_ccsv[31:0]	0	CC Status Vector	
eray_ccev[31:0]	0	CC Error Vector	
eray_scv[31:0]	0	Slot Counter Value	
eray_mtccv[31:0]	0	Macrotick and Cycle Counter Value	
eray_mrc[31:0]	0	Message RAM Configuration	
eray_mhds[31:0]	0	Message Handler Status	
eray_txrq1[31:0]	0	Transmission Request 1	
eray_txrq2[31:0]	0	Transmission Request 2	
eray_txrq3[31:0]	0	Transmission Request 3	
eray_txrq4[31:0]	0	Transmission Request 4	
eray_ndat1[31:0]	0	New Data 1	
eray_ndat2[31:0]	0	New Data 2	
eray_ndat3[31:0]	0	New Data 3	
eray_ndat4[31:0]	0	New Data 4	
eray_mbsc1[31:0]	0	Message Buffer Status Changed 1	
eray_mbsc2[31:0]	0	Message Buffer Status Changed 2	
eray_mbsc3[31:0]	0	Message Buffer Status Changed 3	
eray_mbsc4[31:0]	0	Message Buffer Status Changed 4	

17.3. Physical Layer Interface

The physical layer interface connects the E-Ray module to the bus drivers.

Physical layer interface

Signal	Direction	Description	
Channel A			
eray_rxd1	I	Data Receiver Input	
eray_txd1	0	Data Transmitter Output	
eray_txen1_n	0	Transmit Enable signal, HIGH = transmission inactive, LOW = transmission active	
Channel B			
eray_rxd2	I	Data Receiver Input	
eray_txd2	0	Data Transmitter Output	
eray_txen2_n	0	Transmit Enable signal, HIGH = transmission inactive, LOW = transmission active	

For each of the two channels a separate bus driver device is required.

17.4. Interface to embedded RAM Blocks

The seven embedded RAM blocks used by the E-Ray module are connected to the E-Ray core via the interfaces described below. The E-Ray module is designed for connection to single-ported RAM with synchronous RD/WR. The width for all RAM blocks is 33 bit; 32 data bits and one parity bit.

17.4.1. Input Buffer Interface

The Input Buffer RAM 1 interface has the following ports:

Interface to Input Buffer RAM 1

Signal	Direction	Description
eray_bclk	0	Module Clock
eray_ibf1_addr[5:0]	0	Address Output
eray_ibf1_cen	0	RAM Select
eray_ibf1_wren	0	Write Control
eray_ibf1_data[32:0]	0	Write Data Output
eray_ibf1_q[32:0]	I	Read Data Input

The Input Buffer RAM 2 interface has the following ports:

Interface to Input Buffer RAM 2

Signal	Direction	Description
eray_bclk	0	Module Clock
eray_ibf2_addr[5:0]	0	Address Output
eray_ibf2_cen	0	RAM Select
eray_ibf2_wren	0	Write Control
eray_ibf2_data[32:0]	0	Write Data Output
eray_ibf2_q[32:0]	I	Read Data Input

17.4.2. Output Buffer Interface

The Output Buffer RAM 1 interface has the following ports:

Interface to Output Buffer RAM 1

Signal	Direction	Description
eray_bclk	0	Module Clock
eray_obf1_addr[5:0]	0	Address Output
eray_obf1_cen	0	RAM Select
eray_obf1_wren	0	Write Control
eray_obf1_data[32:0]	0	Write Data Output
eray_obf1_q[32:0]	I	Read Data Input

The Output Buffer RAM 2 interface has the following ports:

Interface to Output Buffer RAM 2

Signal	Direction	Description
eray_bclk	0	Module Clock
eray_obf2_addr[5:0]	0	Address Output
eray_obf2_cen	0	RAM Select
eray_obf2_wren	0	Write Control
eray_obf2_data[32:0]	0	Write Data Output
eray_obf2_q[32:0]	I	Read Data Input

17.4.3. Message RAM Interface

The Message RAM stores header and data section of up to 128 message buffers. The Message RAM interface has the following ports:

Interface to Message RAM

Signal	Direction	Description
eray_bclk	0	Module Clock
eray_mbf_addr[10:0]	0	Address Output
eray_mbf_cen	0	RAM Select
eray_mbf_wren	0	Write Control
eray_mbf_data[32:0]	0	Write Data Output
eray_mbf_q[32:0]	I	Read Data Input

17.4.4. Transient Buffer RAM Interface

Each of the two FlexRay channels has a Transient Buffer RAM for intermediate message storage associated. The Transient Buffer RAM interface of channel A has the following ports:

Interface to Transient Buffer RAM A

Signal	Direction	Description
eray_bclk	0	Module Clock
eray_tbf1_addr[6:0]	0	Address Output
eray_tbf1_cen	0	RAM Select
eray_tbf1_wren	0	Write Control
eray_tbf1_data[32:0]	0	Write Data Output
eray_tbf1_q[32:0]	I	Read Data Input

The Transient Buffer RAM interface of channel B has the following ports:

Interface to Transient Buffer RAM B

Signal	Direction	Description
eray_bclk	0	Module Clock
eray_tbf2_addr[6:0]	0	Address Output
eray_tbf2_cen	0	RAM Select
eray_tbf2_wren	0	Write Control
eray_tbf2_data[32:0]	0	Write Data Output
eray_tbf2_q[32:0]	I	Read Data Input

17.4.5. Read / write access to embedded RAM Blocks

Synchronous read/write access to embedded RAM blocks

18. Programmer's Model

18.1. Register Map

The E-Ray module allocates an address space of 2 Kbytes (0x0000 to 0x07FF). The registers are organized as 32-bit registers. 8/16-bit accesses are also supported. Host access to the Message RAM is done via the Input and Output Buffers. They buffer data to be transferred to and from the Message RAM under control of the Message Handler, avoiding conflicts between Host accesses and message reception / transmission. Addresses 0x0000 to 0x000F are reserved for customer specific purposes. All functions related to these addresses are located in the Customer CPU Interface. The test registers located on address 0x0010 and 0x0014 are writable only under the conditions described in 18.3.Special Registers.

The assignment of the message buffers is done according to the scheme shown in Table below. The number N of available message buffers depends on the payload length of the configured message buffers. The maximum number of message buffers is 128. The maximum payload length supported is 254 bytes.

The message buffers are separated into three consecutive groups:

- · Static Buffers: Transmit / receive buffers assigned to static segment
- · Static + Dynamic Buffers: Transmit / receive buffers assigned to static or dynamic segment
- FIFO: Receive FIFO

The message buffer separation configuration can be changed only in DEFAULT_CONFIG or CONFIG state only by programming register MRC (see 18.7.1.Message RAM Configuration (MRC)).

The first group starts with message buffer 0 and consists of static message buffers only. Message buffer 0 is dedicated to hold the startup / sync frame or the single slot frame, if the node transmits one, as configured by **SUCC1.TXST**, **SUCC1.TXSY**, and **SUCC1.TSM**. In addition, message buffer 1 may be used for sync frame transmission in case that sync frames or single-slot frames should have different payloads on the two channels. In this case bit **MRC.SPLM** has to be programmed to '1' and message buffers 0 and 1 have to be configured with the key slot ID and can be (re)configured in DEFAULT_CONFIG or CONFIG state only.

The second group consists of message buffers assigned to the static or to the dynamic segment. Message buffers belonging to this group may be reconfigured during run time from dynamic to static or vice versa depending on the state of **MRC.SEC[1:0]**.

The message buffers belonging to the third group are concatenated to a single receive FIFO.

Assignment of message buffers

Message Buffer 0	↓ Static Buffers	
Message Buffer 1		
	↓ Static + Dynamic Buffers	⇐ FDB
	↓ FIFO	⇐ FFB
Message Buffer N-1		
Message Buffer N		\leftarrow LCB

E-Ray register map

Address	Symbol	Name	Page	Reset	Acc	Block		
	•	Customer Registers		•				
0x0000	0000							
0x0004		and Customer CDU Interface Sr	opification			CIE		
0x0008		see Customer CFO Intenace Sp	ecincation			OIF		
0x000C								
	•	Special Registers						
0x0010	TEST1	Test Register 1	119	0000 0300	r/w	CIE		
0x0014	TEST2	Test Register 2	122	0000 0000	r/w	Gii		
0x0018		reserved (1)		0000 0000	r			
0x001C	LCK	Lock Register	124	0000 0000	r/w	GIF		
		Interrupt Registers						
0x0020	EIR	Error Interrupt Register	125	0000 0000	r/w			
0x0024	SIR	Status Interrupt Register	127	0000 0000	r/w			
0x0028	EILS	Error Interrupt Line Select	130	0000 0000	r/w			
0x002C	SILS	Status Interrupt Line Select	131	0303 FFFF	r/w			
0x0030	EIES	Error Interrupt Enable Set	132	0000 0000	r/w			
0x0034	EIER	Error Interrupt Enable Reset	132	0000 0000	r/w			
0x0038	SIES	Status Interrupt Enable Set	133	0000 0000	r/w	INT		
0x003C	SIER	Status Interrupt Enable Reset	133	0000 0000	r/w			
0x0040	ILE	Interrupt Line Enable	134	0000 0000	r/w			
0x0044	TOC	Timer 0 Configuration	135	0000 0000	r/w			
0x0048	T1C	Timer 1 Configuration	136	0002 0000	r/w			
0x004C	STPW1	Stop Watch Register 1	137	0000 0000	r/w			
0x0050	STPW2	Stop Watch Register 2	138	0000 0000	r/w			
0x0054 to 0x007C	reserved (11)			0000 0000	r			
	I	CC Control Registers						
0x0080	SUCC1	SUC Configuration Register 1	139	0C40 1080	r/w			
0x0084	SUCC2	SUC Configuration Register 2	143	0100 0504	r/w	SUC		
0x0088	SUCC3	SUC Configuration Register 3	143	0000 0011	r/w			
0x008C	NEMC	NEM Configuration Register	144	0000 0000	r/w	NEM		
0x0090	PRTC1	PRT Configuration Register 1	145	084C 0633	r/w	DDT		
0x0094	PRTC2	PRT Configuration Register 2	146	0F2D 0A0E	r/w	FRI		
0x0098	MHDC	MHD Configuration Register	147	0000 0000	r/w	MHD		
0x009C		reserved (1)		0000 0000	r			
0x00A0	GTUC1	GTU Configuration Register 1	147	0000 0280	r/w			
0x00A4	GTUC2	GTU Configuration Register 2	148	0002 000A	r/w			
0x00A8	GTUC3	GTU Configuration Register 3	148	0202 0000	r/w			
0x00AC	GTUC4	GTU Configuration Register 4	149	0008 0007	r/w			
0x00B0	GTUC5	GTU Configuration Register 5	149	0E00 0000	r/w			
0x00B4	GTUC6	GTU Configuration Register 6	150	0002 0000	r/w	GTU		
0x00B8	GTUC7	GTU Configuration Register 7	150	0002 0004	r/w			
0x00BC	GTUC8	GTU Configuration Register 8	151	0000 0002	r/w			
0x00C0	GTUC9	GTU Configuration Register 9	151	0000 0101	r/w			
0x00C4	GTUC10	GTU Configuration Register 10	152	0002 0005	r/w			
0x00C8	GTUC11	GTU Configuration Register 11	152	0000 0000	r/w			

Address	Symbol	Name	Page	Reset	Acc	Block		
0x00CC to 0x00FC		reserved (13)		0000 0000	r			
	CC Status Registers							
0x0100	CCSV	CC Status Vector	153	0010 4000	r	SUC		
0x0104	CCEV	CC Error Vector	155	0000 0000	r	500		
0x0108 to 0x010C		reserved (2)		0000 0000	r			
0x0110	SCV	Slot Counter Value	155	0000 0000	r			
0x0114	MTCCV	Macrotick and Cycle Counter Value	156	0000 0000	r			
0x0118	RCV	Rate Correction Value	156	0000 0000	r			
0x011C	OCV	Offset Correction Value	157	0000 0000	r			
0x0120	SFS	Sync Frame Status	157	0000 0000	r			
0x0124	SWNIT	Symbol Window and NIT Status	158	0000 0000	r			
0x0128	ACS	Aggregated Channel Status	159	0000 0000	r/w	GTU		
0x012C		reserved (1)		0000 0000	r			
0x0130 to 0x0168	ESIDn	Even Sync ID [115]	161	0000 0000	r			
0x016C		reserved (1)		0000 0000	r			
0x0170 to 0x01A8	OSIDn	Odd Sync ID [115]	161	0000 0000	r			
0x01AC		reserved (1)		0000 0000	r			
0x01B0 to 0x01B8	NMVn	Network Management Vector [13]	162	0000 0000	r	NEM		
0x01BC to 0x02FC		reserved (81)		0000 0000	r			
Message Buffer Control Registers								
0x0300	MRC	Message RAM Configuration	163	0180 0000	r/w			
0x0304	FRF	FIFO Rejection Filter	164	0180 0000	r/w	мнр		
0x0308	FRFM	FIFO Rejection Filter Mask	165	0000 0000	r/w			
0x030C	FCL	FIFO Critical Level	165	0000 0080	r/w			

Address	Symbol	Name	Page	Reset	Acc	Block		
Message Buffer Status Registers								
0x0310	MHDS	Message Handler Status	166	0000 0080	r/w			
0x0314	LDTS	Last Dynamic Transmit Slot	167	0000 0000	r			
0x0318	FSR	FIFO Status Register	168	0000 0000	r			
0x031C	MHDF	Message Handler Constraints Flags	169	0000 0000	r/w			
0x0320	TXRQ1	Transmission Request 1	170	0000 0000	r			
0x0324	TXRQ2	Transmission Request 2	170	0000 0000	r			
0x0328	TXRQ3	Transmission Request 3	170	0000 0000	r			
0x032C	TXRQ4	Transmission Request 4	170	0000 0000	r			
0x0330	NDAT1	New Data 1	171	0000 0000	r	MHD		
0x0334	NDAT2	New Data 2	171	0000 0000	r			
0x0338	NDAT3	New Data 3	171	0000 0000	r			
0x033C	NDAT4	New Data 4	171	0000 0000	r			
0x0340	MBSC1	Message Buffer Status Changed 1	172	0000 0000	r			
0x0344	MBSC2	Message Buffer Status Changed 2	172	0000 0000	r			
0x0348	MBSC3	Message Buffer Status Changed 3	172	0000 0000	r			
0x034C	MBSC4	Message Buffer Status Changed 4	172	0000 0000	r			
0x0350 to 0x03EC		reserved (40)		0000 0000	r			
		Identification Registers	I ;					
0x03F0	CREL	Core Release Register 173 [release info]						
0x03F4	ENDN	Endian Register	173	8765 4321	r	GIF		
0x03F8 to 0x03FC		reserved (2)		0000 0000	r			
		Input Buffer						
0x0400 to	WRDSn	Write Data Section [164]	174	0000 0000	r/w			
0x0500	WRHS1	Write Header Section 1	175	0000 0000	r/w			
0x0500	WRHS2	Write Header Section 2	175	0000 0000	r/w			
0x0504	WRHS3	Write Header Section 3	176	0000 0000	r/w	IBF		
0x050C	WIGIOO	reserved (1)	170	0000 0000	r/w			
0x0510	IBCM	Input Buffer Command Mask	177	0000 0000	r/w			
0x0514	IBCR	Input Buffer Command Request	178	0000 0000	r/w			
0x0518 to								
0x05FC		reserved (58)		0000 0000	r			
		Output Buffer						
0x0600 to 0x06FC	RDDSn	Read Data Section [164]	179	0000 0000	r			
0x0700	RDHS1	Read Header Section 1	179	0000 0000	r			
0x0704	RDHS2	Read Header Section 2	180	0000 0000	r	OPE		
0x0708	RDHS3	Read Header Section 3	181	0000 0000	r	OBF		
0x070C	MBS	Message Buffer Status	182	0000 0000	r			
0x0710	OBCM	Output Buffer Command Mask	184	0000 0000	r/w			
0x0714	OBCR	Output Buffer Command Request	185	0000 0000	r/w			
0x0718 to 0x07FC		reserved (58)		0000 0000	r			

18.2. Customer Registers

The address space from 0x0000 to 0x000F is reserved for customer-specific registers. These registers, if implemented, are located in the Customer CPU Interface block. A description can be found in the specific Customer CPU Interface specification document. Specification of the CIF registers is as follows:

CIF0 = 0xD000, CIF1 = 0xD004, CIF2 = 0xD008 and CIF3 = 0xD00C

Customer Interface Logic

	31							0	
CIF0				VERS	ION				
	R								-
	31	30	29	28	27	26	25	24	bit
	7	6	5	4	3	2	1	0	_
CIF1	DREQO	DLVLO	DMODO	DENBO	DREQI	DLVLI	DMODI	DENBI	
	0	0	0	0	0	0	0	0	Initial
	R/W(RM1)	R/W	R/W	R/W	R/W(RM1)	R/W	R/W	R/W	Attribute
	23	22	21	20	19	18	17	16	bit
	7	6	5	4	3	2	1	0	l
CIF1				MASK4	MASK3	MASK2	MASK1	MASK0	
	0	0	0	0	0	0	0	0	Initial
	R0/W0	R0/W0	R0/W0	R/W	R/W(RM1)	R/W	R/W	R/W	Attribute
	15	14	13	12	11	10	9	8	bit
	7	6	5	4	3	2	1	0	
CIF1	RTEST			SWAP	TREQ1	TENB1	TREQ0	TENB0	
	0	0	0	0	0	0	0	0	Initial
	R/W	R0/W0	R0/W0	R/W	R/W(RM1)	R/W	R/W(RM1)	R/W	Attribute

R Read only register

R/W Read/write register

R/W(RM1) Read/write register (outputs '1' on RMW)

R0/W0 Read only register (always outputs '0', write '0' is recommended)

All other CIF registers (CIF2 and CIF3) not mentioned here are R0/W0.

parameter VERSION = 32 h04_FF_5B_FF; 0x04: Cypress 0xFF: see Boot-ROM Device-ID 0x5B: FR:91(0x5B), FX:96(0x60) 0xFF: see E-Ray-ID

18.2.1. CIF register functions

```
DENBI: DMA request enable on IBF
DENBO: DMA request enable on OBF
  DENBx = 0 : DMA request is disabled
  DENBx = 1 : DMA request is enabled
DMODI: DMA request mode on IBF
DMODO:DMA request mode on OBF
  DMODx = 0 : DMA request mode is eray_ibusy/eray_obusy level mode
  DMODx = 1 : DMA request mode is eray_ibusy/eray_obusy edge mode
DLVLI: DMA level/edge selector on IBF
DLVLO: DMA level/edge selector on OBF
  with DMODx = 0
  DLVLx = 0 : DMA request level is non-inverted eray_ibusy/eray_obusy
  DLVLx = 1 : DMA request level is inverted eray_ibusy/eray_obusy
  with DMODx = 1
  DLVLx = 0 : DMA request is negative edge of eray ibusy/eray obusy
  DLVLx = 1 : DMA request is positive edge of eray_ibusy/eray_obusy
DREQI: DMA request flag on IBF
DREQO: DMA request flag on OBF
  with DMODx = 0
  DREQx = Read only, displays the eray_ibusy/eray_obusy level
  - displays the modified eray_ibusy/eray_obusy level if changed with DLVLx
  - On a read-modify-write bit-operation '1' is read
  with DMODx = 1
  DREQx = 0 : DMA request is inactive
  DREQx = 1 : DMA request is active
  Request is automatically cleared to '0' if a DMA transfer has started
  - Possible to write '0' to clear the DMA request by the CPU
  - On a read-modify-write bit-operation '1' is read
MASK0: DMA Channel 0 Interrupt Mask (for OBF configuration)
MASK1: DMA Channel 1 Interrupt Mask (for OBF configuration)
MASK2: DMA Channel 2 Interrupt Mask (for OBF configuration)
MASK3: DMA Channel 3 Interrupt Mask (for OBF configuration)
MASK4: DMA Channel 4 Interrupt Mask (for OBF configuration)
  MASKx = 0 : DMA channel x interrupt is not masked
  MASKx = 1 : DMA channel x interrupt is masked while eray_obusy = 1
TENBO: Timer 0 Interrupt Enable
TENB1: Timer 1 Interrupt Enable
  TENBx = 0 : Direct eray_tint0/eray_tint1 signal is used for interrupt generation
```

TENBx = 1 : Registered TREQx flag is used for interrupt generation

TREQ0: Timer 0 Interrupt Request

TREQ1: Timer 1 Interrupt Request

with TENBx = 0

TREQx = Read only, displays the eray_tint0/eray_tint1 level

- On a read-modify-write bit-operation '1' is read

with TENBx = 1

TREQx = 0 : Timer interrupt request is inactive

TREQx = 1 : Timer interrupt request is active

- Possible to write '0' to clear the interrupt request by the CPU
- On a read-modify-write bit-operation '1' is read

SWAP: IBF/OBF data swap enable

SWAP = 0 : Read and write data on IBF/OBF is not swapped SWAP = 1 : Read and write data on IBF/OBF is swapped

SWAP = O	SWAP = 1
MD[7:0] = DW(n), byte(n-1)	MD[7:0] = DW(n+1), byte(n+2)
MD[15: 8] = DW(n), byte(n)	MD[15: 8] = DW(n+1), byte(n+1)
MD[23:16] = DW(n+1), byte(n+1)	MD[23:16] = DW(n), byte(n)
MD[31:24] = DW(n+1), byte(n+2)	MD[31:24] = DW(n), byte(n-1)

RTEST: RAM Test address range enable (ONLY FOR TESTMODE)

RTEST = 0 : Normal operation address mapping

RTEST = 1 : RAM Test operation address mapping (use when TMC[1:0]=01)

18.3. Special Registers

18.3.1. Test Register 1 (TEST1)

The Test Register 1 holds the control bits to configure the test modes of the E-Ray module. Write access to these bits is only possible if bit **WRTEN** is set to '1'.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TEST1	R	CERB3	CERB2	CERB1	CERB0	CERA3	CERA2	CERA1	CERA0	0	0	TVEND	TYENIA	TVD	TVA	RXB	RXA
0x0010	W											TAENB	IAENA	IAB	IAA		
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	0	AOB	AOA	0	0	TMC1	TMCO	0	0	ELDE	WDTEN
	W											TMCT	TMCO			ELDE	WKIEN
Reset		0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0

WRTEN Write Test Register Enable

Enables write access to the test registers. To set the bit from '0' to '1' the test mode key has to be written as defined in Section 18.3.3.Lock Register (LCK). The unlock sequence is not required when **WRTEN** is kept at '1' while other bits of the register are changed. The bit can be reset to '0' at any time.

1 =Write access to test registers enabled

0 =Write access to test registers disabled

ELBE External Loop Back Enable

There are two possibilities to perform a loop back test. External loop back via physical layer or internal loop back for in-system self-test (default). In case of an internal loop back pins **eray_txen1,2_n** are in their inactive state, pins **eray_txd1,2** are set to HIGH, pins **eray_rxd1,2** are not evaluated. Bit **ELBE** is evaluated only when POC is in loop back mode and test mode control is in normal operation mode **TMC[1:0]** = "00".

1 =External loop back

0 =Internal loop back (default)

TMC[1:0] Test Mode Control

00, 11=Normal operation mode (default)

01 = RAM Test Mode - All RAM blocks of the E-Ray module are directly accessible by the Host. This mode is intended to enable testing of the embedded RAM blocks during production testing.

10 =I/O Test Mode - Output pins eray_txd1, eray_txd2, eray_txen1_n, eray_txen2_n, are driven to the values defined by bits TXA, TXB, TXENA, TXENB. The values applied to the input pins eray_rxd1, eray_rxd2 can be read from register bits RXA, RXB.

AOA Activity on A

The channel idle condition is specified in the FlexRay protocol spec v2.1, chapter 3, BITSTRB process zChannelldle. 1 =Activity detected, channel A not idle

0 =No activity detected, channel A idle

AOB Activity on B

The channel idle condition is specified in the FlexRay protocol spec v2.1, chapter 3, BITSTRB process zChannelldle. 1 =Activity detected, channel B not idle

0 =No activity detected, channel B idle

CERA[3:0] Coding Error Report Channel A

Set when a coding error is detected on channel A. Reset to zero when register TEST1 is read or written. Once the **CERA[3:0]** is set it will remain unchanged until the Host accesses the TEST1 register.

0000 =No coding error detected

0001 =Header CRC error detected

0010 =Frame CRC error detected

0011 =Frame Start Sequence FSS too long

0100 =First bit of Byte Start Sequence BSS seen LOW

0101 =Second bit of Byte Start Sequence BSS seen HIGH

0110 =First bit of Frame End Sequence FES seen HIGH

0111 =Second bit of Frame End Sequence FES seen LOW

1000 =CAS / MTS symbol seen too short

1001 =CAS / MTS symbol seen too long

1010...1111 =reserved

CERB[3:0] Coding Error Report Channel B

Set when a coding error is detected on channel B. Reset to zero when register TEST1 is read or written. Once the **CERB[3:0]** is set it will remain unchanged until the Host accesses the TEST1 register.

0000 =No coding error detected

0001 =Header CRC error detected

0010 =Frame CRC error detected

0011 =Frame Start Sequence FSS too long

0100 =First bit of Byte Start Sequence BSS seen LOW

0101 =Second bit of Byte Start Sequence BSS seen HIGH

0110 =First bit of Frame End Sequence FES seen HIGH

0111 =Second bit of Frame End Sequence FES seen LOW

1000 =CAS / MTS symbol seen too short

1001 =CAS / MTS symbol seen too long

1010...1111 =reserved

- Note: Coding errors are also signalled when the CC is in MONITOR_MODE. The error codes regarding CAS / MTS symbols concern only the monitored bit pattern, irrelevant whether those bit patterns are seen in the symbol window or elsewhere.
- Note: The following TEST1 bits are used to test the interface to the physical layer (connectivity test) by driving / reading the respective pins.

RXA Monitor Channel A Receive Pin

0 =eray_rxd1 = '0'

1 =eray_rxd1 = '1'

- **RXB** Monitor Channel B Receive Pin
 - 0 =eray_rxd2 = '0'
 - 1 =eray_rxd2 = '1'
- TXA Control of Channel A Transmit Pin
 - 0 =eray_txd1 pin drives a '0'
 - 1 =**eray_txd1** pin drives a '1'
- TXB
 Control of Channel B Transmit Pin

0 =eray_txd2 pin drives a '0'

1 =eray_txd2 pin drives a '1'

TXENA Control of Channel A Transmit Enable Pin

0 =eray_txen1_n pin drives a '0'

1 =eray_txen1_n pin drives a '1'

TXENB Control of Channel B Transmit Enable Pin

```
0 =eray_txen2_n pin drives a '0'
1 =eray txen2 n pin drives a '1'
```


Asynchronous Transmit Mode (ATM)

The asynchronous transmit mode is entered by writing **SUCC1.CMD[3:0]** = "1110" while the CC is in CONFIG state and bit **TEST1.WRTEN** is set to '1'. This write operation has to be directly preceded by two consecutive write accesses to the Configuration Lock Key (unlock sequence). When called in any other state or when bit **TEST1.WRTEN** is not set, **SUCC1.CMD[3:0]** will be reset to "0000" = command_not_accepted. Reading **CCSV.POCS[5:0]** will return "00 1110" while the E-Ray module is in ATM mode. Asynchronous transmit mode can be left by writing **SUCC1.CMD[3:0]** = "0001" (CHI command: CONFIG).

In ATM mode transmission of a FlexRay frame is triggered by writing the number of the respective message buffer to **IBCR.IBRH[6:0]** while **IBCM.STXR** is set to '1'. In this mode wakeup, startup, and clock synchronization are bypassed. The CHI command SEND_MTS results in the immediate transmission of an MTS symbol.

The cycle counter value of frames send in ATM mode can be programmed via **MTCCV.CCV[5.0]** (writable in ATM and loop back mode only).

Loop Back Mode

The loop back mode is entered by writing **SUCC1.CMD[3:0]** = "1111" while the CC is in CONFIG state and bit **TEST1.WRTEN** is set to '1'. This write operation has to be directly preceded by two consecutive write accesses to the Configuration Lock Key (unlock sequence). When called in any other state or when **TEST1.WRTEN** is not set, **SUCC1.CMD[3:0]** will be reset to "0000" = command_not_accepted. Reading **CCSV.POCS[5:0]** will return "00 1001" while the E-Ray module is in loop back mode.

Loop back mode can be left by writing SUCC1.CMD[3:0] = "0001" (CHI command: CONFIG).

The loop back mode is intended to check the module's internal data paths. Normal, time triggered operation is not possible in loop back mode.

There are two possibilities to perform a loop back test. External loop back via physical layer (**TEST1.ELBE** = '1') or internal loop back for in-system self-test (**TEST1.ELBE** = '0'). In case of an internal loop back pins **eray_txen1,2_n** are in their inactive state, pins **eray_txd1,2** are set to HIGH, pins **eray_rxd1,2** are not evaluated.

A loop back test is started by the Host configuring the E-Ray module and then writing a message to the Input Buffer and requesting the transmission by writing to register IBCR. The Message Handler will transfer the message into the Message RAM and then into the Transient Buffer of the selected channel. The Channel Protocol Controller (PRT) will read (in 32-bit words) the message from the transmit part of the Transient Buffer and load it into its

Rx / Tx shift register. The serial transmission is looped back into the shift register; its content is written into the receive part of the channels's Transient Buffer before the next word is loaded.

The PRT and the Message Handler will then treat this transmitted message like a received message, perform an acceptance filtering on frame ID and receive channel, and store the message into the Message RAM if it passed acceptance filtering. The loop back test ends with the Host requesting this received message from the Message RAM and then checking the contents of the Output Buffer.

Each FlexRay channel is tested separately. The E-Ray cannot receive messages from the FlexRay bus while it is in the loop back mode.

The cycle counter value of frames used in loop back mode can be programmed via **MTCCV.CCV[5.0]** (writable in ATM and loop back mode only).

Note that in case of an odd payload the last two bytes of the looped-back payload will be shifted by 16 bits to the right inside the last 32-bit data word.

18.3.2. Test Register 2 (TEST2)

The Test Register 2 holds all bits required for the RAM test of the seven embedded RAM blocks of the E-Ray module. Write access to this register is only possible when **TEST1.WRTEN** is set to '1'.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TEST2	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0014	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	RDPB	WDDD	0	0	0	0	0	0	0	SSEL 2	SSEL 1	SSELO	0	DSO	DC1	DSO
	W		WKPD								SSEL2	SSELI	SSELU		К32	K31	K30
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

RS[2:0] RAM Select

In RAM Test mode the RAM blocks selected by RS[2:0] are mapped to module address 0x400 to 7FF(1024 byte addresses).

- 000 =Input Buffer RAM 1 (IBF1) 001 =Input Buffer RAM 2 (IBF2)
- 010 =Output Buffer RAM 1 (OBF1)
- 011 =Output Buffer RAM 2 (OBF2)
- 100 =Transient Buffer RAM A (TBF1)
- 101 =Transient Buffer RAM B (TBF2)
- 110 =Message RAM (MBF)
- 111 =unused

SSEL[2:0] Segment Select

To enable access to the complete Message RAM (8192 byte addresses) the Message RAM is segmented.

- 000 =access to RAM bytes 0000h to 03FFh enabled
- 001 =access to RAM bytes 0400h to 07FFh enabled
- 010 =access to RAM bytes 0800h to 0BFFh enabled
- 011 =access to RAM bytes 0C00h to 0FFFh enabled
- 100 =access to RAM bytes 1000h to 13FFh enabled
- 101 =access to RAM bytes 1400h to 17FFh enabled
- 110 =access to RAM bytes 1800h to 1BFFh enabled
- 111 =access to RAM bytes 1C00h to 1FFFh enabled

WRPB Write Parity Bit

Value of parity bit to be written to bit 32 of the addressed RAM word.

RDPB Read Parity Bit

Value of parity bit read from bit 32 of the addressed RAM word.

RAM Test Mode

In RAM test mode (**TEST1.TMC[1:0]** = "01"), one of the seven RAM blocks can be selected for direct RD/WR access by programming **TEST2.RS[2:0]**.

For external access the selected RAM block is mapped to address space 400h to 7FF (1024 byte addresses or 256 word addresses).

Because the length of the Message RAM exceeds the available address space, the Message RAM is segmented into segments of 1024 bytes. The segments can be selected by programming **TEST2.SSEL[2:0]**.

RAM test mode access to E-Ray RAM blocks

18.3.3. Lock Register (LCK)

The Lock Register is write-only. Reading the register will return 0x0000 0000.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
LCK	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x001C	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	W	TMK7	TMK6	TMK5	TMK4	TMK3	TMK2	TMK1	TMK0	CLK7	CLK6	CLK5	CLK4	CLK3	CLK2	CLK1	CLK0
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLK[7:0] Configuration Lock Key

To leave CONFIG state by writing **SUCC1.CMD[3:0]** (commands READY, MONITOR_MODE, ATM, LOOP_BACK), the write operation has to be directly preceded by two consecutive write accesses to the Configuration Lock Key (unlock sequence). If this write sequence is interrupted by other write accesses, the CC remains in CONFIG state and the sequence has to be repeated.

First write:LCK.CLK[7:0]= "1100 1110" (0xCE) Second write:LCK.CLK[7:0]= "0011 0001" (0x31) Third write:SUCC1.CMD[3:0]

TMK[7:0] Test Mode Key

To write bit **TEST1.WRTEN**, the write operation has to be directly preceded by two consecutive write accesses to the Test Mode Key (unlock sequence). If this write sequence is interrupted by other write accesses, **TEST1.WRTEN** is not set to '1' and the sequence has to be repeated.

First write:**LCK.TMK[7:0]**= "0111 0101" (0x75) Second write:**LCK.TMK[7:0]**= "1000 1010" (0x8A) Third write:**TEST1.WRTEN**= '1'

Note: In case that the Host uses 8/16-bit accesses to write the listed bit fields, the programmer has to ensure that no "dummy accesses" e.g. to the remaining register bytes / words are inserted by the compiler.

18.4. Interrupt Registers

18.4.1. Error Interrupt Register (EIR)

The flags are set when the CC detects one of the listed error conditions. The flags remain set until the Host clears them. A flag is cleared by writing a '1' to the corresponding bit position. Writing a '0' has no effect on the flag. A hard reset will also clear the register.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EIR	R	0	0	0	0	0	TADD	ITVD	EDD	0	0	0	0	0	TADA	I TUA	EDA
0x0020	W						IADD	LIVD	EDB						IADA	LIVA	EDA
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	MIE	IODA		EEA	DEO	DEDD	CCI	CCE	SEO	CEDM	CNIA	DEMC
	W					MHF	ЮВА	пва	EFA	KFU	PEKK	CCL	CCF	5FU	SFBM	CNA	PEMC
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PEMC POC Error Mode Changed

This flag is set whenever the error mode signalled by CCEV.ERRM[1:0] has changed.

1 =Error mode has changed

0 =Error mode has not changed

CNA Command Not Accepted

The flag signals that the write access to the CHI command vector **SUCC1.CMD[3:0]** was not successful because the requested command was not valid in the actual POC state, or because the CHI command was locked (**CCL** = '1'). 1 =CHI command not accepted

0 =CHI command accepted

SFBM Sync Frames Below Minimum

This flag signals that the number of sync frames received during the last communication cycle was below the limit required by the FlexRay protocol. May be set during startup and therefore should be cleared by the Host after the CC entered NORMAL_ACTIVE state.

1 =Less than the required minimum of sync frames received

0 =Sync node:1 or more sync frames received

Non-sync node:2 or more sync frames received

SFO Sync Frame Overflow

Set when the number of sync frames received during the last communication cycle exceeds the maximum number of sync frames as defined by **GTUC2.SNM[3:0]**.

1 = More sync frames received than configured by GTUC2.SNM[3:0]

0 =Number of received sync frames ≤ GTUC2.SNM[3:0]

CCF Clock Correction Failure

This flag is set at the end of the cycle whenever one of the following errors occurred:

- Missing offset and / or rate correction
- Clock correction limit reached

The clock correction status is monitored in registers CCEV and SFS. A failure may occur during startup, therefore bit **CCF** should be cleared by the Host after the CC entered NORMAL_ACTIVE state.

1 =Clock correction failed

0 =No clock correction error

CCL CHI Command Locked

The flag signals that the write access to the CHI command vector **SUCC1.CMD[3:0]** was not successful because it coincided with a POC state change triggered by protocol functions. In this case bit **CNA** is also set to '1'.

- 1 =CHI command not accepted
- 0 =CHI command accepted

PERR	Parity Error
	The flag signals a parity error to the Host. It is set whenever one of the flags MHDS.PIBF, MHDS.POBF, MHDS.PMR,
	MHDS.PTBF1, MHDS.PTBF2 changes from '0' to '1'.
	1 =Parity error detected
	0 =No parity error detected
RFO	Receive FIFO Overrun
	The flag is set by the CC when a receive FIFO overrun is detected. When a receive FIFO overrun occurs, the oldest message
	is overwritten with the actual received message. The actual state of the FIFO is monitored in register FSR.
	1 =A receive FIFO overrun has been detected
	0 =No receive FIFO overrun detected
EFA	Empty FIFO Access
	This flag is set by the CC when the Host requests the transfer of a message from the receive FIFO via Output Buffer while the
	receive FIFO is empty.
	1 =Host access to empty FIFO occurred
	0 =No Host access to empty FIFO occurred
IIBA	Illegal Input Buffer Access
	This flag is set by the CC when the Host wants to modify a message buffer via Input Buffer while the CC is not in CONFIG or
	DEFAULI_CONFIG state and one of the following conditions applies:
	1) The Host writes to the Input Buffer Command Request register to modify the
	• Header section of message buffer 0, 1 if configured for transmission in key slot
	• Header section of static message buriers with burier number < MRC.FDB[7:0]
	While MRC.SEC[1.0] - 01 • Header section of any static or dynamic message buffer while MPC SEC[1:0] = "1x"
	Header and / or data section of any message buffer belonging to the receive EIEO
	2) The Host writes to any register of the Input Buffer while IBCR IBSYH is set to '1'
	1 =Illenal Host access to Input Buffer occurred
	0 =No illegal Host access to Input Buffer occurred
ΙΟΒΑ	Illegal Output buffer Access
	This flag is set by the CC when the Host requests the transfer of a message buffer from the Message RAM to the Output Buffer
	while OBCR.OBSYS is set to '1'.
	1 =Illegal Host access to Output Buffer occurred
	0 =No illegal Host access to Output Buffer occurred
MHF	Message Handler Constraints Flag
	The flag signals a Message Handler constraints violation condition. It is set whenever one of the flags MHDF.SNUA,
	MHDF.SNUB, MHDF.FNFA, MHDF.FNFB, MHDF.TBFA, MHDF.TBFB, MHDF.WAHP changes from '0' to '1'.
	1 =Message Handler failure detected
	0 =No Message Handler failure detected
Chan	nel-specific error flags
EDA	Frror Detected on Channel A
	This bit is set whenever one of the flags ACS.SEDA. ACS.CEDA. ACS.CIA. ACS.SBVA changes from '0' to '1'.
	1 =Error detected on channel A
	0 =No error detected on channel A
LTVA	Latest Transmit Violation Channel A
	The flag signals a latest transmit violation on channel A to the Host.
	1 =Latest transmit violation detected on channel A
	0 =No latest transmit violation detected on channel A
TABA	Transmission Across Boundary Channel A
	The flag signals to the Host that a transmission across a slot boundary occurred for channel A.
	1 =Transmission across slot boundary detected on channel A
	0 =No transmission across slot boundary detected on channel A

- EDB Error Detected on Channel B
 - This bit is set whenever one of the flags ACS.SEDB, ACS.CEDB, ACS.CIB, ACS.SBVB changes from '0' to '1'.
 - 1 =Error detected on channel B

0 =No error detected on channel B

LTVB Latest Transmit Violation Channel B

The flag signals a latest transmit violation on channel B to the Host.

1 =Latest transmit violation detected on channel B

0 =No latest transmit violation detected on channel B

- TABB Transmission Across Boundary Channel B
 - The flag signals to the Host that a transmission across a slot boundary occurred for channel B.

- 1 =Transmission across slot boundary detected on channel B
- 0 =No transmission across slot boundary detected on channel B

18.4.2. Status Interrupt Register (SIR)

The flags are set when the CC detects one of the listed events. The flags remain set until the Host clears them. A flag is cleared by writing a '1' to the corresponding bit position. Writing a '0' has no effect on the flag. A hard reset will also clear the register.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
SIR	R	0	0	0	0	0	0	MTCD	WIDD	0	0	0	0	0	0	MTGA	МЛІВА
0x0024	W							WI SD	WUFB							MISA	WUFA
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	SDS	MBSI	SUCS	SWE	TOBC	TIBC	TI1	TIO	NMVC	RFCL	RFNE	RXI	TXI	CYCS	CAS	WST
	W	525		5005	5.12	1020	inge		110	1	10.02	iu niž			0105	0.115	
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
wst	Wakeup Status																
	This flag is set whenever the wakeup status vector CCSV.WSV[2:0] has changed.																
	 1 =Wakeup status changed 0 =Wakeup status unchanged Collision Avoidance Symbol This flag is set by the CC during STARTUP state when a CAS or a potential CAS was received. 																
CAS																	
	1 =Bit pattern matching the CAS symbol received																
	0 =No bit pattern matching the CAS symbol received																
CYCS		Cycl	e Start I	Interrup	t												
	This	flag is	set by th	ne CC w	vhen a c	commur	nication	cycle st	arts.								
	1 =C	ommur	nication	cycle st	arted												
	0 =N	lo comr	nunicati	ion cycle	e starte	d											
TXI	 .	Iran	smit Int	errupt													
	Ins	flag is	set by th	ne CC a	t the en	id of fra	me tran	smissio	n if bit I	VIBI in th	ne resp	ective m	essage	buffer	is set to	11 (see	;
		Heade	r sectioi	n of a m	essage	butter i	n the ivi	essage	RANI).	MDI -	· 1 ·						
	1 =A	le from	one irar	ne was	transmi	lied from	n a tran	ISMIT DU	$\frac{1}{2}$		I						
DVI	0 -1	D Irame	e transn	nilleu no	Jinaua	ansmit D	uner wi		- 1								
	Thie	flan is	ent hv ti	nupt CC w	honova	or the se	at condit	tion of a	messa	ao huffa	are ND t	lan is fu	ulfillad (e	200 18	8 6 Nov	v Data 1	12/3/4
		ΔT1/2/3	301 by 11 8/4)) an	d if hit M	BI of the	at mass	ane huf	for is so	t to '1' (see tahl		ar section	n of a m		huffer i	n the M	
	RAM	1)	,, an			armess	age bui	101 13 30			cricauc	1 300110	noran	icssage	builderi		Josayc
	1 =At least one ND flag of a receive buffer with MBI = '1' has been set to '1'																
	0 =N	lo ND fl	ag of a	receive	buffer v	with MB	l = '1' h	as been	set to	'1'							
			0														

RFNE	Receive FIFO Not Empty
	This flag is set by the CC when a received valid frame was stored into the empty receive FIFO. The actual state of the receive
	FIFO is monitored in register FSR.
	1 =Receive FIFO is not empty
	0 =Receive FIFO is empty
RFCL	Receive FIFO Critical Level
	This flag is set when the receive FIFO fill level FSR.RFFL[7:0] is equal or greater than the critical level as configured by
	FCL.CL[7:0].
	1 =Receive FIFO critical level reached
	0 =Receive FIFO below critical level
NMVC	Network Management Vector Changed
	This interrupt flag signals a change in the Network Management Vector visible to the Host.
	1 =Network management vector changed
	0 =No change in the network management vector
110	
	This flag is set whenever timer 0 matches the conditions configured in register TOC. A Timer Interrupt 0 is also signalied on
	pin eray_tintu.
	n = nmer interrupt 0 occurred
T 14	Timer Interrupt 0
	This flag is set whenever timer 1 matches the conditions configured in register T1C. A Timer Interrupt 1 is also signalled on
	nin erav tint1
	1 =Timer Interrupt 1 occurred
	0 =No Timer Interrupt 1
тівс	Transfer Input Buffer Completed
	This flag is set whenever a transfer from Input Buffer to the Message RAM has completed and IBCR.IBSYS has been reset
	by the Message Handler.
	1 =Transfer between Input Buffer and Message RAM completed
	0 =No transfer completed
товс	Transfer Output Buffer Completed
	This flag is set whenever a transfer from the Message RAM to the Output Buffer has completed and OBCR.OBSYS has been
	reset by the Message Handler.
	1 =Transfer between Message RAM and Output Buffer completed
	0 =No transfer completed
SWE	Stop Watch Event
	It enabled by the respective control bits located in register S I PW1, a rising of failing edge on pin eray_stpwt, an interrupt 0,1
	event (nsing edge on pin eray_into or eray_int) or a software trigger event will generate a stop watch event.
	n =Stop Watch Event
SIICS	Startup Completed Successfully
0000	This flag is set whenever a startup completed successfully and the CC entered NORMAL_ACTIVE state
	1 =Startup completed successfully
	0 =No startup completed successfully
MBSI	Message Buffer Status Interrupt
	This flag is set by the CC when the message buffer status MBS has changed if bit MBI of that message buffer is set (see
	tableHeader section of a message buffer in the Message RAM).
	1 =Message buffer status of at least one message buffer with MBI = '1' has changed
	0 =No message buffer status change of message buffer with MBI = '1'
SDS	Start of Dynamic Segment
	This flag is set by the CC when the dynamic segment starts.
	1 =Dynamic segment started
	0 =Dynamic segment not yet started

Channel-specific status flags:

WUPA Wakeup Pattern Channel A

This flag is set by the CC when a wakeup pattern was received on channel A. Only set when the CC is in WAKEUP, READY, or STARTUP state, or when in Monitor mode.

1 =Wakeup pattern received on channel A

0 =No wakeup pattern received on channel A

MTSA MTS Received on Channel A (vSS!ValidMTSA)

Media Access Test symbol received on channel A during the last symbol window. Updated by the CC for each channel at the end of the symbol window.

1 =MTS symbol received on channel A

0 =No MTS symbol received on channel A

WUPB Wakeup Pattern Channel B

This flag is set by the CC when a wakeup pattern was received on channel B. Only set when the CC is in WAKEUP, READY, or STARTUP state, or when in Monitor mode.

1 =Wakeup pattern received on channel B

0 =No wakeup pattern received on channel B

MTSB MTS Received on Channel B (vSS!ValidMTSB)

Media Access Test symbol received on channel B during the last symbol window. Updated by the CC for each channel at the end of the symbol window.

1 =MTS symbol received on channel B

0 =No MTS symbol received on channel B

18.4.3. Error Interrupt Line Select (EILS)

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EILS	R	0	0	0	0	0	TADDI	ITVDI	EDDI	0	0	0	0	0	TADAI	ITVAI	EDAI
0x0028	W						TABBL	LIVBL	EDBL						IABAL	LIVAL	EDAL
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	MUEI	IOPAL		EEAI	DEOI	DEDDI	CCLI	CCEI	SEOI	SEDMI	CNAL	DEMCI
	W					MITTL	IOBAL	IIDAL	EFAL	KIUL	FERRE	CCLL	CULL	SFOL	SEDML	CNAL	PENICL
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The Error Interrupt Line Select register assigns an interrupt generated by a specific error interrupt flag from register EIR to one of the two module interrupt lines:

Line

Line

1 =Interrupt assigned to interrupt line eray_int1

0 =Interrupt assigned to interrupt line eray_int0

PEMCL CNAL SFBML	POC Error Mode Changed Interrupt Line Command Not Accepted Interrupt Line Sync Frames Below Minimum Interrupt Line
SFOL	Sync Frame Overflow Interrupt Line
CCFL	Clock Correction Failure Interrupt Line
CCLL	CHI Command Locked Interrupt Line
PERRL	Parity Error Interrupt Line
RFOL	Receive FIFO Overrun Interrupt Line
EFAL	Empty FIFO Access Interrupt Line
IIBAL	Illegal Input Buffer Access Interrupt Line
IOBAL	Illegal Output Buffer Access Interrupt Line
MHFL	Message Handler Constraints Flag Interrupt Line
EDAL	Error Detected on Channel A Interrupt Line
LTVAL	Latest Transmit Violation Channel A Interrupt Line
TABAL	Transmission Across Boundary Channel A Interrupt
EDBL	Error Detected on Channel B Interrupt Line
LTVBL	Latest Transmit Violation Channel B Interrupt Line
TABBL	Transmission Across Boundary Channel B Interrupt

18.4.4. Status Interrupt Line Select (SILS)

The Status Interrupt Line Select register assign an interrupt generated by a specific status interrupt flag from register SIR to one of the two module interrupt lines:

1 =Interrupt assigned to interrupt line eray_int1

0 =Interrupt assigned to interrupt line eray_int0

WSTL CASL	Wakeup Status Interrupt Line Collision Avoidance Symbol Interrupt Line
CYCSL	Cycle Start Interrupt Line
TXIL	Transmit Interrupt Line
RXIL	Receive Interrupt Line
RFNEL	Receive FIFO Not Empty Interrupt Line
RFCLL	Receive FIFO Critical Level Interrupt Line
NMVCL	Network Management Vector Changed Interrupt Line
TIOL	Timer Interrupt 0 Line
TI1L	Timer Interrupt 1 Line
TIBCL	Transfer Input Buffer Completed Interrupt Line
TOBCL	Transfer Output Buffer Completed Interrupt Line
SWEL	Stop Watch Event Interrupt Line
SUCSL	Startup Completed Successfully Interrupt Line
MBSIL	Message Buffer Status Interrupt Line
SDSL	Start of Dynamic Segment Interrupt Line
WUPAL	Wakeup Pattern Channel A Interrupt Line
MTSAL	Media Access Test Symbol Channel A Interrupt Line
WUPBL	Wakeup Pattern Channel B Interrupt Line
MTSBL	Media Access Test Symbol Channel B Interrupt Line

18.4.5. Error Interrupt Enable Set / Reset (EIES, EIER)

The settings in the Error Interrupt Enable register determine which status changes in the Error Interrupt Register will result in an interrupt.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EIES,R	R	0	0	0	0	0				0	0	0	0	0			
S:0x0030F :0x0034	۲ W						TABBE	LTVBE	EDBE						TABAE	LTVAE	EDAE
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	MUFE	IODAE		EEAE	DEOE	DEDDE	CCLE	CCEE	SEOE	SEDME	CNAE	DEMCE
	W					WHIFE	IUDAE	IIDAE	EFAE	KFUE	FEKKE	ULLE	ULLE	SFUE	SUDME	UNAE	FENICE
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The enable bits are set by writing to address 0x0030 and reset by writing to address 0x0034. Writing a '1' sets / resets the specific enable bit, writing a '0' has no effect. Reading from both addresses will result in the same value.

1 =Interrupt enabled

0 =Interrupt disabled

PEMCE CNAE	POC Error Mode Changed Interrupt Enable
SFBME	Sync Frames Below Minimum Interrupt Enable
SFOE	Sync Frame Overflow Interrupt Enable
CCFE	Clock Correction Failure Interrupt Enable
CCLE	CHI Command Locked Interrupt Enable
PERRE	Parity Error Interrupt Enable
RFOE	Receive FIFO Overrun Interrupt Enable
EFAE	Empty FIFO Access Interrupt Enable
IIBAE	Illegal Input Buffer Access Interrupt Enable
IOBAE	Illegal Output Buffer Access Interrupt Enable
MHFE	Message Handler Constraints Flag Interrupt Enable
EDAE	Error Detected on Channel A Interrupt Enable
LTVAE	Latest Transmit Violation Channel A Interrupt Enable
TABAE	Transmission Across Boundary Channel A Interrupt Enable
EDBE	Error Detected on Channel B Interrupt Enable
LTVBE	Latest Transmit Violation Channel B Interrupt Enable
TABBE	Transmission Across Boundary Channel B Interrupt Enable

18.4.6. Status Interrupt Enable Set / Reset (SIES, SIER)

The settings in the Status Interrupt Enable register determine which status changes in the Status Interrupt Register will result in an interrupt.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
SIES,R	R	0	0	0	0	0	0			0	0	0	0	0	0		
S:0x0038 R:0x003C	w							MTSBE	WUPBE							MTSAE	WUPAE
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R W	SDSE	MBSIE	SUCSE	SWEE	TOBCE	TIBCE	TI1E	TI0E	NMVCE	RFCLE	RFNEE	RXIE	TXIE	CYCSE	CASE	WSTE
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The enable bits are set by writing to address 0x0038 and reset by writing to address 0x003C. Writing a '1' sets / resets the specific enable bit, writing a '0' has no effect. Reading from both addresses will result in the same value.

1 =Interrupt enabled

0 =Interrupt disabled

WSTE Wakeup Status Interrupt Enable CASE Collision Avoidance Symbol Interrupt Enable CYCSE Cycle Start Interrupt Enable TXIE Transmit Interrupt Enable **Receive Interrupt Enable** RXIE Receive FIFO Not Empty Interrupt Enable RFNEE RFCLE Receive FIFO Critical Level Interrupt Enable NMVCE Network Management Vector Changed Interrupt Enable TIOE Timer Interrupt 0 Enable TI1E Timer Interrupt 1 Enable TIBCE Transfer Input Buffer Completed Interrupt Enable Transfer Output Buffer Completed Interrupt Enable TOBCE Stop Watch Event Interrupt Enable SWEE SUCSE Startup Completed Successfully Interrupt Enable MBSIE Message Buffer Status Interrupt Enable SDSE Start of Dynamic Segment Interrupt Enable WUPAE Wakeup Pattern Channel A Interrupt Enable MTS Received on Channel A Interrupt Enable MTSAE WUPBE Wakeup Pattern Channel B Interrupt Enable MTSBE MTS Received on Channel B Interrupt Enable

18.4.7. Interrupt Line Enable (ILE)

Each of the two interrupt lines to the Host (eray_int0, eray_int1) can be enabled / disabled separately by programming bit EINT0 and EINT1.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ILE	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0040	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ENIT1	EDITO
	W																EINIU
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

EINT0 Enable Interrupt Line 0 1 =Interrupt line eray_int0 enabled

0 =Interrupt line eray_int0 disabled

EINT1 Enable Interrupt Line 1

1 =Interrupt line **eray_int1** enabled

0 =Interrupt line **eray_int1** disabled

18.4.8. Timer 0 Configuration (T0C)

Absolute timer. Specifies in terms of cycle count and macrotick the point in time when the timer 0 interrupt occurs. When the timer 0 interrupt is asserted, output signal **eray_tint0** is set to '1' for the duration of one macrotick and **SIR.TI0** is set to '1'.

Timer 0 can be activated as long as the POC is either in NORMAL_ACTIVE state or in NORMAL_PASSIVE state. Timer 0 is deactivated when leaving NORMAL_ACTIVE state or NORMAL_PASSIVE state except for transitions between the two states. Before reconfiguration of the timer, the timer has to be halted first by writing bit **TORC** to '0'.

Bit 30 29 28 27 25 20 19 18 31 26 24 23 22 21 17 16 T0C R 0 0 томо томо томо томо Т0МО9 T0MO8 T0MO7 T0MO6 T0MO5 T0MO4 T0MO3 T0MO2 T0MO1 T0MO0 13 12 11 10 W 0x0044 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R 0 0 0 0 0 0 0 T0CC3 T0CC2 TOMS TORC T0CC6 T0CC5 T0CC4 T0CC1 T0CC0 W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TORC **Timer 0 Run Control** 1 =Timer 0 running 0 =Timer 0 halted TOMS Timer 0 Mode Select

1 =Continuous mode

0 =Single-shot mode

TOCC[6:0] Timer 0 Cycle Code

The 7-bit timer 0 cycle code determines the cycle set used for generation of the timer 0 interrupt. For details about the configuration of the cycle code see Section 19.7.2.Cycle Counter Filtering.

T0MO[13:0] Timer 0 Macrotick Offset

Configures the macrotick offset from the beginning of the cycle where the interrupt is to occur. The Timer 0 Interrupt occurs at this offset for each cycle of the cycle set.

Note: The configuration of timer 0 is compared against the macrotick counter value, there is no separate counter for timer 0. In case the CC leaves NORMAL_ACTIVE or NORMAL_PASSIVE state, or if timer 0 is halted by Host command, output signal eray_tint0 is reset to '0' immediately.

18.4.9. Timer 1 Configuration (T1C)

Relative timer. After the specified number of macroticks has expired, the timer 1 interrupt is asserted, output signal **eray_tint1** is set to '1' for the duration of one macrotick and **SIR.TI1** is set to '1'.

Timer 1 can be activated as long as the POC is either in NORMAL_ACTIVE state or in NORMAL_PASSIVE state. Timer 1 is deactivated when leaving NORMAL_ACTIVE state or NORMAL_PASSIVE state except for transitions between the two states. Before reconfiguration of the timer, the timer has to be halted first by writing bit **T1RC** to '0'.

0 =Timer 1 halted

T1MS Timer 1 Mode Select

1 =Continuous mode

0 =Single-shot mode

T1MC[13:0] Timer 1 Macrotick Count

When the configured macrotick count is reached the timer 1 interrupt is generated. In case the configured macrotick count is not within the valid range, timer 1 will not start.

Valid values are:

2 to 16383 MT in continuous mode

1 to 16383 MT in single-shot mode

Note: In case the CC leaves NORMAL_ACTIVE or NORMAL_PASSIVE state, or if timer 1 is halted by Host command, output signal eray_tint1 is reset to '0' immediately.

18.4.10. Stop Watch Register 1 (STPW1)

The stop watch is activated by a rising or falling edge on pin **eray_stpwt**, by an interrupt 0,1 event (rising edge on pin **eray_int0** or **eray_int1**) or by the Host by writing bit **SSWT** to '1'. With the macrotick counter increment following next to the stop watch activation the actual cycle counter and macrotick values are captured in register STPW1 while the slot counter values for channel A and B are captured in register STPW2.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
STPW1	R	0	0	SMTV 13	SMTV 12	SMTV 11	SMTV 10	SMTV9	SMTV8	SMTV7	SMTV6	SMTV5	SMTV4	SMTV3	SMTV2	SMTV1	SMTV0
0x004C	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	SCCV5	SCCV4	SCCV3	SCCV2	SCCV1	SCCV0	0	EDIT1	EDITO	FFTD	GGWT	EDGE	CUDIC	FOUT
	W										EINTI	EINIO	EEIP	55 W I	EDGE	SWMS	ESWI
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ESWT		Fnab	le Ston	Watch	Triaaer												
	fenal	bled ar	n edae (on input	erav s	towt or	an inter	rupt 0.1	event (risina e	dae on r	oin erav	int0 o	r erav i	nt1) act	tivates t	he stop
v	vatch	. In sin	gle-sho	ot mode	this bit	is reset	to '0' a	fter the	stop wa	tch eve	ent occu	rred.			,		ne etep
1	=Sto	op wate	ch trigg	er enab	led												
C) =Sto	op wate	ch trigg	er disab	led												
SWMS	VMS Stop Watch Mode Select 1 =Continuous mode																
1	1 =Continuous mode 0 =Single-shot mode																
C	0 =Single-shot mode DGE Stop Watch Trigger Edge Select																
EDGE	DGE Stop Watch Trigger Edge Select 1 =Rising edge																
1	1 =Rising edge 0 =Falling edge																
COMT	0 =Falling edge SWT Software Stop Watch Trigger																
33001	SWT Software Stop Watch Trigger When the Host writes this bit to '1' the stop watch is activated. After the actual cycle counter and macrotick value are stored																
v	When the Host writes this bit to '1' the stop watch is activated. After the actual cycle counter and macrotick value are stored in the Stop Watch register this bit is reset to '0'. The bit is only writeable while ESWT = '0'.															Sloreu	
1	in the Stop Watch register this bit is reset to '0'. The bit is only writeable while ESWT = '0'.																
Ċ	1 =Stop watch activated by software trigger 0 =Software trigger reset																
EETP		Enab	le Exte	rnal Tric	iger Pin	l											
E	Enabl	es stop	o watch	ı trigger	event v	ia pin e	ray_stp	wt if ES	SWT = '	1'.							
1	=Ed	lge on	pin era	y_stpw	t trigger	s stop v	vatch										
C) =Sto	op wate	ch trigg	er via pi	in eray _	_stpwt @	disableo	t									
EINT0		Enab	le Inter	rupt 0 T	rigger												
E	Enabl	es stop	o watch	trigger	by inter	rupt 0 e	event if I	ESWT =	= '1'.								
1	=Int	errupt	0 event	t triggers	s stop w	atch											
	=Sto	op wate	ch trigg	er by int	terrupt () disable	ed										
EINI1	- 	Enab	le inter	rupt 1 I	rigger		iont if F		·,,,								
1	inabi	es stop	1 ovon	t trigger	by inter	rupt rev		:5001 =	1.								
י ר) =St	on wat	ch triad	er by inf	terrunt '	aton 1 disabl	ed										
SCCVIS	; _3. 6:01	Ston	Watch	Capture	ed Cycle		eu er Value	ڊ د									
2001[0	State	of the	cvcle c	ounter v	when the	e stop w	atch ev	- vent occ	urred. \	/alid va	lues are	e 0 to 63	3.				
SMTV[1	3:0]	Stop	Watch	Capture	d Macr	otick Va	lue										
5	State	of the	macrot	ick coun	iter whe	n the st	op wate	ch even	t occurr	ed. Vali	id value	s are 0	to 1600	0.			
E	Bits E	SWT a	and SS	WT can	not be s	et to '1'	simulta	neously	y. In this	s case t	he write	access	s is igno	red, an	d both b	oits keep	o their
p	orevic	ous val	ues. Eit	ther the	externa	l stop w	atch tri	gger or	the soft	ware st	op wate	h trigge	r may b	be used		-	

18.4.11. Stop Watch Register 2 (STPW2)

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
STPW2	R	0	0	0	0	0	SSCVB 10	SSCVB	SSCVB 8	SSCVB 7	SSCVB 6	SSCVB 5	SSCVB	SSCVB	SSCVB	SSCVB	SSCVB 0
0x0050	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	SSCVA 10	SSCVA 9	SSCVA 8	SSCVA 7	SSCVA 6	SSCVA 5	SSCVA 4	SSCVA 3	SSCVA 2	SSCVA	SSCVA 0
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SSCVA[10:0] Stop Watch Captured Slot Counter Value Channel A

State of the slot counter for channel A when the stop watch event occurred. Valid values are 0 to 2047.

SSCVB[10:0] Stop Watch Captured Slot Counter Value Channel B State of the slot counter for channel B when the stop watch event occurred. Valid values are 0 to 2047.

18.5. CC Control Registers

This section describes the registers provided by the CC to allow the Host to control the operation of the CC. The FlexRay protocol specification requires the Host to write application configuration data in CONFIG state only. Please consider that the configuration registers are not locked for writing in DEFAULT_CONFIG state.

The configuration data is reset when DEFAULT_CONFIG state is entered from hard reset. To change POC state from DEFAULT_CONFIG to CONFIG state the Host has to apply CHI command CONFIG. If the Host wants the CC to leave CONFIG state, the Host has to proceed as described in Section 18.3.3.Lock Register (LCK).

All bits marked with an asterisk * can be updated in DEFAULT_CONFIG or CONFIG state only!

18.5.1. SUC Configuration Register 1 (SUCC1)

CMD[3:0] CHI Command Vector

The Host may write any CHI command at any time, but certain commands are enabled only in certain POC states. If a command is not enabled, it will not be executed, the CHI command vector **CMD[3:0]** will be reset to "0000" = command_not_accepted, and flag **EIR.CNA** will be set to '1'. In this case **EIR.CCL** is set to '1' together with **EIR.CNA**; the CHI command needs to be repeated. When applying a POC state change command while the CC is already in the requested POC state, this command is ignored.

0000 = command not accepted 0001 =CONFIG 0010 = READY 0011 =WAKEUP 0100 =RUN 0101 = ALL SLOTS 0110 =HALT 0111 =FREEZE 1000 = SEND MTS 1001 =ALLOW COLDSTART 1010 = RESET STATUS INDICATORS 1011 = MONITOR MODE 1100 =CLEAR RAMS 1101 =reserved 1110 =reserved 1111 =reserved

Reading **CMD[3:0]** shows whether the last CHI command was accepted. The actual POC state is monitored by **CCSV.POCS[5:0]**. The reserved CHI commands belong to the hardware test functions.

command_not_accepted

CMD[3:0] is reset to "0000" due to one of the following conditions:

- Illegal command applied by the Host
- Host applied command to leave CONFIG state without preceding config lock key
- Host applied new command while execution of the previous Host command has not completed
- Host writes command_not_accepted

When **CMD[3:0]** is reset to "0000", **EIR.CNA** is set, and - if enabled - an interrupt is generated. Commands which are not accepted are not executed.

CONFIG

Go to POC state CONFIG when called in POC states DEFAULT_CONFIG, READY, or in MONITOR_MODE. When called in HALT state the CC transits to POC state DEFAULT_CONFIG. When called in any other state, **CMD[3:0]** will be reset to "0000" = command_not_accepted.

READY

Go to POC state READY when called in POC states CONFIG, NORMAL_ACTIVE, NORMAL_PASSIVE, STARTUP, or WAKEUP. When called in any other state, **CMD[3:0]** will be reset to "0000" = command_not_accepted.

WAKEUP

Go to POC state WAKEUP when called in POC state READY. When called in any other state, **CMD[3:0]** will be reset to "0000" = command_not_accepted.

RUN

Go to POC state STARTUP when called in POC state READY. When called in any other state, **CMD[3:0]** will be reset to "0000" = command_not_accepted.

ALL_SLOTS

Leave SINGLE slot mode after successful startup / integration at the next end of cycle when called in POC states NORMAL_ACTIVE or NORMAL_PASSIVE. When called in any other state, **CMD[3:0]** will be reset to "0000" = command not accepted.

HALT

Set halt request **CCSV.HRQ** and go to POC state HALT at the next end of cycle when called in POC states NORMAL_ACTIVE or NORMAL_PASSIVE. When called in any other state, **CMD[3:0]** will be reset to "0000" = command_not_accepted.

FREEZE

Set the freeze status indicator CCSV.FSI and go to POC state HALT immediately. Can be called from any state.

SEND_MTS

Send single MTS symbol during the next following symbol window on the channel configured by **MTSA**, **MTSB**, when called in POC state NORMAL_ACTIVE after CC entered ALL slot mode

(CCSV.SLM[1:0] = "11"). When called in any other state, or when called while a previously requested MTS has not yet been transmitted, CMD[3:0] will be reset to "0000" = command_not_accepted.

ALLOW_COLDSTART

The command resets **CCSV.CSI** to enable the node to become leading coldstarter. When called in states DEFAULT_CONFIG, CONFIG, or HALT, **CMD[3:0]** will be reset to "0000" = command_not_accepted. To become leading coldstarter it is also required that both **TXST** and **TXSY** are set.

RESET_STATUS_INDICATORS

Reset status flags CCSV.FSI, CCSV.HRQ, CCSV.CSNI, CCSV.CSAI, CCSV.WSV[2:0], and register CCEV. May be called in any state.

MONITOR_MODE

Enter MONITOR_MODE when called in POC state CONFIG. In this mode the CC is able to receive FlexRay frames and CAS / MTS symbols. It is also able to detect coding errors. The temporal integrity of received frames is not checked. This mode can be used for debugging purposes, e.g. in case that the startup of a FlexRay network fails. When called in any other state, **CMD[3:0]** will be reset to "0000" = command_not_accepted. For details see 19.5.4.MONITOR_MODE.

CLEAR_RAMS

Sets **MHDS.CRAM** when called in DEFAULT_CONFIG or CONFIG state. When called in any other state, **CMD[3:0]** will be reset to "0000" = command_not_accepted. **MHDS.CRAM** is also set when the CC leaves hard reset. By setting **MHDS.CRAM** all internal RAM blocks are initialized to zero. During the initialization of the RAMs, **PBSY** will show POC busy. Access to the configuration and status registers is possible during execution of CHI command CLEAR_RAMS.

The initialization of the E-Ray internal RAM blocks requires 2048 **eray_bclk** cycles. There should be no Host access to IBF or OBF during initialization of the internal RAM blocks after hard reset or after assertion of CHI command CLEAR_RAMS. Before asserting CHI command CLEAR_RAMS the Host should make sure that no transfer between Message RAM and IBF / OBF or the Transient Buffer RAMs is ongoing. This command also resets the Message Buffer Status registers MHDS, LDTS, FSR, MHDF, TXRQ1/2/3/4, NDAT1/2/3/4, and MBSC1/2/3/4.

Note: All accepted commands with exception of CLEAR_RAMS and SEND_MTS will cause a change of register CCSV after at most 8 cycles of the slower of the two clocks **eray_bclk** and **eray_sclk**, counted from the falling edge of the CHI input signal **eray_select**, assumed that POC was not busy when the command was applied and that no POC state change was forced by bus activity in that time frame. Reading register CCSV will show data that is delayed by synchronization from **eray_sclk** to **eray_bclk** domain and by the Host-specific CPU interface.

PBSY POC Busy

Signals that the POC is busy and cannot accept a command from the Host. **CMD[3:0]** is locked against write accesses. Set to '1' after hard reset during initialization of internal RAM blocks.

- 1 =POC is busy, CMD[3:0] locked
- 0 = POC not busy, CMD[3:0] writeable
- TXST Transmit Startup Frame in Key Slot (pKeySlotUsedForStartup)

Defines whether the key slot is used to transmit startup frames. The bit can be modified in DEFAULT_CONFIG or CONFIG state only.

- 1 =Key slot used to transmit startup frame, node is leading or following coldstarter
- 0 =No startup frame transmission in key slot, node is non-coldstarter
- **TXSY** Transmit Sync Frame in Key Slot (pKeySlotUsedForSync)

Defines whether the key slot is used to transmit sync frames. The bit can be modified in DEFAULT_CONFIG or CONFIG state only.

1 =Key slot used to transmit sync frame, node is sync node

0 =No sync frame transmission in key slot, node is neither sync nor coldstart node

The protocol requires that both bits **TXST** and **TXSY** are set for coldstart nodes.

CSA[4:0] Cold Start Attempts (gColdStartAttempts)

Configures the maximum number of attempts that a cold starting node is permitted to try to start up the network without receiving any valid response from another node. It can be modified in DEFAULT_CONFIG or CONFIG state only. Must be identical in all nodes of a cluster. Valid values are 2 to 31.

σταιά	•01 Passive to Active (nAllowPassiveToActive)
	Defines the number of consecutive even / odd cycle nairs that must have valid clock correction terms before the C.C. is allowed
	to transit from NORMAL PASSIVE to NORMAL ACTIVE state. If set to "00000" the CC is not allowed to transit from
	NORMAL PASSIVE to NORMAL ACTIVE state. It can be modified in DEFAULT CONFIG or CONFIG state only. Valid
	values are 0 to 31 even / odd cycle pairs.
wucs	Wakeup Channel Select (pWakeupChannel)
	With this bit the Host selects the channel on which the CC sends the Wakeup pattern. The CC ignores any attempt to change
	the status of this bit when not in DEFAULT CONFIG or CONFIG state.
	1 =Send wakeup pattern on channel B
	0 =Send wakeup pattern on channel A
TSM	Transmission Slot Mode (pSingleSlotEnabled)
	Selects the initial transmission slot mode. In SINGLE slot mode the CC may only transmit in the preconfigured key slot. The
	key slot ID is configured in the header section of message buffer 0 respectively message buffers 0 and 1 depending on bit
	MRC.SPLM. In case TSM = '1', message buffer 0 respectively message buffers 0,1 can be (re)configured in
	DEFAULT_CONFIG or CONFIG state only. In ALL slot mode the CC may transmit in all slots. TSM is a configuration bit which
	can only be set / reset by the Host. The bit can be written in DEFAULT_CONFIG or CONFIG state only. The CC changes to
	ALL slot mode when the Host successfully applied the ALL_SLOTS command by writing CMD[3:0] = "0101" in POC states
	NORMAL_ACTIVE or NORMAL_PASSIVE. The actual slot mode is monitored by CCSV.SLM[1:0].
	1 =SINGLE Slot Mode (default after hard reset)
	0 =ALL Slot Mode
HCSE	Halt due to Clock Sync Error (pAllowHaltDueToClock)
	Controls the transition to HALT state due to a clock synchronization error. The bit can be modified in DEFAULT_CONFIG or
	CONFIG state only.
	1 =CC will enter HALT state
	0 =CC will enter / remain in NORMAL_PASSIVE
MTSA	Select Channel A for MTS Transmission
	The bit selects channel A for MTS symbol transmission. The flag is reset by default and may be modified only in
	DEFAULT_CONFIG or CONFIG state.
	1 = Channel A selected for MTS transmission
MTOD	U =Channel A disabled for MTS transmission Select Channel B for MTS Transmission
IVI I SD	The bit celecte channel P for MTS symbol transmission. The flag is react by default and may be medified only in
	DEFAULT CONFIG or CONFIG state
	1 =Channel B selected for MTS transmission
	0 =Channel B disabled for MTS transmission
	If both bits MTSA and MTSB are set to '1' an MTS symbol will be transmitted on both channels when requested by writing
	CMDI3:01 = "1000".
ССНА	Connected to Channel A (pChannels)
	Configures whether the node is connected to channel A.
	1 =Node connected to channel A (default after hard reset)
	0 =Not connected to channel A
ССНВ	Connected to Channel B (pChannels)
	Configures whether the node is connected to channel B.
	1 =Node connected to channel B (default after hard reset)
	0 =Not connected to channel B

18.5.2. SUC Configuration Register 2 (SUCC2)

The CC accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
SUCC2	R	0	0	0	0	ITN2*	I TNO*	ITN1*	I TNO*	0	0	0	1.1.20*	IT10*	1 T 1 0 *	IT17*	1.1.1.4*
0x0084	W					LINS	LINZ	LINI	LINU.				L120.	L119.	LII8.	LII/	LIIU
Reset		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	1716*	1.1.14	1.1.1.2*	1.71.2*	1711*	IT10*	1 70*	I TO*	I T7*	1.7.2*	1.776*	IT4*	1.7.2*	I TO*	1.771*	1.70*
	W	L113*	L114*	LII3*	LIIZ*	LIII*	L110*	L19*	L18*	LI/*	L10*	L13*	L14*	L13*	LI2*	LII*	L10*
Reset		0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0

LT[20:0] Listen Timeout (pdListenTimeout)

Configures wakeup / startup listen timeout in μ T. The range for pdListenTimeout is 1284 to 1283846 μ T.

LTN[3:0] Listen Timeout Noise (gListenNoise - 1) Configures the upper limit for startup and wakeup listen timeout in the presence of noise expressed as a multiple of pdListenTimeout. The range for gListenNoise is 2 to 16. LTN[3:0] must be configured identical in all nodes of a cluster.

Note: The wakeup / startup noise timeout is calculated as follows: pdListenTimeout • gListenNoise = LT[20:0] • (LTN[3:0] + 1)

18.5.3. SUC Configuration Register 3 (SUCC3)

The CC accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
SUCC3	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0088	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	0	0	0	WCE2*	WCE2*	WCE1*	WCE0*	WCD2*	WCD2*	WCD1*	WCD0*
	W									WCF3	WCF2	WCF1	WCFU.	wCP3	wCP2	WCPT	WCP0*
Reset		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1

WCP[3:0] Maximum Without Clock Correction Passive (gMaxWithoutClockCorrectionPassive)

Defines the number of consecutive even / odd cycle pairs with missing clock correction terms that will cause a transition from NORMAL_ACTIVE to NORMAL_PASSIVE state. Must be identical in all nodes of a cluster. Valid values are 1 to 15 cycle pairs. **WCF[3:0]** Maximum Without Clock Correction Fatal (gMaxWithoutClockCorrectionFatal)

Defines the number of consecutive even / odd cycle pairs with missing clock correction terms that will cause a transition from NORMAL_ACTIVE or NORMAL_PASSIVE to HALT state. Must be identical in all nodes of a cluster. Valid values are 1 to 15 cycle pairs.

18.5.4. NEM Configuration Register (NEMC)

The CC accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
NEMC	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x008C	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	0	0	0	0	0	0	0	ND (1.2*	NDAL 2*	NIMI 1*	NIMI O*
	W													NML3*	NML2*	NML1*	NML0*
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

NML[3:0] Network Management Vector Length (gNetworkManagementVectorLength)

These bits configure the length of the NM vector. The configured length must be identical in all nodes of a cluster. Valid values are 0 to 12 bytes.

18.5.5. PRT Configuration Register 1 (PRTC1)

The CC accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PRTC1	R							0									
0x0090	W	RWP5*	RWP4*	RWP3*	RWP2*	RWP1*	RWP0*		RXW8*	RXW7*	RXW6*	RXW5*	RXW4*	RXW3*	RXW2*	RXW1*	RXW0*
Reset		0	0	0	0	1	0	0	0	0	1	0	0	1	1	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	BRP1*	BRP0*	SPP1*	SPP0*	0	CASM6	CASM5*	CASM4*	CASM3*	CASM2*	CASM1*	CASM0*	TSST3*	TSST2*	TSST1*	TSST0*
	W			~~~~	~~~~												
Reset		0	0	0	0	0	1	1	0	0	0	1	1	0	0	1	1
TSST[3:	01	Tran	smissio	n Start s	Sequen	ce Tran	smitter	(adTSS	Transm	nitter)							
C	onfi	gures t	he dura	tion of t	he Tran	smissio	n Start	Sequen	ice (TSS	S) in terr	ns of bit	times (1 bit tim	e = 4 μ]	Γ = 100r	າs @ 10	Mbps).
Μ	ust	be ide	ntical in	all node	es of a o	cluster.	Valid va	alues ar	e 3 to 1	5 bit tim	nes.	,		•		•	• /
CASM[6	SM[6:0] Collision Avoidance Symbol Max (gdCASRxLowMax) Configures the upper limit of the acceptance window for a collision avoidance symbol (CAS). CASM6 is fixed to '1'. Valid																
С	Configures the upper limit of the acceptance window for a collision avoidance symbol (CAS). CASM6 is fixed to '1'. Valid values are 67 to 99 bit times.																
	values are 67 to 99 bit times. [1:0] Strobe Point Position Defines the sample count value for strobing. The strobed bit value is set to the veted value when the sample count is																
5PP[1:0]	 ofin	Stron os tho			n alua fa	r etrobin	a Tho	etrobod	bit valu	io io cot	to the v	unted ve		on tha a	amplo	count ic	
in	crer	es ille nenter	to the	value co	alue iui onfigure	d by S	PPI1·01	Slibbeu	Dit valu	10 15 501					ample	Journers	
0(Defines the sample count value for strobing. The strobed bit value is set to the voted value when the sample count is incremented to the value configured by SPP[1:0] . 00, 11=Sample 5 (default)																
0	incremented to the value configured by SPP[1:0] . 00, 11=Sample 5 (default) 01 =Sample 4																
1(00, 11=Sample 5 (default) 01 =Sample 4 10 =Sample 6																
TI	he c	urrent	revisior	1 2.1 of	the Fle>	Ray pro	otocol re	equires	that SP	P[1:0]	= "00". ⁻	The alte	rnate st	trobe po	oint posi	itions co	ould be
us	sed	to com	pensat	e for as	ymmetri	ies in th	e physi	cal laye	r.								
BRP[1:0]	Baud	Rate F	rescale	r (gdSa	mpleCl	ockPeri	od, pSa	mplesP	erMicro	tick)						
TI	he E	Baud R	ate Pre	scaler c	onfigur	es the b	aud rate	e on the	FlexRa	ay bus.	The ba	ud rates	listed b	pelow a	re valid	with a s	ample
Cl	OCK ⊃_1	eray_	SCIK = b		One bi	t time a	lways c	onsists	of 8 sar	nples in	idepend	lent of t	he conf	igured b	baud rat	e.	
00) = 1		/s (deta	uit)) E no -	1											
gi p	10a Sam			100 = 12	2.5 //S = /1T =	25 ns)	y_scik										
0 [,]	3an 1 =5	MRit/			(ιμι –	25115)											
a	dSa	mpleC	, lockPer	iod = 25	5 ns = 2	• erav	sclk										
a a	Sam	Peslar	erMicro	tick = 1	(1 uT =	25 ns)											
1(), 1 [.]	1 =2.5	MBit/s		· ·	,											
go	dSa	mpleC	lockPer	<mark>iod</mark> = 50) ns = 4	• eray_	sclk										
p	Sam	plesPe	erMicro	tick = 1	(1 μT =	50 ns)											
RXW[8:0)]	Wake	eup Syr	nbol Re	ceive V	Vindow	Length	(gdWak	eupSyr	nbolRx\	Vindow)					
C	onfi	gures t	the num	ber of b	it times	used b	y the no	ode to te	est the c	luration	of the r	eceived	l wakeu	p patter	n. Must	be ider	itical in
al	i no	des of	a cluste	er. Valid	values	are 76	to 301 k	oit times	5.								
KWP[5:0	기 onfi	кере		of IX W	akeup F		(pvvake		n) Ty wok			lid volu	an are C	to 62			
C	UIII	guies l			epenno	iis (seq	uences)		IX Wafe	sup syn	ibul. va		es ale 2	. 10 03.			

18.5.6. PRT Configuration Register 2 (PRTC2)

The CC accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PRTC2	R	0	0	TVI 5*	TVI 4*	TVI 2*	TVI 2*	TVI 1*	TVI 0*	TVI7*	TVI6*	TVI5*	TVI4*	TVI2*	TVI2*	TVI1*	TV10*
0x0094	W			IAL3.	IAL4	IAL3	IAL2.	IALI	IALU.	1 A17	1 110	1 713.	1 A14	1 113 .	1 A12	1 All ·	1 X10 .
Reset		0	0	0	0	1	1	1	1	0	0	1	0	1	1	0	1
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	DVI C*	DVI 4*	DVI 2*	DVI 0*	DVI 1*	DVI 0*	0	0	DVIC*	DVIA*	DVI2*	DVI0*	D.VI.1 *	DVI0*
	W			KAL3*	KXL4*	KXL3*	KXL2*	KXL1*	KXL0*			KXI3*	KXI4*	KX13*	KXI2*	KXII*	KXI0*
Reset		0	0	0	0	1	0	1	0	0	0	0	0	1	1	1	0

RXI[5:0] Wakeup Symbol Receive Idle (gdWakeupSymbolRxIdle)

Configures the number of bit times used by the node to test the duration of the idle phase of the received wakeup symbol. Must be identical in all nodes of a cluster. Valid values are 14 to 59 bit times.

RXL[5:0] Wakeup Symbol Receive Low (gdWakeupSymbolRxLow)

Configures the number of bit times used by the node to test the duration of the low phase of the received wakeup symbol. Must be identical in all nodes of a cluster. Valid values are 10 to 55 bit times.

TXI[7:0] Wakeup Symbol Transmit Idle (gdWakeupSymbolTxIdle)

Configures the number of bit times used by the node to transmit the idle phase of the wakeup symbol. Must be identical in all nodes of a cluster. Valid values are 45 to 180 bit times.

TXL[5:0] Wakeup Symbol Transmit Low (gdWakeupSymbolTxLow) Configures the number of bit times used by the node to transmit the low phase of the wakeup symbol. Must be identical in all nodes of a cluster. Valid values are 15 to 60 bit times.

18.5.7. MHD Configuration Register (MHDC)

The CC accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MHDC	R	0	0	0	SI T12*	SI T11*	SI T10*	SI TO*	CI T0*	SI T7*	CI TC*	CI T5*	SI T4*	SI T2*	SI T2*	SI T1*	SI T0*
0x0098	W				SLI12.	SLITT	SL110.	SL19.	SL10.	SL17	SL10.	SL15	SL14.	SL15	SL12	SLIT.	SLIU.
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	0	0	0	0	CEDI (*	CEDI 6*	CEDI 4*	CEDI 2*	CEDI 0*	CEDI 1*	CEDI 0*
	W										SFDL6*	SFDL5*	SFDL4*	SFDL3*	SFDL2*	SFDL1*	SFDL0*
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SFDL[6:0] Static Frame Data Length (gPayloadLengthStatic)

Configures the cluster-wide payload length for all frames sent in the static segment in double bytes. The payload length must be identical in all nodes of a cluster. Valid values are 0 to 127.

SLT[12:0] Start of Latest Transmit (pLatestTx)

Configures the maximum minislot value allowed before inhibiting frame transmission in the dynamic segment of the cycle. There is no transmission in dynamic segment if **SLT[12:0]** is set to zero. Valid values are 0 to 7981 minislots.

18.5.8. GTU Configuration Register 1 (GTUC1)

The CC accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
GTUC1	R	0	0	0	0	0	0	0	0	0	0	0	0	UT10*	UT10*	UT17*	UT16*
0x00A0	W													0119.	0118.	0117	0110.
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	UT15*	UT14*	UT12*	UT12*	UT11*	UT10*	UT0*	UT0*	UT7*	UT4*	UT5*	UT4*	UT2*	1172*	UT1*	UT0*
	W	0113.	0114	0113	0112.	0111.	0110.	019	018.	017	010	013	014	013.	012.	011.	010.
Reset		0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0

UT[19:0] Microtick per Cycle (pMicroPerCycle)

Configures the duration of the communication cycle in microticks. Valid values are 640 to 640000 μ T.

18.5.9. GTU Configuration Register 2 (GTUC2)

The CC accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
GTUC2	R	0	0	0	0	0	0	0	0	0	0	0	0	SNIM2*	SNIM3*	SNM1*	SNM0*
0x00A4	W													SINNIS	SINIVIZ -	SINIVIT	SINNO
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	MDC12*	MDC12*	MDC11*	MDC10*	MDC0*	MDC0*	MDC7*	MDC(*	MDC5*	MDC4*	MDC2*	MDC2*	MDC1*	MDC0*
	W			WIPC13*	WIPC12*	WIPC11*	MPC10*	WPC9*	WIPC8*	WIPC/*	WPC0*	WPC3*	WIPC4*	WPC3*	WPC2*	MPC1*	WIPC0*
Reset		0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0

MPC[13:0] Macrotick Per Cycle (gMacroPerCycle)

Configures the duration of one communication cycle in macroticks. The cycle length must be identical in all nodes of a cluster. Valid values are 10 to 16000 MT.

SNM[3:0] Sync Node Max (gSyncNodeMax)

Maximum number of frames within a cluster with sync frame indicator bit **SYN** set to '1'. Must be identical in all nodes of a cluster. Valid values are 2 to 15.

18.5.10. GTU Configuration Register 3 (GTUC3)

The CC accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
GTUC3	R	0	MOD(*	MODE	MIOD4*	MOD2*	MIOD2*	MIOD1*	MODO*	0		MOAS*	MIO 4.4*	MIO 4.2*	MIO 4 2*	MIO 4.1*	MIOA0*
0x00A8	W		MIOB0*	MIOB2*	MIOB4*	MIOB3*	MIOB2*	MIOB1*	MIOR0*		MIOA6*	MIOA5*	MIOA4*	MIOA3*	MIOA2*	MIOA1*	MIOA0*
Reset		0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	111007*	UIOD(*	LUODS*	LUOD 4*	LUOD2*	LUODA	LUOD1*	LUODA*	1110 17*		UIO A 5*	1110 1 1*	1110 1 2*	1110 12*	1110 4 1*	111010*
	W	UIOB/*	01086*	01085*	010B4*	01083*	010B2*	010B1*	010B0*	UIOA/*	UIUA6*	010A5*	UIUA4*	010A3*	010A2*	UIUA1*	UIOA0*
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

UIOA[7:0] Microtick Initial Offset Channel A (pMicroInitialOffset[A])

Configures the number of microticks between the actual time reference point on channel A and the subsequent macrotick boundary of the secondary time reference point. The parameter depends on pDelayCompensation[A] and therefore has to be set for each channel independently. Valid values are 0 to 240 μ T.

UIOB[7:0] Microtick Initial Offset Channel B (pMicroInitialOffset[B])

Configures the number of microticks between the actual time reference point on channel B and the subsequent macrotick boundary of the secondary time reference point. The parameter depends on pDelayCompensation[B] and therefore has to be set for each channel independently. Valid values are 0 to 240 µT.

MIOA[6:0] Macrotick Initial Offset Channel A (pMacroInitialOffset[A])

Configures the number of macroticks between the static slot boundary and the subsequent macrotick boundary of the secondary time reference point based on the nominal macrotick duration. Must be identical in all nodes of a cluster. Valid values are 2 to 72 MT.

MIOB[6:0] Macrotick Initial Offset Channel B (pMacroInitialOffset[B])

Configures the number of macroticks between the static slot boundary and the subsequent macrotick boundary of the secondary time reference point based on the nominal macrotick duration. Must be identical in all nodes of a cluster. Valid values are 2 to 72 MT.

18.5.11. GTU Configuration Register 4 (GTUC4)

The CC accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. For details about configuration of NIT[13:0] and OCS[13:0] see Section 19.1.5. Configuration of NIT Start and Offset Correction Start.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
GTUC4	R	0	0	00813*	00812*	00811*	00810*	0050*	0058*	0087*	0056*	0085*	0054*	0053*	0052*	0051*	0050*
0x00AC	W			00315	00312	00311	00310	0039	0038	0037	0050	0035	0034	0035	0032	0031	0030
Reset		0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	NIT13*	NIT12*	NIT11*	NIT10*	NIT0*	NIT9*	MIT7 *	NIT6*	NIT5*	NIT4*	NIT3*	NIT2*	NIT1*	NIT0*
	W			11113	111112	191111	111110	11119	11110	1111/	INITO.	11113	11114	11113	11112	11111	11110
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1

NIT[13:0] Network Idle Time Start (gMacroPerCycle - gdNIT - 1)

Configures the starting point of the Network Idle Time NIT at the end of the communication cycle expressed in terms of macroticks from the beginning of the cycle. The start of NIT is recognized if

Macrotick = gMacroPerCycle - gdNIT -1 and the increment pulse of Macrotick is set. Must be identical in all nodes of a cluster. Valid values are 7 to 15997 MT.

OCS[13:0] Offset Correction Start (gOffsetCorrectionStart - 1)

Determines the start of the offset correction within the NIT phase, calculated from start of cycle. Must be identical in all nodes of a cluster. For cluster consisting of E-Ray implementations only, it is sufficient to program **OCS = NIT +** 1. Valid values are 8 to 15998 MT.

18.5.12. GTU Configuration Register 5 (GTUC5)

The CC accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
GTUC5	R	DEC7*	DEC(*	DEC(*	DEC4*	DEC2*	DEC2*	DEC1*	DEC0*	0	0	0	CDD4*	CDD2*	CDD3*	CDD1*	
0x00B0	W	DEC /*	DEC0*	DEC5*	DEC4*	DEC3*	DEC2*	DEC1*	DEC0*				CDD4*	CDD3*	CDD2*	CDD1*	CDD0*
Reset		0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	DCD7*	DCD6*	DCD5*	DCD4*	DCD2*	DCD1*	DCD1*	DCD0*		DCA6*	DCA5*	DC 4.4*	DCA2*	DC 4 2*		
	W	DCB/*	DCB0*	DCB2*	DCB4*	DCB3*	DCB2*	DCBI*	DCB0*	DCA/*	DCA0*	DCA3*	DCA4*	DCA3*	DCA2*	DCAI*	DCA0*
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

DCA[7:0] Delay Compensation Channel A (pDelayCompensation[A])

Used to compensate for reception delays on the indicated channel. This covers assumed propagation delay up to cPropagationDelayMax for microticks in the range of 0.0125 to 0.05µs. In practice, the minimum of the propagation delays of all sync nodes should be applied.

Valid values are 0 to 200 $\mu T.$

DCB[7:0] Delay Compensation Channel B (pDelayCompensation[B])

Used to compensate for reception delays on the indicated channel. This covers assumed propagation delay up to cPropagationDelayMax for microticks in the range of 0.0125 to 0.05μ s. In practice, the minimum of the propagation delays of all sync nodes should be applied.

Valid values are 0 to 200 $\mu T.$

CDD[4:0] Cluster Drift Damping (pClusterDriftDamping) Configures the cluster drift damping value used in clock synchronization to minimize accumulation of rounding errors. Valid values are 0 to 20 μT.

DEC[7:0] Decoding Correction (pDecodingCorrection)

Configures the decoding correction value used to determine the primary time reference point. Valid values are 14 to 143 µT.

18.5.13. GTU Configuration Register 6 (GTUC6)

The CC accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
GTUC6	R	0	0	0	0	0	MOD	MOD0*	MOD0*	MOD7*	MOD(*	MOD5*	MOD4*	MODIX	MOD1*	MOD1*	MODO*
0x00B4	W						10*	MOD9*	MOD8*	MOD/*	MOD6*	MOD5*	MOD4*	MOD3*	MOD2*	MOD1*	MOD0*
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	ASD 10*	ACDO*	A CD 0*	A CD 7*	ACD (*	A CD 5 *	A CD 4*	A CD 2*	1002*	A CD 1*	ACDO*
	W						ASK10.	ASK9	ASK0.	ASK/	ASK0.	ASK3.	ASK4	ASK3.	ASK2.	ASKI	ASK0.
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ASR[10:0] Accepted Startup Range (pdAcceptedStartupRange)

Number of microticks constituting the expanded range of measured deviation for startup frames during integration. Valid values are 0 to 1875 μ T.

MOD[10:0] Maximum Oscillator Drift (pdMaxDrift)

Maximum drift offset between two nodes that operate with unsynchronized clocks over one communication cycle in μ T. Valid values are 2 to 1923 μ T.

18.5.14. GTU Configuration Register 7 (GTUC7)

The CC accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
GTUC7	R	0	0	0	0	0	0	NCCO*	MCC0*	MCC7*	NCC/*	NCCC*	NCC 4*	MCC2*	MCC2*	MCC1*	NCCO*
0x00B8	W							11222.	11220.	11357.	N350.	11992.	11354.	N992.	N352.	N351 ·	N350.
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	0	CCI 0*	CCI 0*	CCI 7*	CCI (*	991.5*	CCI /*	CCI 2*	CCI 2*	CCI 1*	SSI 0*
	W							55L9.	3319.	SSL/.	SSL0.	3313.	33L4 ·	33L3.	33L2 ·	33L1.	33LU.
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

SSL[9:0] Static Slot Length (gdStaticSlot)

Configures the duration of a static slot in macroticks. The static slot length must be identical in all nodes of a cluster. Valid values are 4 to 659 MT.

NSS[9:0] Number of Static Slots (gNumberOfStaticSlots)

Configures the number of static slots in a cycle. At least 2 coldstart nodes must be configured to startup a FlexRay network. The number of static slots must be identical in all nodes of a cluster. Valid values are 2 to 1023.

18.5.15. GTU Configuration Register 8 (GTUC8)

The CC accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
GTUC8	R	0	0	0	NMS	NMS	NMS	NIMCO*	NIMC0*	NMS7*	NMS6*	NMC5*	NMC4*	NMS2*	NMS2*	NMC1*	NMS0*
0x00BC	W				12*	11*	10*	1111139	INIVISO.	INIVIS / ·	INIVISO -	INIVIS5	1111134	INIVISS.	INIVIS2	INIVISI *	INIVISU.
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	0	0	0	0	0	MCI 5*	MCI 4*	MGI 2*	MCI 2*	MCI 1*	MCLO*
	W											MSL3.	MSL4.	MSL3.	MSL2.	MSL1.	MSL0.
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

MSL[5:0] Minislot Length (gdMinislot)

Configures the duration of a minislot in macroticks. The minislot length must be identical in all nodes of a cluster. Valid values are 2 to 63 MT.

NMS[12:0] Number of Minislots (gNumberOfMinislots)

Configures the number of minislots within the dynamic segment of a cycle. The number of minislots must be identical in all nodes of a cluster. Valid values are 0 to 7986.

18.5.16. GTU Configuration Register 9 (GTUC9)

The CC accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
GTUC9	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DCI1*	DC10*
0x00C0	W															D811*	DS10*
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	MAPO4	MAPO3	MAPO2	MAPO1	MAPO0	0	0	A DO5*	A DO 4*	A DO2*	A DO2*	A DO1*	A DO0*
	W				*	*	*	*	*			AP03.	APO4 ·	AP05.	AP02.	APOI	APO0.
Reset		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1

APO[5:0] Action Point Offset (gdActionPointOffset)

Configures the action point offset in macroticks within static slots and symbol window. Must be identical in all nodes of a cluster. Valid values are 1 to 63 MT.

MAPO[4:0] Minislot Action Point Offset (gdMinislotActionPointOffset)

Configures the action point offset in macroticks within the minislots of the dynamic segment. Must be identical in all nodes of a cluster. Valid values are 1 to 31 MT.

DSI[1:0] Dynamic Slot Idle Phase (gdDynamicSlotIdlePhase)

The duration of the dynamic slot idle phase has to be greater or equal than the idle detection time. Must be identical in all nodes of a cluster. Valid values are 0 to 2 Minislot.

18.5.17. GTU Configuration Register 10 (GTUC10)

The CC accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
GTUC10	R	0	0	0	0	0	MRC	MDC0*	MDC9*	MDC7*	MDC6*	MDC5*	MDC4*	MDC2*	MDC2*	MDC1*	MPC0*
0x00C4	W						10*	WIKC9	WIKCo.	WIKC /	WIKC0.	WIKC3*	MIKC4	WIKC5	WIKC2	WIKC1*	WIKC0*
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	MOC	MOC	MOC	MOC	MOC0*	MOC%*	MOC7*	MOC6*	MOC5*	MOC4*	MOC2*	MOC2*	MOC1*	MOC0*
	W			13*	12*	11*	10*	MOC9.	MOC8.	MOC / ·	MOC0.	MOC3.	MOC4.	MOC3.	MOC2.	MOCT	MOC0.
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1

MOC[13:0] Maximum Offset Correction (pOffsetCorrectionOut)

Holds the maximum permitted offset correction value to be applied by the internal clock synchronization algorithm (absolute value). The CC checks only the internal offset correction value against the maximum offset correction value. Valid values are 5 to 15266 μ T.

MRC[10:0] Maximum Rate Correction (pRateCorrectionOut)

Holds the maximum permitted rate correction value to be applied by the internal clock synchronization algorithm. The CC checks only the internal rate correction value against the maximum rate correction value (absolute value). Valid values are 2 to 1923 μ T.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
GTUC11	R	0	0	0	0	0	EPC2*	EDC1*	EPC0*	0	0	0	0	0	EOC2*	EOC1*	FOC0*
0x00C8	W						EKC2.	EKCI	EKCO						EOC2*	EOCI	EOCO
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	0	EBCCI	ERCCO	0	0	0	0	0	0	EOCC1	EOCCO
	W							EKCCI	EKCCU							EUCCI	EUCCU
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

18.5.18. GTU Configuration Register 11 (GTUC11)

EOCC[1:0] External Offset Correction Control (vExternOffsetControl)

By writing to **EOCC[1:0]** the external offset correction is enabled as specified below. Should be modified only outside NIT. 00, 01 =No external offset correction

10 =External offset correction value subtracted from calculated offset correction value

11 =External offset correction value added to calculated offset correction value

ERCC[1:0] External Rate Correction Control (vExternRateControl)

By writing to **ERCC[1:0]** the external rate correction is enabled as specified below. Should be modified only outside NIT. 00, 01 =No external rate correction

10 =External rate correction value subtracted from calculated rate correction value

11 =External rate correction value added to calculated rate correction value

EOC[2:0] External Offset Correction (pExternOffsetCorrection)

Holds the external offset correction value in microticks to be applied by the internal clock synchronization algorithm. The value is subtracted / added from / to the calculated offset correction value. The value is applied during NIT. May be modified in DEFAULT_CONFIG or CONFIG state only. Valid values are 0 to 7 μ T.

ERC[2:0] External Rate Correction (pExternRateCorrection)

Holds the external rate correction value in microticks to be applied by the internal clock synchronization algorithm. The value is subtracted / added from / to the calculated rate correction value. The value is applied during NIT. May be modified in DEFAULT_CONFIG or CONFIG state only. Valid values are 0 to 7 μ T.

18.6. CC Status Registers

During 8/16-bit accesses to status variables coded with more than 8/16-bit, the variable might be updated by the CC between two accesses (non-atomic read accesses). All internal counters and the CC status flags are reset when the CC transits from CONFIG to READY state.

18.6.1. CC Status Vector (CCSV)

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CCSV	R	0	0	PSL5	PSL4	PSL3	PSL2	PSL1	PSL0	RCA4	RCA3	RCA2	RCA1	RCA0	WSV2	WSV1	WSV0
0x0100	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	CSI	CSAI	CSNI	0	0	SLM1	SLM0	HRQ	FSI	POCS5	POCS4	POCS3	POCS2	POCS1	POCS0
	W																
Reset		0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
POCS[5	: 0] Idica 0 00	Pr ates the 000 =D 001 =R	otocol (e actual EFAUL ⁻ EADY s	Operatic state o T_CON	on Contr f operat FIG stat	rol Statu ion of th te	is 1e CC F	Protocol	Operat	ion Con	itrol						

00 0010 =NORMAL ACTIVE state 00 0011 =NORMAL PASSIVE state 00 0100 =HALT state 00 0101 =MONITOR_MODE state 00 0110...00 1110 = reserved 00 1111 =CONFIG state Indicates the actual state of operation of the POC in the wakeup path 01 0000 =WAKEUP_STANDBY state 01 0001 =WAKEUP_LISTEN state 01 0010 =WAKEUP_SEND state 01 0011 =WAKEUP_DETECT state 01 0100...01 1111 = reserved Indicates the actual state of operation of the POC in the startup path 10 0000 =STARTUP PREPARE state 10 0001 =COLDSTART LISTEN state 10 0010 =COLDSTART_COLLISION_RESOLUTION state 10 0011 =COLDSTART_CONSISTENCY_CHECK state 10 0100 =COLDSTART_GAP state 10 0101 =COLDSTART JOIN State 10 0110 =INTEGRATION_COLDSTART_CHECK state 10 0111 =INTEGRATION_LISTEN state 10 1000 =INTEGRATION_CONSISTENCY_CHECK state 10 1001 =INITIALIZE_SCHEDULE state 10 1010 =ABORT_STARTUP state 10 1011...11 1111 = reserved

FSI Freeze Status Indicator (vPOC!Freeze)

Indicates that the POC has entered the HALT state due to CHI command FREEZE or due to an error condition requiring an immediate POC halt. Reset by CHI command RESET_STATUS_INDICATORS or by transition from HALT to DEFAULT CONFIG state.

HRQ Halt Request (vPOC!CHIHaltRequest)

Indicates that a request from the Host has been received to halt the POC at the end of the communication cycle. Reset by CHI command RESET_STATUS_INDICATORS or by transition from HALT to DEFAULT_CONFIG state or when entering READY state.

SLM[1:0] Slot Mode (vPOC!SlotMode)

Indicates the actual slot mode of the POC. Default is SINGLE. Changes to ALL, depending on **SUCC1.TSM**. In NORMAL_ACTIVE or NORMAL_PASSIVE state the CHI command ALL_SLOTS will change the slot mode from SINGLE over ALL_PENDING to ALL. When not in NORMAL_ACTIVE or NORMAL_PASSIVE state then reset by CHI command RESET_STATUS_INDICATORS to the value defined by **SUCC1.TSM**.

- 00 =SINGLE
- 01 =reserved

10 =ALL_PENDING

11 =ALL

CSNI Coldstart Noise Indicator (vPOC!ColdstartNoise)

Indicates that the cold start procedure occurred under noisy conditions. Reset by CHI command

RESET_STATUS_INDICATORS or by transition from HALT to DEFAULT_CONFIG state or from READY to STARTUP state. Coldstart Abort Indicator

Coldstart aborted. Reset by CHI command RESET_STATUS_INDICATORS or by transition from HALT to DEFAULT_CONFIG state or from READY to STARTUP state.

CSI Cold Start Inhibit (vColdStartInhibit)

Indicates that the node is disabled from cold starting. The flag is set whenever the POC enters READY state. The flag has to be reset under control of the Host by CHI command ALLOW_COLDSTART (**SUCC1.CMD[3:0]** = "1001"). 1 =Cold starting of node disabled

0 =Cold starting of node enabled

WSV[2:0] Wakeup Status (vPOC!WakeupStatus)

Indicates the status of the current wakeup attempt. Reset by CHI command RESET_STATUS_INDICATORS or by transition from HALT to DEFAULT_CONFIG state or from READY to STARTUP state.

000 =UNDEFINED. No wakeup attempt since CONFIG state was left.

001 =RECEIVED_HEADER. Set when the CC finishes wakeup due to the reception of a frame header without coding violation on either channel in WAKEUP_LISTEN state.

010 =RECEIVED_WUP. Set when the CC finishes wakeup due to the reception of a valid wakeup pattern on the configured wakeup channel in WAKEUP_LISTEN state.

011 = COLLISION_HEADER. Set when the CC stops wakeup due to a detected collision during wakeup pattern transmission by receiving a valid header on either channel.

100 =COLLISION_WUP. Set when the CC stops wakeup due to a detected collision during wakeup pattern transmission by receiving a valid wakeup pattern on the configured wakeup channel.

101 =COLLISION_UNKNOWN. Set when the CC stops wakeup by leaving WAKEUP_DETECT state after expiration of the wakeup timer without receiving a valid wakeup pattern or a valid frame header.

110 =TRANSMITTED. Set when the CC has successfully completed the transmission of the wakeup pattern.

111 =reserved

RCA[4:0] Remaining Coldstart Attempts (vRemainingColdstartAttempts)

Indicates the number of remaining coldstart attempts. The maximum number of coldstart attempts is configured by **SUCC1.CSA[4:0]**.

PSL[5:0] POC Status Log

Status of POCS[5:0] immediately before entering HALT state. Set when entering HALT state. Set to HALT when FREEZE command is applied during HALT state. Reset to "00 0000" when leaving HALT state.

CHI command RESET_STATUS_INDICATORS (SUCC1.CMD[3:0] = "1010") resets flags FSI, HRQ, CSNI, CSAI, the slot mode SLM[1:0], and the wakeup status WSV[2:0].

18.6.2. CC Error Vector (CCEV)

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CCEV	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0104	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	PTAC4	PTAC3	PTAC2	PTAC1	PTAC0	ERRM1	ERRM0	0	0	CCFC3	CCFC2	CCFC1	CCFC0
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Reset by CHI command RESET_STATUS_INDICATORS or by transition from HALT to DEFAULT_CONFIG state or when entering READY state.

CCFC[3:0] Clock Correction Failed Counter (vClockCorrectionFailed)

The Clock Correction Failed Counter is incremented by one at the end of any odd communication cycle where either the missing offset correction error or missing rate correction error are active. The Clock Correction Failed Counter is reset to '0' at the end of an odd communication cycle if neither the offset correction failed nor the rate correction failed errors are active. The Clock Correction Failed Counter stops at 15.

ERRM[1:0] Error Mode (vPOC!ErrorMode)

Indicates the actual error mode of the POC.

00 =ACTIVE (green)

01 =PASSIVE (yellow)

10 =COMM_HALT (red)

11 =reserved

PTAC[4:0] Passive to Active Count (vAllowPassiveToActive)

Indicates the number of consecutive even / odd cycle pairs that have passed with valid rate and offset correction terms, while the node is waiting to transit from NORMAL_PASSIVE state to NORMAL_ACTIVE state. The transition takes place when **PTAC[4:0]** equals **SUCC1.PTA[4:0]** -1.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
SCV	R	0	0	0	0	0	SCCB10	SCCB9	SCCB8	SCCB7	SCCB6	SCCB5	SCCB4	SCCB3	SCCB2	SCCB1	SCCB0
0x0110	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	SCCA10	SCCA9	SCCA8	SCCA7	SCCA6	SCCA5	SCCA4	SCCA3	SCCA2	SCCA1	SCCA0
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

18.6.3. Slot Counter Value (SCV)

SCCA[10:0] Slot Counter Channel A (vSlotCounter[A])

Current slot counter value on channel A. The value is incremented by the CC and reset at the start of a communication cycle. Valid values are 0 to 2047.

SCCB[10:0] Slot Counter Channel B (vSlotCounter[B])

Current slot counter value on channel B. The value is incremented by the CC and reset at the start of a communication cycle. Valid values are 0 to 2047.

18.6.4. Macrotick and Cycle Counter Value (MTCCV)

MTV[13:0] Macrotick Value (vMacrotick)

Current macrotick value. The value is incremented by the CC and reset at the start of a communication cycle. Valid values are 0 to 16000.

CCV[5:0] Cycle Counter Value (vCycleCounter)

Current cycle counter value. The value is incremented by the CC at the start of a communication cycle. Valid values are 0 to 63.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
RCV	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0118	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	RCV11	RCV10	RCV9	RCV8	RCV7	RCV6	RCV5	RCV4	RCV3	RCV2	RCV1	RCV0
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

18.6.5. Rate Correction Value (RCV)

RCV[11:0] Rate Correction Value (vRateCorrection)

Rate correction value (two's complement). Calculated internal rate correction value **before** limitation. If the RCV value exceeds the limits defined by **GTUC10.MRC[10:0]**, flag **SFS.RCLR** is set to '1'.

18.6.6. Offset Correction Value (OCV)

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
OCV	R	0	0	0	0	0	0	0	0	0	0	0	0	0	OCV18	OCV17	OCV16
0x011C	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	OCV15	OCV14	OCV13	OCV12	OCV11	OCV10	OCV9	OCV8	OCV7	OCV6	OCV5	OCV4	OCV3	OCV2	OCV1	OCV0
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

OCV[18:0] Offset Correction Value (vOffsetCorrection)

Offset correction value (two's complement). Calculated internal offset correction value **before** limitation. If the OCV value exceeds the limits defined by **GTUC10.MOC[13:0]**, flag **SFS.OCLR** is set to '1'.

The external rate / offset correction value is added to the limited rate / offset correction value.

18.6.7. Sync Frame Status (SFS)

The maximum number of valid sync frames in a communication cycle is 15.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
SFS	R	0	0	0	0	0	0	0	0	0	0	0	0	RCLR	MRCS	OCLR	MOCS
0x0120	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	VSBO3	VSBO2	VSBO1	VSBO0	VSBE3	VSBE2	VSBE1	VSBE0	VSAO3	VSAO2	VSA01	VSA00	VSAE3	VSAE2	VSAE1	VSAE0
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

VSAE[3:0] Valid Sync Frames Channel A, even communication cycle (vSyncFramesEvenA)

Holds the number of valid sync frames received on channel A in the even communication cycle. If transmission of sync frames is enabled by **SUCC1.TXSY** the value is incremented by one. The value is updated during the NIT of each even communication cycle.

VSAO[3:0] Valid Sync Frames Channel A, odd communication cycle (vSyncFramesOddA) Holds the number of valid sync frames received on channel A in the odd communication cycle. If transmission of sync frames is enabled by SUCC1.TXSY the value is incremented by one. The value is updated during the NIT of each odd communication cycle.

VSBE[3:0] Valid Sync Frames Channel B, even communication cycle (vSyncFramesEvenB) Holds the number of valid sync frames received on channel B in the even communication cycle. If transmission of sync frames is enabled by SUCC1.TXSY the value is incremented by one. The value is updated during the NIT of each even communication cycle.

VSBO[3:0] Valid Sync Frames Channel B, odd communication cycle (vSyncFramesOddB)

Holds the number of valid sync frames received on channel B in the odd communication cycle. If transmission of sync frames is enabled by **SUCC1.TXSY** the value is incremented by one. The value is updated during the NIT of each odd communication cycle.

The bit fields above are only valid if the respective channel is assigned to the CC by SUCC1.CCHA or SUCC1.CCHB.

MOCS Missing Offset Correction Signal

The Missing Offset Correction flag signals to the Host, that no offset correction calculation can be performed because no sync frames were received. The flag is updated by the CC at start of offset correction phase.

1 =Missing offset correction signal

0 =Offset correction signal valid

OCLR Offset Correction Limit Reached

The Offset Correction Limit Reached flag signals to the Host, that the offset correction value has exceeded its limit as defined by **GTUC10.MOC[13:0]**. The flag is updated by the CC at start of offset correction phase.

1 =Offset correction limit reached

0 =Offset correction below limit

MRCS Missing Rate Correction Signal

The Missing Rate Correction flag signals to the Host, that no rate correction calculation can be performed because no pairs of even / odd sync frames were received. The flag is updated by the CC at start of offset correction phase.

- 1 =Missing rate correction signal
- 0 =Rate correction signal valid
- RCLR Rate Correction Limit Reached The Rate Correction Limit Reached flag signals to the Host, that the rate correction value has exceeded its limit as defined by GTUC10.MRC[10:0]. The flag is updated by the CC at start of offset correction phase.
 - 1 =Rate correction limit reached
 - 0 =Rate correction below limit

18.6.8. Symbol Window and NIT Status (SWNIT)

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
SWNIT	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0124	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	SBNB	SENB	SBNA	SENA	MTSB	MTSA	TCSB	SBSB	SESB	TCSA	SBSA	SESA
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Symbol window related status information. Updated by the CC at the end of the symbol window for each channel. During startup the status data is not updated.

- SESA Syntax Error in Symbol Window Channel A (vSSISyntaxErrorA) 1 =Syntax error during symbol window detected on channel A 0 =No syntax error detected SBSA Slot Boundary Violation in Symbol Window Channel A (vSSIBViolationA) 1 =Slot boundary violation during symbol window detected on channel A 0 =No slot boundary violation detected TCSA Transmission Conflict in Symbol Window Channel A (vSS!TxConflictA) 1 =Transmission conflict in symbol window detected on channel A 0 =No transmission conflict detected Syntax Error in Symbol Window Channel B (vSS!SyntaxErrorB) SESB 1 =Syntax error during symbol window detected on channel B 0 =No syntax error detected SBSB Slot Boundary Violation in Symbol Window Channel B (vSS!BViolationB)
 - 1 =Slot boundary violation during symbol window detected on channel B 0 =No slot boundary violation detected
- TCSB Transmission Conflict in Symbol Window Channel B (vSS!TxConflictB)
 - 1 =Transmission conflict in symbol window detected on channel B
 - 0 =No transmission conflict detected

MTS Received on Channel A (vSS!ValidMTSA)

MTSA

	Medi end o 1 =M	a Acce of the s ITS syn	ss Test ymbol v nbol rec	symbol vindow. ceived o	receive When t n chanr	d on ch his bit is iel A	annel A s set to	during '1', also	the last interru	symbol pt flag S	l windov SIR.MT	v. Upda SA is se	ted by t et to '1'.	he CC f	or each	channe	el at the
	0 =N	o MTS	symbol	receive	d on ch	annel A											
MTSB		MTS	Receiv	ed on C	hannel	B (vSS	!ValidM	TSB)									
	Medi	a Acce	ss Test	symbol	receive	d on ch	annel B	during	the last	symbol	l windov	v. Upda	ted by t	he CC f	or each	channe	el at the
	end o	of the s	ymbol v	vindow.	When t	his bit is	s set to	'1', alsc	interru	pt flag S	SIR.MT	SB is se	et to '1'.				
	1 =M	ITS syn	nbol rec	eived o	n chanr	iel B											
	0 =N	o MTS	symbol	receive	d on ch	annel B	5										
	NIT r	related	status i	nformati	on. Upo	lated by	/ the CO	c at the	end of t	the NIT	for eac	h chann	nel:				
SENA		Synta	ax Erroi	r during	NIT Ch	annel A	(vSS!S	SyntaxE	rrorA)								
	1 =S	yntax e	rror dur	ing NIT	detecte	d on ch	annel A	۱.									
	0 =N	o synta	x error	detecte	d												
SBNA		Slot I	Bounda	ry Viola	tion dur	ing NIT	Chann	el A (vS	S!BViol	ationA)							
	1 =S	lot bour	ndary vi	iolation (during M	VII dete	ected or	channe	el A								
	0 =N	o slot b	oundar	y violati	on dete	cted											
SENB	4 -0	Synta	ax Error	r auring	NII Ch	annei B	(VSS!5	Syntaxe	rrorB)								
	1 =5	yntax e	rror dur	Ing NI I	detecte	a on ch	annei E	5									
COND	0 =N	o synta	x error	detecte) tion dur		Chann			ation D)							
SDIND	1 -0	SIUL I	bounda	iny viola	durina N	ING INT I	Channe otod or			allonb)							
	1 - 3 0 - N			vviolati	aunny r	atod	cieu or	Channe	ei D								
	U –IN		ounuar	y violatio	JII dele	cieu											
18.6.9	Agg	regated	d Chanr	nel Statu	ıs (ACS)											
The ag	grega	ated cha	annel st	tatus pro	ovides t	ne Host	with an	accrue	d status	of cha	nnel act	ivity for	all com	munica	tion slot	s regard	dless of
whethe	er the	y are as	signed	for trans	smissio	h or sub	scribed	for rece	eption. T	he agg	regated	channe	el status	also ind	cludes s	tatus da	ta from
the syr	nbol v	window	and the	e netwo	rk idle ti	me. The	e status	data is	update	d (set) a	after ea	ch slot a	and ago	gregated	d until it	is reset	by the
Host. L	Juring	g startup	the sta	atus data	a is not	updated	1. A flag	is cleai	red by w	riting a	'1' to th	e corres	spondin	ig bit po	sition. V	Vriting a	10 has
no ene	CL ON	the hag	j. A nar	ureset	will also	ciear u	le regis	iter.									
Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ACS	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x012	8 W	-	-			-			-			-	-	~	-	-	
	· Ľ	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0

Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R 0	0	0	SDVD	CID	CEDD	SEDD	VEDD	0	0	0	CDVA	CIA	CEDA	SEDA	VED A
	W				CID	CEDB	SEDB	VFKD				SDVA	CIA	CEDA	SEDA	VFKA
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

VFRA Valid Frame Received on Channel A (vSS!ValidFrameA)

One or more valid frames were received on channel A in any static or dynamic slot during the observation period. 1 =Valid frame(s) received on channel A

0 =No valid frame received

SEDA Syntax Error Detected on Channel A (vSS!SyntaxErrorA)

One or more syntax errors in static or dynamic slots, symbol window, and NIT were observed on channel A.

1 =Syntax error(s) observed on channel A

0 =No syntax error observed

CEDA Content Error Detected on Channel A (vSS!ContentErrorA)

One or more frames with a content error were received on channel A in any static or dynamic slot during the observation period.

1 =Frame(s) with content error received on channel A

0 =No frame with content error received

CIA Communication Indicator Channel A

One or more valid frames were received on channel A in slots that also contained any additional communication during the observation period, i.e. one or more slots received a valid frame AND had any combination of either syntax error OR content error OR slot boundary violation.

1 =Valid frame(s) received on channel A in slots containing any additional communication

0 =No valid frame(s) received in slots containing any additional communication

SBVA Slot Boundary Violation on Channel A (vSS!BViolationA)

One or more slot boundary violations were observed on channel A at any time during the observation period (static or dynamic slots, symbol window, and NIT).

1 =Slot boundary violation(s) observed on channel A

0 =No slot boundary violation observed

VFRB Valid Frame Received on Channel B (vSS!ValidFrameB)

One or more valid frames were received on channel B in any static or dynamic slot during the observation period. Reset under control of the Host.

1 =Valid frame(s) received on channel B

0 =No valid frame received

SEDB Syntax Error Detected on Channel B (vSS!SyntaxErrorB)

One or more syntax errors in static or dynamic slots, symbol window, and NIT were observed on channel B.

1 =Syntax error(s) observed on channel B

0 =No syntax error observed

CEDB Content Error Detected on Channel B (vSS!ContentErrorB)

One or more frames with a content error were received on channel B in any static or dynamic slot during the observation period.

1 =Frame(s) with content error received on channel B

0 =No frame with content error received

CIB Communication Indicator Channel B

One or more valid frames were received on channel B in slots that also contained any additional communication during the observation period, i.e. one or more slots received a valid frame AND had any combination of either syntax error OR content error OR slot boundary violation.

1 =Valid frame(s) received on channel B in slots containing any additional communication

0 =No valid frame(s) received in slots containing any additional communication

SBVB Slot Boundary Violation on Channel B (vSS!BViolationB)

One or more slot boundary violations were observed on channel B at any time during the observation period (static or dynamic slots, symbol window, and NIT).

1 =Slot boundary violation(s) observed on channel B

0 =No slot boundary violation observed

The set condition of flags **CIA** and **CIB** is also fulfilled if there is only one single frame in the slot and the slot boundary at the end of the slot is reached during the frames channel idle recognition phase.

When one of the flags SEDB, CEDB, CIB, SBVB changes from '0' to '1', interrupt flag EIR.EDB is set to '1'. When one of the flags SEDA, CEDA, CIA, SBVA changes from '0' to '1', interrupt flag EIR.EDA is set to '1'.

18.6.10. Even Sync ID [1...15] (ESIDn)

Registers ESID1 to ESID15 hold the frame IDs of the sync frames received in **even** communication cycles, assorted in ascending order, with register ESID1 holding the lowest received sync frame ID. If the node transmits a sync frame in an even communication cycle by itself, register ESID1 holds the respective sync frame ID as configured in message buffer 0. The value is updated during the NIT of each even communication cycle.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ESIDn	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0130 - 0x0168	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	RXEB	RXEA	0	0	0	0	EID9	EID8	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

EID[9:0] Even Sync ID (vsSyncIDListA, B even)

Sync frame ID even communication cycle.

RXEA Received Even Sync ID on Channel A

A sync frame corresponding to the stored even sync ID was received on channel A.

1 =Sync frame received on channel A

0 =Sync frame not received on channel A

RXEB Received Even Sync ID on Channel B

A sync frame corresponding to the stored even sync ID was received on channel B.

1 =Sync frame received on channel B

0 =Sync frame not received on channel B

18.6.11. Odd Sync ID [1...15] (OSIDn)

Registers OSID1 to OSID15 hold the frame IDs of the sync frames received in **odd** communication cycles, assorted in ascending order, with register OSID1 holding the lowest received sync frame ID. If the node transmits a sync frame in an odd communication cycle by itself, register OSID1 holds the respective sync frame ID as configured in message buffer 0. The value is updated during the NIT of each odd communication cycle.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
OSIDn	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0170 - 0x01A8	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	RXOB	RXOA	0	0	0	0	OID9	OID8	OID7	OID6	OID5	OID4	OID3	OID2	OID1	OID0
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

OID[9:0] Odd Sync ID (vsSyncIDListA,B odd)

Sync frame ID odd communication cycle.

RXOA Received Odd Sync ID on Channel A

A sync frame corresponding to the stored odd sync ID was received on channel A.

- 1 =Sync frame received on channel A
- 0 =Sync frame not received on channel A

RXOB Received Odd Sync ID on Channel B

A sync frame corresponding to the stored odd sync ID was received on channel B.

1 =Sync frame received on channel B

0 =Sync frame not received on channel B

18.6.12. Network Management Vector [1...3] (NMVn)

The three network management registers hold the accrued NM vector (configurable 0 to 12 bytes). The accrued NM vector is generated by the CC by bit-wise ORing each NM vector received (valid static frames with PPI = '1') on each channel (see 19.6.Network Management).

The CC updates the NM vector at the end of each communication cycle as long as the CC is either in NORMAL_ACTIVE or NORMAL_PASSIVE state.

NMVn-bytes exceeding the configured NM vector length are not valid.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
NMVn	R	NM31	NM30	NM29	NM28	NM27	NM26	NM25	NM24	NM23	NM22	NM21	NM20	NM19	NM18	NM17	NM16
0x01B0 - 0x01B8	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	NM15	NM14	NM13	NM12	NM11	NM10	NM9	NM8	NM7	NM6	NM5	NM4	NM3	NM2	NM1	NM0
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table below shows the assignment of the received payload's data bytes to the network management vector.

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Word																																
NMV1	Data3											Da	ta2							Da	ta1							Da	ta0			
NMV2		Data3										Da	ta6							Da	ta5							Da	ta4			
NMV3				Dat	ta11							Dat	a10							Da	ta9							Da	ta8			

Assignment of data bytes to network management vector

18.7. Message Buffer Control Registers

18.7.1. Message RAM Configuration (MRC)

The Message RAM Configuration register defines the number of message buffers assigned to the static segment, dynamic segment, and FIFO. The register can be written during DEFAULT_CONFIG or CONFIG state only.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MRC	R	0	0	0	0	0	CDI M*	SEC1*	SEC0*	LCD7*	LCD4*	LCD5*	LCD4*	LCD2*	I CD1*	LCD1*	L CD0*
0x0300	W						SPLM.	SECT	SEC0.	LCD/	LCD0.	LCD3.	LCD4	LCD3	LCD2.	LUDI	LCD0.
Reset		0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	FFB7*	FFB6*	FFB5*	FFB4*	FFB3*	FFB2*	FFB1*	FFB0*	FDB7*	FDB6*	FDB5*	FDB4*	FDB3*	FDB2*	FDB1*	FDB0*
	vv	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	^	^	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	0	0	0	<u>^</u>
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

FDB[7:0] First Dynamic Buffer

0= No group of message buffers exclusively for the static segment configured

1...127= Message buffers 0 to FDB - 1 reserved for static segment

≥128= No dynamic message buffers configured

FFB[7:0] First Buffer of FIFO

0= All message buffers assigned to the FIFO

1...127= Message buffers from FFB to LCB assigned to the FIFO

- \geq 128= No message buffer assigned to the FIFO
- LCB[7:0] Last Configured Buffer
 - 0...127= Number of message buffers is **LCB** + 1

≥128= No message buffer configured

SEC[1:0] Secure Buffers

Not evaluated when the CC is in DEFAULT_CONFIG or CONFIG state.

00 =Reconfiguration of message buffers enabled with numbers < **FFB** enabled

Exception: In nodes configured for sync frame transmission or for single slot mode operation message buffer 0 (and if **SPLM** = '1', also message buffer 1) is always locked

01 =Reconfiguration of message buffers with numbers < **FDB** and with numbers ≥ **FFB** locked

and transmission of message buffers for static segment with numbers ≥ **FDB** disabled

10 =Reconfiguration of all message buffers locked

11 =Reconfiguration of all message buffers locked

and transmission of message buffers for static segment with numbers \ge **FDB** disabled

SPLM Sync Frame Payload Multiplex

This bit is only evaluated if the node is configured as sync node (**SUCC1.TXSY** = '1') or for single slot mode operation (**SUCC1.TSM** = '1'). When this bit is set to '1' message buffers 0 and 1 are dedicated for sync frame transmission with different payload data on channel A and B. When this bit is set to '0', sync frames are transmitted from message buffer 0 with the same payload data on both channels. Note that the channel filter configuration for message buffer 0 resp. message buffer 1 has to be chosen accordingly.

1 =Both message buffers 0 and 1 are locked against reconfiguration

0 =Only message buffer 0 locked against reconfiguration

Note: In case the node is configured as sync node (SUCC1.TXSY = '1') or for single slot mode operation (SUCC1.TSM = '1'), message buffer 0 resp. 1 is reserved for sync frames or single slot frames and have to be configured with the node-specific key slot ID. In case the node is neither configured as sync node nor for single slot operation message buffer 0 resp. 1 is treated like all other message buffers.

Message Buffer 0	↓ Static Buffers		
Message Buffer 1]		
	↓ Static + Dynamic Buffers	← FDB	FIFO configured: FFB > FDB
Message Buffer N-1		⊂ FFB	NO FIFU configurea: FFB \geq 128
Message Buffer N		⇐ LCB	$\textbf{LCB} \geq \textbf{FDB}, \textbf{LCB} \geq \textbf{FFB}$

The programmer has to ensure that the configuration defined by **FDB[7:0]**, **FFB[7:0]**, and **LCB[7:0]** is valid. **The CC does not check for erroneous configurations!**

The maximum number of header sections is 128. This means a maximum of 128 message buffers can be configured. The maximum length of a data section is 254 bytes. The length of the data section may be configured differently for each message buffer. For details see Section 19.12.Message RAM.

The payload length configured and the length of the data section need to be configured identical for all message buffers belonging to the FIFO via **WRHS2.PLC[6:0]** and **WRHS3.DP[10:0]**.

When the CC is not in DEFAULT_CONFIG or CONFIG state reconfiguration of message buffers belonging to the FIFO is locked.

18.7.2. FIFO Rejection Filter (FRF)

The FIFO Rejection Filter defines a user specified sequence of bits to which channel, frame ID, and cycle count of the incoming frames are compared. Together with the FIFO Rejection Filter Mask this register determines whether a message is rejected by the FIFO. The FRF register can be written during DEFAULT_CONFIG or CONFIG state only.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
FRF	R	0	0	0	0	0	0	0	DNE*	DCC*	CVE6*	CVE5*	CVE4*	CVE2*	CVE2*	CVE1*	CVE0*
0x0304	W								KINI ^{**}	KS5	CIFO	CIFS	CIF4	CITS	CTF2.	CITI	CIFU
Reset		0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	EID10*	EID0*	EID0*	EID7*	EID6*	EID5*	EID4*	EID2*	EID3*	EID1*	EID0*	CU1*	C110*
	W				LID10*	LIDA.	LID8.	riD/*	LID0.	LID2.	FID4*	FID3*	FID2*	LID1.	LID0.	CHI*	Сп0*
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CH[1:0] Channel Filter

11 =no reception

10 =receive only on channel A

01 =receive only on channel B

00 =receive on both channels

If reception on both channels is configured, also in static segment always both frames (from channel A and B) are stored in the FIFO, even if they are identical.

FID[10:0] Frame ID Filter

A frame ID filter value of zero means that **no** frame ID is rejected.

0...2047 =Frame ID filter values

CYF[6:0] Cycle Counter Filter

The 7-bit cycle counter filter determines the cycle set to which frame ID and channel rejection filter are applied. In cycles **not** belonging to the cycle set specified by **CYF[6:0]**, all frames are rejected. For details about the configuration of the cycle counter filter see Section 19.7.2.Cycle Counter Filtering.

RSS Reject in Static Segment

If this bit is set, the FIFO is used only for the dynamic segment.

- 1 =Reject messages in static segment
 - 0 =FIFO also used for static segment

RNF Reject Null Frames If this bit is set, received null frames are not stored in the FIFO. 1 =Reject all null frames 0 =Null frames are stored in the FIFO

18.7.3. FIFO Rejection Filter Mask (FRFM)

The FIFO Rejection Filter Mask specifies which of the corresponding frame ID filter bits are relevant for rejection filtering. If a bit is set, it indicates that the corresponding bit in the FRF register will not be considered for rejection filtering. The FRFM register can be written during DEFAULT_CONFIG or CONFIG state only.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
FRFM	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0308	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	MFID	0	0										
	W				10*	9*	8*	7*	6*	5*	4*	3*	2*	1*	0*		
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MFID[10:0] Mask Frame ID Filter

1 =Ignore corresponding frame ID filter bit.

0 =Corresponding frame ID filter bit is used for rejection filtering

18.7.4. FIFO Critical Level (FCL)

The CC accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
FCL	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x030C	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	0	0	0	CI 7*	CL (*	CL 5*	CI 4*	CL 2*	CL 2*	CL 1*	CI 0*
	W									CL/*	CL0*	CL3*	CL4*	CL3*	CL2*	CL1*	CL0*
Reset		0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

CL[7:0] Critical Level

When the receive FIFO fill level **FSR.RFFL**[7:0] is equal or greater than the critical level configured by **CL**[7:0], the receive FIFO critical level flag **FSR.RFCL** is set. If **CL**[7:0] is programmed to values > 128, bit **FSR.RFCL** is never set. When **FSR.RFCL** changes from '0' to '1' bit **SIR.RFCL** is set to '1', and if enabled, an interrupt is generated.

18.8. Message Buffer Status Registers

18.8.1. Message Handler Status (MHDS)

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MHDS	R	0	MBU6	MBU5	MBU4	MBU3	MBU2	MBU1	MBU0	0	MBT6	MBT5	MBT4	MBT3	MBT2	MBT1	MBT0
0x0310	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	FMB6	FMB5	FMB4	FMB3	FMB2	FMB1	FMB0	CRAM		EMDD	DTDE2	DTDE1	DMD	DODE	DIDE
	W										MITIND	гмбр	PIDF2	PIDFI	PMK	гобг	PIDF
Reset		0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
													_				
A flag is	clea	red by	writing a	a '1' to th	ne corre	spondir	ng bit po	sition. V	Vriting a	a '0' has	no effe	ct on the	e flag. T	he regis	ter will a	also be (cleared
by nard I	rese	t or by		mmand			5.										
PIBF	-D	Parit	y Error	Input Bl		IVI 1,2 ling Inn	ut Duffo	r DAM	1 0								
1	-Pa	anty en		ined wi	ien reac	ing inp	ut Bulle		1,2								
DOBE	 DBF Parity Error Output Buffer RAM 1,2 1 =Parity error occurred when reading Output Buffer RAM 1,2 0 =No parity error 																
	 Parity Error Output Buffer RAM 1,2 1 =Parity error occurred when reading Output Buffer RAM 1,2 0 =No parity error Parity Error Message RAM 																
0	 1 =Parity error occurred when reading Output Buffer RAM 1,2 0 =No parity error R Parity Error Message RAM 1 Parity Error Message RAM 																
PMR	 1 =Parity error occurred when reading Output Buffer RAM 1,2 0 =No parity error R Parity Error Message RAM 1 =Parity error occurred when reading the Message RAM 0 =No parity error 																
1	=Pa	arity er	ror occu	irred wh	en reac	lina the	Messa	ae RAM	1								
0	=No	o parity	/ error					90.0.0									
PTBF1		Parit	v Error	Transie	nt Buffe	r RAM	4										
1	=Pa	arity er	ror occu	irred wh	en reac	ling Tra	nsient E	Buffer R	AM A								
0	=No	o parity	/ error			U											
PTBF2		Parit	y Error [·]	Transie	nt Buffe	r RAM I	3										
1	=Pa	arity er	ror occu	irred wh	ien reac	ling Tra	nsient E	Buffer R	AM B								
0	=No	o parity	/ error														
V	Vher	n one c	of the fla	igs PIBI	F, POBF	F, PMR ,	PTBF1	I, PTBF	2 chan	ges fror	n '0' to '	1' EIR.F	PERR is	s set to	'1'.		
FMBD		Fault	ty Mess	age Buf	fer Dete	ected											
1	=M	essage	e buffer	referen	ced by F	FMB[6:0)] holds	faulty o	data due	e to a pa	arity err	or					
0	=No	o faulty	messa	ge buffe	er	<i>.</i>											
MFMB		Multi	ple ⊦au	Ity Mes	sage Bu	iffers de	etected										
1	=Ar	nother	faulty m	lessage	buπer v	vas det	ected w	nile flag	FMBD	is set							
CDAM			ional tal	lity mes	sage bi	utter											
CRAM	iana	Clea	r all inte	ion of th		ommon			1S is or	nanina (all hite	of all int	ornal D		ka ara i	writton	· · · · · ·
о т	bo h	ais triat	t by bor	d rosot			mand C	1 E A D		igoing (all bits o				sks ale i	whiteh t	00).
1	=F	Acutio	n of the	CHI co	mmand			S ongoi	na								
0			ution of	the CH		and CLF	=AR R	AMS	iig								
FMB[6:0)1	Fault	tv Mess	age But	fer												
P	aritv	/ error	occurre	d when	reading	from th	ne mess	sade bu	ffer or w	vhen tra	Insferrin	a data f	from Inc	out Buffe	er or Tra	ansient	Buffer
1	.2 to	the m	essage	buffer r	eferenc	ed by F	MB[6:0]. Value	e only v	alid whe	en one o	of the fla	ags PIB	F. PMR	, PTBF	1. PTBF	2 , and
fla	ag F	MBD i	s set. U	pdated	only aft	er the ⊦	lost has	reset f	lag FM	BD.			0	,			
MBT[6:0)ັ	Mess	sage Bu	iffer Tra	nsmitte	d			0								
- N	lumb	per of l	ast succ	cessfully	/ transm	nitted m	essage	buffer.	If the m	essage	buffer i	s config	jured fo	r single	-shot m	ode, the	;
re	espe	ective 1	T XR flag	in the	TXRQ1/	2/3/4 re	gisters	was res	set.								
MBU[6:0)]	Mess	sage Bu	iffer Upo	dated												
N	lumb	per of r	nessage	e buffer	that wa	s updat	ed last	by the C	CC. For	this me	essage b	ouffer th	e respe	ective N	D and /	or MBC	flag in
th	ne N	DAT1/	2/3/4 re	gisters	and the	MBSC	1/2/3/4 ι	register	s are al	so set.							
	ידסו	16101 a			o root	whon the				· ototo o	r optor			**			

MBT[6:0] and MBU[6:0] are reset when the CC leaves CONFIG state or enters STARTUP state.

18.8.2. Last Dynamic Transmit Slot (LDTS)

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
LDTS	R	0	0	0	0	0	LDTB10	LDTB9	LDTB8	LDTB7	LDTB6	LDTB5	LDTB4	LDTB3	LDTB2	LDTB1	LDTB0
0x0314	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	LDTA10	LDTA9	LDTA8	LDTA7	LDTA6	LDTA5	LDTA4	LDTA3	LDTA2	LDTA1	LDTA0
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The register is reset when the CC leaves CONFIG state or enters STARTUP state.

Value of vSlotCounter[A] at the time of the last frame transmission on channel A in the dynamic segment of this node. It is updated at the end of the dynamic segment and is reset to zero if no frame was transmitted during the dynamic segment. LDTB[10:0] Last Dynamic Transmission Channel B

Value of vSlotCounter[B] at the time of the last frame transmission on channel B in the dynamic segment of this node. It is updated at the end of the dynamic segment and is reset to zero if no frame was transmitted during the dynamic segment.

LDTA[10:0] Last Dynamic Transmission Channel A

18.8.3. FIFO Status Register (FSR)

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
FSR	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0318	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	RFFL7	RFFL6	RFFL5	RFFL4	RFFL3	RFFL2	RFFL1	RFFL0	0	0	0	0	0	RFO	RFCL	RFNE
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The register is reset when the CC leaves CONFIG state or enters STARTUP state.

RFNE Receive FIFO Not Empty

This flag is set by the CC when a received valid frame (data or null frame depending on rejection mask) was stored in the FIFO. In addition, interrupt flag **SIR.RFNE** is set. The bit is reset after the Host has read all message from the FIFO. 1 =Receive FIFO is not empty

0 =Receive FIFO is empty

RFCL Receive FIFO Critical Level

This flag is set when the receive FIFO fill level **RFFL[7:0]** is equal or greater than the critical level as configured by **FCL.CL[7:0]**. The flag is cleared by the CC as soon as **RFFL[7:0]** drops below **FCL.CL[7:0]**. When **RFCL** changes from '0' to '1' bit **SIR.RFCL** is set to '1', and if enabled, an interrupt is generated.

- 1 =Receive FIFO critical level reached
- 0 =Receive FIFO below critical level

RFO Receive FIFO Overrun

The flag is set by the CC when a receive FIFO overrun is detected. When a receive FIFO overrun occurs, the oldest message is overwritten with the actual received message. In addition, interrupt flag **EIR.RFO** is set. The flag is cleared by the next FIFO read access issued by the Host.

1 = A receive FIFO overrun has been detected

0 =No receive FIFO overrun detected

RFFL[7:0] Receive FIFO Fill Level

Number of FIFO buffers filled with new data not yet read by the Host. Maximum value is 128.

18.8.4. Message Handler Constraints Flags (MHDF)

Some constraints exist for the Message Handler regarding eray_bclk frequency, Message RAM configuration, and FlexRay bus traffic (see Addendum to E-Ray FlexRay IP-Module Specification). To simplify software development, constraints violations are reported by setting flags in the MHDF.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MHDF	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x031C	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	0	0	WATTD	0	0	TDED	TDEA	ENED	ENIEA	CNILID	SNILLA
	W								WAHP			IDFB	IDFA	LINLR	FINFA	SINUB	SINUA
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

A flag is cleared by writing a '1' to the corresponding bit position. Writing a '0' has no effect on the flag. A hard reset will also clear the register. The register is reset when the CC leaves CONFIG state or enters STARTUP state.

SNUA Status Not Updated Channel A

This flag is set by the CC when the Message Handler, due to overload condition, was not able to update a message buffer's status MBS with respect to channel A.

1 =MBS for channel A not updated

0 =No overload condition occurred when updating MBS for channel A

SNUB Status Not Updated Channel B

This flag is set by the CC when the Message Handler, due to overload condition, was not able to update a message buffer's status MBS with respect to channel B.

1 =MBS for channel B not updated

0 =No overload condition occurred when updating MBS for channel B

FNFA Find Sequence Not Finished Channel A

This flag is set by the CC when the Message Handler, due to overload condition, was not able to finish a find sequence (scan of Message RAM for matching message buffer) with respect to channel A.

1 =Find sequence not finished for channel A

0 =No find sequence not finished for channel A

FNFB Find Sequence Not Finished Channel B

This flag is set by the CC when the Message Handler, due to overload condition, was not able to finish a find sequence (scan of Message RAM for matching message buffer) with respect to channel B.

1 =Find sequence not finished for channel B

0 =No find sequence not finished for channel B Transient Buffer Access Failure A

TBFA

This flag is set by the CC when a read or write access to TBF A requested by PRT A could not complete within the available time.

1 =TBF A access failure

0 =No TBF A access failure

TBFB Transient Buffer Access Failure B

This flag is set by the CC when a read or write access to TBF B requested by PRT B could not complete within the available time.

1 =TBF B access failure

0 =No TBF B access failure

WAHP Write Attempt to Header Partition

This flag is set by the CC when the message handler tries to write message data into the header partition of the Message RAM due to faulty configuration of a message buffer. The write attempt is not executed, to protect the header partition from unintended write accesses.

1 =Write attempt to header partition

0 =No write attempt to header partition

When one of the flags SNUA, SNUB, FNFA, FNFB, TBFA, TBFB, WAHP changes from '0' to '1', interrupt flag EIR.MHF is set to '1'.

18.8.5. Transmission Request 1/2/3/4 (TXRQ1/2/3/4)

The four registers reflect the state of the **TXR** flags of all configured message buffers. The flags are evaluated for transmit buffers only. If the number of configured message buffers is less than 128, the remaining **TXR** flags have no meaning.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TXRQ4	R	TXR127	TXR126	TXR125	TXR124	TXR123	TXR122	TXR121	TXR120	TXR119	TXR118	TXR117	TXR116	TXR115	TXR114	TXR113	TXR112
0x032C	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	TXR111	TXR110	TXR109	TXR108	TXR107	TXR106	TXR105	TXR104	TXR103	TXR102	TXR101	TXR100	TXR99	TXR98	TXR97	TXR96
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TXRQ3	R	TXR95	TXR94	TXR93	TXR92	TXR91	TXR90	TXR89	TXR88	TXR87	TXR86	TXR85	TXR84	TXR83	TXR82	TXR81	TXR80
0x0328	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	TXR79	TXR78	TXR77	TXR76	TXR75	TXR74	TXR73	TXR72	TXR71	TXR70	TXR69	TXR68	TXR67	TXR66	TXR65	TXR64
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Bit TXRQ2	R	31 TXR63	30 TXR62	29 TXR61	28 TXR60	27 TXR59	26 TXR58	25 TXR57	24 TXR56	23 TXR55	22 TXR54	21 TXR53	20 TXR52	19 TXR51	18 TXR50	17 TXR49	16 TXR48
Bit TXRQ2 0x0324	R W	31 TXR63	30 TXR62	29 TXR61	28 TXR60	27 TXR59	26 TXR58	25 TXR57	24 TXR56	23 TXR55	22 TXR54	21 TXR53	20 TXR52	19 TXR51	18 TXR50	17 TXR49	16 TXR48
Bit TXRQ2 0x0324 Reset	R W	31 TXR63 0	30 TXR62 0	29 TXR61 0	28 TXR60 0	27 TXR59 0	26 TXR58 0	25 TXR57 0	24 TXR56 0	23 TXR55 0	22 TXR54 0	21 TXR53 0	20 TXR52 0	19 TXR51 0	18 TXR50 0	17 TXR49 0	16 TXR48 0
Bit TXRQ2 0x0324 Reset Bit	R W	31 TXR63 0 15	30 TXR62 0 14	29 TXR61 0 13	28 TXR60 0 12	27 TXR59 0 11	26 TXR58 0 10	25 TXR57 0 9	24 TXR56 0 8	23 TXR55 0 7	22 TXR54 0 6	21 TXR53 0 5	20 TXR52 0 4	19 TXR51 0 3	18 TXR50 0 2	17 TXR49 0 1	16 TXR48 0 0
Bit TXRQ2 0x0324 Reset Bit	R W R	31 TXR63 0 15 TXR47	30 TXR62 0 14 TXR46	29 TXR61 0 13 TXR45	28 TXR60 0 12 TXR44	27 TXR59 0 11 TXR43	26 TXR58 0 10 TXR42	25 TXR57 0 9 TXR41	24 TXR56 0 8 TXR40	23 TXR55 0 7 TXR39	22 TXR54 0 6 TXR38	21 TXR53 0 5 TXR37	20 TXR52 0 4 TXR36	19 TXR51 0 3 TXR35	18 TXR50 0 2 TXR34	17 TXR49 0 1 TXR33	16 TXR48 0 0 TXR32
Bit TXRQ2 0x0324 Reset Bit	R W R W	31 TXR63 0 15 TXR47	30 TXR62 0 14 TXR46	29 TXR61 0 13 TXR45	28 TXR60 0 12 TXR44	27 TXR59 0 11 TXR43	26 TXR58 0 10 TXR42	25 TXR57 0 9 TXR41	24 TXR56 0 8 TXR40	23 TXR55 0 7 TXR39	22 TXR54 0 6 TXR38	21 TXR53 0 5 TXR37	20 TXR52 0 4 TXR36	19 TXR51 0 3 TXR35	18 TXR50 0 2 TXR34	17 TXR49 0 1 TXR33	16 TXR48 0 0 TXR32
Bit TXRQ2 0x0324 Reset Bit Reset	R W R W	31 TXR63 0 15 TXR47 0	30 TXR62 0 14 TXR46 0	29 TXR61 0 13 TXR45 0	28 TXR60 0 12 TXR44 0	27 TXR59 0 11 TXR43 0	26 TXR58 0 10 TXR42 0	25 TXR57 0 9 TXR41 0	24 TXR56 0 8 TXR40 0	23 TXR55 0 7 TXR39 0	22 TXR54 0 6 TXR38 0	21 TXR53 0 5 TXR37 0	20 TXR52 0 4 TXR36 0	19 TXR51 0 3 TXR35 0	18 TXR50 0 2 TXR34 0	17 TXR49 0 1 TXR33 0	16 TXR48 0 0 TXR32 0
Bit TXRQ2 0x0324 Reset Bit Reset Bit	R W R W	31 TXR63 0 15 TXR47 0 31	30 TXR62 0 14 TXR46 0 30	29 TXR61 0 13 TXR45 0 29	28 TXR60 0 12 TXR44 0 28	27 TXR59 0 11 TXR43 0 27	26 TXR58 0 10 TXR42 0 26	25 TXR57 0 9 TXR41 0 25	24 TXR56 0 8 TXR40 0 24	23 TXR55 0 7 TXR39 0 23	22 TXR54 0 6 TXR38 0 22	21 TXR53 0 5 TXR37 0 21	20 TXR52 0 4 TXR36 0 20	19 TXR51 0 3 TXR35 0 19	18 TXR50 0 2 TXR34 0 18	17 TXR49 0 1 TXR33 0 17	16 TXR48 0 0 TXR32 0 16
Bit TXRQ2 0x0324 Bit Reset Bit TXRQ1	R W W	31 TXR63 0 15 TXR47 0 31 TXR31	30 TXR62 0 14 TXR46 0 30 TXR30	29 TXR61 0 13 TXR45 0 29 TXR29	28 TXR60 0 12 TXR44 0 28 TXR28	27 TXR59 0 11 TXR43 0 27 TXR27	26 TXR58 0 10 TXR42 0 26 TXR26	25 TXR57 0 9 TXR41 0 25 TXR25	24 TXR56 0 8 TXR40 0 24 TXR24	23 TXR55 0 7 TXR39 0 23 TXR23	22 TXR54 0 6 TXR38 0 22 TXR22	21 TXR53 0 5 TXR37 0 21 TXR21	20 TXR52 0 4 TXR36 0 20 TXR20	19 TXR51 0 3 TXR35 0 19 TXR19	18 TXR50 0 2 TXR34 0 18 TXR18	17 TXR49 0 1 TXR33 0 17 17 TXR17	16 TXR48 0 0 TXR32 0 16 TXR16
Bit TXRQ2 0x0324 Bit Reset Bit TXRQ1 0x0320	R W W	31 TXR63 0 15 TXR47 0 31 TXR31	30 TXR62 0 14 TXR46 0 30 TXR30	29 TXR61 0 13 TXR45 0 29 TXR29	28 TXR60 0 12 TXR44 0 28 TXR28	27 TXR59 0 11 TXR43 0 27 TXR27	26 TXR58 0 10 TXR42 0 26 TXR26	25 TXR57 0 9 TXR41 0 25 TXR25	24 TXR56 0 8 TXR40 0 24 TXR24	23 TXR55 0 7 TXR39 0 23 TXR23	22 TXR54 0 TXR38 0 22 TXR22	21 TXR53 0 5 TXR37 0 21 TXR21	20 TXR52 0 4 TXR36 0 20 TXR20	19 TXR51 0 3 TXR35 0 19 TXR19	18 TXR50 0 2 TXR34 0 18 TXR18	17 TXR49 0 1 TXR33 0 17 TXR17	16 TXR48 0 0 TXR32 0 16 TXR16
Bit TXRQ2 0x0324 Reset Bit Reset Bit TXRQ1 0x0320 Reset	R W W	31 TXR63 0 15 TXR47 0 31 TXR31 0	30 TXR62 0 14 TXR46 0 30 TXR30 0	29 TXR61 0 13 TXR45 0 29 TXR29 0	28 TXR60 0 12 TXR44 0 28 TXR28 0	27 TXR59 0 11 TXR43 0 27 TXR27 0	26 TXR58 0 10 TXR42 0 26 TXR26 0	25 TXR57 0 9 TXR41 0 25 TXR25 0	24 TXR56 0 8 TXR40 0 24 TXR24 0	23 TXR55 0 7 TXR39 0 23 TXR23 0	22 TXR54 0 6 TXR38 0 22 TXR22 0	21 TXR53 0 5 TXR37 0 21 TXR21 0	20 TXR52 0 4 TXR36 0 20 TXR20 0	19 TXR51 0 3 TXR35 0 19 TXR19 0	18 TXR50 0 2 TXR34 0 18 TXR18 0	17 TXR49 0 1 TXR33 0 17 TXR17 0 TXR17	16 TXR48 0 0 TXR32 0 16 TXR16 0
Bit TXRQ2 0x0324 Reset Bit Reset Bit TXRQ1 0x0320 Reset Bit	R W W	31 TXR63 0 15 TXR47 0 31 TXR31 0 15	30 TXR62 0 14 TXR46 0 30 TXR30 0 14	29 TXR61 0 13 TXR45 0 29 TXR29 0 13	28 TXR60 0 12 TXR44 0 28 TXR28 0 0 12	27 TXR59 0 11 TXR43 0 27 TXR27 0 11	26 TXR58 0 10 TXR42 0 26 TXR26 0 10	25 TXR57 0 9 TXR41 0 25 TXR25 0 9	24 TXR56 0 8 TXR40 0 24 TXR24 0 8	23 TXR55 0 7 TXR39 0 23 TXR23 0 7	22 TXR54 0 6 TXR38 0 22 TXR22 0 6	21 TXR53 0 5 TXR37 0 21 TXR21 0 0 5	20 TXR52 0 4 TXR36 0 20 TXR20 0 4	19 TXR51 0 3 TXR35 0 19 TXR19 0 3	18 TXR50 0 2 TXR34 0 18 TXR18 0 0 2	17 TXR49 0 1 TXR33 0 17 TXR17 0 1 1	16 TXR48 0 0 TXR32 0 16 TXR16 0 0
Bit TXRQ2 0x0324 Reset Bit Reset Bit TXRQ1 0x0320 Reset Bit	R W R W	31 TXR63 0 15 TXR47 0 31 TXR31 0 15 TXR15	30 TXR62 0 14 TXR46 0 30 TXR30 0 14 TXR14	29 TXR61 0 13 TXR45 0 29 TXR29 0 13 TXR13	28 TXR60 0 12 TXR44 0 28 TXR28 0 12 TXR12	27 TXR59 0 11 TXR43 0 27 TXR27 0 11 TXR11	26 TXR58 0 10 TXR42 0 26 TXR26 0 10 TXR10	25 TXR57 0 TXR41 0 25 TXR25 0 0 9 9 TXR9	24 TXR56 0 8 TXR40 0 24 TXR24 0 8 8 TXR8	23 TXR55 0 TXR39 0 23 TXR23 0 7 TXR23	22 TXR54 0 TXR38 0 22 TXR22 0 0 6 TXR6	21 TXR53 0 5 TXR37 0 21 TXR21 0 0 5 5 TXR5	20 TXR52 0 4 TXR36 0 20 TXR20 0 4 4 TXR4	19 TXR51 0 3 TXR35 0 19 TXR19 0 3 3 TXR3	18 TXR50 0 2 TXR34 0 18 TXR18 0 0 2 TXR2	17 TXR49 0 1 TXR33 0 17 TXR17 0 1 0 1 TXR1	16 TXR48 0 TXR32 0 16 TXR16 0 0 0 TXR0
Bit TXRQ2 0x0324 Reset Bit Reset Bit TXRQ1 0x0320 Reset Bit	R W W R W	31 TXR63 0 15 TXR47 0 31 TXR31 0 15 TXR15	30 TXR62 0 14 TXR46 0 30 TXR30 0 14 TXR14	29 TXR61 0 13 TXR45 0 29 TXR29 0 13 TXR13	28 TXR60 0 12 TXR44 0 28 TXR28 0 12 TXR12	27 TXR59 0 11 TXR43 0 27 7 TXR27 0 11 TXR11	26 TXR58 0 10 TXR42 0 26 TXR26 0 10 TXR10	25 TXR57 0 9 TXR41 0 25 TXR25 0 9 TXR9	24 TXR56 0 8 TXR40 0 24 TXR24 0 8 TXR28	23 TXR55 0 7 TXR39 0 23 TXR23 0 7 TXR7	22 TXR54 0 TXR38 0 22 TXR22 0 6 TXR6	21 TXR53 0 5 TXR37 0 21 TXR21 0 5 TXR5	20 TXR52 0 4 TXR36 0 20 TXR20 0 4 TXR4	19 TXR51 0 3 TXR35 0 19 TXR19 0 3 TXR3	18 TXR50 0 2 TXR34 0 18 TXR18 0 2 TXR2	17 TXR49 0 1 TXR33 0 17 TXR17 0 1 TXR17	16 TXR48 0 0 TXR32 0 16 TXR16 0 0 TXR16 0 TXR0

TXR[127:0] Transmission Request

If the flag is set, the respective message buffer is ready for transmission respectively transmission of this message buffer is in progress. In single-shot mode the flags are reset after transmission has completed.

18.8.6. New Data 1/2/3/4 (NDAT1/2/3/4)

The four registers reflect the state of the **ND** flags of all configured message buffers. **ND** flags belonging to transmit buffers have no meaning. If the number of configured message buffers is less than 128, the remaining **ND** flags have no meaning. The registers are reset when the CC leaves CONFIG state or enters STARTUP state.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
NDAT4	R	ND127	ND126	ND125	ND124	ND123	ND122	ND121	ND120	ND119	ND118	ND117	ND116	ND115	ND114	ND113	ND112
0x033C	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	ND111	ND110	ND109	ND108	ND107	ND106	ND105	ND104	ND103	ND102	ND101	ND100	ND99	ND98	ND97	ND96
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
NDAT3	R	ND95	ND94	ND93	ND92	ND91	ND90	ND89	ND88	ND87	ND86	ND85	ND84	ND83	ND82	ND81	ND80
0x0338	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	ND79	ND78	ND77	ND76	ND75	ND74	ND73	ND72	ND71	ND70	ND69	ND68	ND67	ND66	ND65	ND64
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Bit NDAT2	R	31 ND63	30 ND62	29 ND61	28 ND60	27 ND59	26 ND58	25 ND57	24 ND56	23 ND55	22 ND54	21 ND53	20 ND52	19 ND51	18 ND50	17 ND49	16 ND48
Bit NDAT2 0x0334	R W	31 ND63	30 ND62	29 ND61	28 ND60	27 ND59	26 ND58	25 ND57	24 ND56	23 ND55	22 ND54	21 ND53	20 ND52	19 ND51	18 ND50	17 ND49	16 ND48
Bit NDAT2 0x0334 Reset	R W	31 ND63 0	30 ND62 0	29 ND61 0	28 ND60 0	27 ND59 0	26 ND58 0	25 ND57 0	24 ND56 0	23 ND55 0	22 ND54 0	21 ND53 0	20 ND52 0	19 ND51 0	18 ND50 0	17 ND49 0	16 ND48 0
Bit NDAT2 0x0334 Reset Bit	R W	31 ND63 0 15	30 ND62 0 14	29 ND61 0 13	28 ND60 0 12	27 ND59 0 11	26 ND58 0 10	25 ND57 0 9	24 ND56 0 8	23 ND55 0 7	22 ND54 0 6	21 ND53 0 5	20 ND52 0 4	19 ND51 0 3	18 ND50 0 2	17 ND49 0 1	16 ND48 0 0
Bit NDAT2 0x0334 Reset Bit	R W R	31 ND63 0 15 ND47	30 ND62 0 14 ND46	29 ND61 0 13 ND45	28 ND60 0 12 ND44	27 ND59 0 11 ND43	26 ND58 0 10 ND42	25 ND57 0 9 ND41	24 ND56 0 8 ND40	23 ND55 0 7 ND39	22 ND54 0 6 ND38	21 ND53 0 5 ND37	20 ND52 0 4 ND36	19 ND51 0 3 ND35	18 ND50 0 2 ND34	17 ND49 0 1 ND33	16 ND48 0 0 ND32
Bit NDAT2 0x0334 Reset Bit	R W R W	31 ND63 0 15 ND47	30 ND62 0 14 ND46	29 ND61 0 13 ND45	28 ND60 0 12 ND44	27 ND59 0 11 ND43	26 ND58 0 10 ND42	25 ND57 0 9 ND41	24 ND56 0 8 ND40	23 ND55 0 7 ND39	22 ND54 0 6 ND38	21 ND53 0 5 ND37	20 ND52 0 4 ND36	19 ND51 0 3 ND35	18 ND50 0 2 ND34	17 ND49 0 1 ND33	16 ND48 0 0 ND32
Bit NDAT2 0x0334 Reset Bit Reset	R W R	31 ND63 0 15 ND47 0	30 ND62 0 14 ND46 0	29 ND61 0 13 ND45 0	28 ND60 0 12 ND44 0	27 ND59 0 11 ND43 0	26 ND58 0 10 ND42 0	25 ND57 0 9 ND41 0	24 ND56 0 8 ND40 0	23 ND55 0 7 ND39 0	22 ND54 0 6 ND38 0	21 ND53 0 5 ND37 0	20 ND52 0 4 ND36 0	19 ND51 0 3 ND35 0	18 ND50 0 2 ND34 0	17 ND49 0 1 ND33 0	16 ND48 0 ND32 0
Bit NDAT2 0x0334 Reset Bit Reset Bit	R W W	31 ND63 0 15 ND47 0 31	30 ND62 0 14 ND46 0 30	29 ND61 0 13 ND45 0 29	28 ND60 0 12 ND44 0 28	27 ND59 0 11 ND43 0 27	26 ND58 0 10 ND42 0 26	25 ND57 0 9 ND41 0 25	24 ND56 0 8 ND40 0 24	23 ND55 0 7 ND39 0 23	22 ND54 0 6 ND38 0 22	21 ND53 0 5 ND37 0 21	20 ND52 0 4 ND36 0 20	19 ND51 0 3 ND35 0 19	18 ND50 0 2 ND34 0 18	17 ND49 0 1 ND33 0 17	16 ND48 0 0 ND32 0 16
Bit NDAT2 0x0334 Reset Bit Reset Bit NDAT1	R W W	31 ND63 0 15 ND47 0 31 ND31	30 ND62 0 14 ND46 0 30 ND30	29 ND61 0 13 ND45 0 29 ND29	28 ND60 0 12 ND44 0 28 ND28	27 ND59 0 11 ND43 0 27 ND27	26 ND58 0 10 ND42 0 26 ND26	25 ND57 0 9 ND41 0 25 ND25	24 ND56 0 8 ND40 0 24 ND24	23 ND55 0 7 ND39 0 23 ND23	22 ND54 0 6 ND38 0 22 ND22	21 ND53 0 5 ND37 0 21 ND21	20 ND52 0 4 ND36 0 20 ND20	19 ND51 0 3 ND35 0 19 ND19	18 ND50 0 2 ND34 0 18 ND18	17 ND49 0 1 ND33 0 17 ND17	16 ND48 0 ND32 0 16 ND16
Bit NDAT2 0x0334 Reset Bit Reset Bit NDAT1 0x0330	R W W	31 ND63 0 15 ND47 0 31 ND31	30 ND62 0 14 ND46 0 30 ND30	29 ND61 0 13 ND45 0 29 ND29	28 ND60 0 12 ND44 0 28 ND28	27 ND59 0 11 ND43 0 27 ND27	26 ND58 0 10 ND42 0 26 ND26	25 ND57 0 9 ND41 0 25 ND25	24 ND56 0 8 ND40 0 24 ND24	23 ND55 0 7 ND39 0 23 ND23	22 ND54 0 6 ND38 0 22 ND22	21 ND53 0 5 ND37 0 21 ND21	20 ND52 0 4 ND36 0 20 ND20	19 ND51 0 3 ND35 0 19 ND19	18 ND50 0 2 ND34 0 18 ND18	17 ND49 0 1 ND33 0 17 ND17	16 ND48 0 ND32 0 16 ND16
Bit NDAT2 0x0334 Reset Bit Reset Bit NDAT1 0x0330 Reset	R W W	31 ND63 0 15 ND47 0 31 ND31 0	30 ND62 0 14 ND46 0 30 ND30 0	29 ND61 0 13 ND45 0 29 ND29 0	28 ND60 0 12 ND44 0 28 ND28 0	27 ND59 0 11 ND43 0 27 ND27 0	26 ND58 0 10 ND42 0 26 ND26 0	25 ND57 0 9 ND41 0 25 ND25 0	24 ND56 0 8 ND40 0 24 ND24 0	23 ND55 0 7 ND39 0 23 ND23 0 0	22 ND54 0 6 ND38 0 22 ND22 0	21 ND53 0 5 ND37 0 21 ND21 0 0	20 ND52 0 4 ND36 0 20 ND20 0	19 ND51 0 3 ND35 0 19 ND19 0	18 ND50 2 ND34 0 18 ND18 0	17 ND49 0 1 ND33 0 17 ND17 ND17	16 ND48 0 ND32 0 16 ND16 0
Bit NDAT2 0x0334 Reset Bit Reset Bit NDAT1 0x0330 Reset Bit	R W W	31 ND63 0 15 ND47 0 31 ND31 0 15	30 ND62 0 14 ND46 0 30 ND30 0 0 14	29 ND61 0 13 ND45 0 29 ND29 0 13	28 ND60 0 12 ND44 0 28 ND28 0 0 12	27 ND59 0 11 ND43 0 27 ND27 0 0 11	26 ND58 0 10 ND42 0 26 ND26 0 0 10	25 ND57 0 9 ND41 0 25 ND25 0 0 9	24 ND56 0 8 ND40 0 24 ND24 0 8	23 ND55 0 7 ND39 0 23 ND23 0 0 7	22 ND54 0 6 ND38 0 22 ND22 0 0 6	21 ND53 0 5 ND37 0 21 ND21 0 0 5	20 ND52 0 4 ND36 0 20 ND20 0 0 4	19 ND51 0 3 ND35 0 19 ND19 0 3	18 ND50 2 ND34 0 18 ND18 0 0 2	17 ND49 0 1 ND33 0 17 ND17 0 0 1	16 ND48 0 ND32 0 16 ND16 0 0
Bit NDAT2 0x0334 Reset Bit Reset Bit NDAT1 0x0330 Reset Bit	R W R W	31 ND63 0 15 ND47 0 31 ND31 0 15 ND15	30 ND62 0 14 ND46 0 30 ND30 0 14 ND14	29 ND61 0 13 ND45 0 29 ND29 0 13 ND13	28 ND60 0 12 ND44 0 28 ND28 0 0 12 ND12	27 ND59 0 11 ND43 0 27 ND27 0 27 ND27 0 11 ND11	26 ND58 0 10 ND42 0 26 ND26 0 0 10 ND10	25 ND57 0 9 ND41 0 25 ND25 0 0 0 9 ND9	24 ND56 8 ND40 0 24 ND24 0 8 ND8	23 ND55 0 7 ND39 0 23 ND23 0 0 7 ND7	22 ND54 0 6 ND38 0 22 ND22 0 0 0 6 ND6	21 ND53 0 5 ND37 0 21 ND21 0 0 5 ND5	20 ND52 0 4 ND36 0 20 ND20 0 0 4 ND4	19 ND51 0 3 ND35 0 19 ND19 0 3 ND3	18 ND50 2 ND34 0 18 ND18 0 2 ND2	17 ND49 0 1 ND33 0 17 ND17 0 1 ND17	16 ND48 0 ND32 0 16 ND16 0 0 0 ND0
Bit NDAT2 0x0334 Reset Bit Reset Bit NDAT1 0x0330 Reset Bit	R W R W	31 ND63 0 15 ND47 0 31 ND31 0 15 ND15	30 ND62 0 14 ND46 0 30 ND30 0 ND30 0 14 ND14	29 ND61 0 13 ND45 0 29 ND29 0 ND29 0 13 ND13	28 ND60 0 12 ND44 0 28 ND28 0 0 12 ND12	27 ND59 0 11 ND43 0 27 ND27 0 ND27 0 11 ND11	26 ND58 0 10 ND42 0 26 ND26 0 ND26 0 10 ND10	25 ND57 0 9 ND41 0 25 ND25 0 ND25 0 0 ND25	24 ND56 8 ND40 0 24 ND24 0 ND24 8 ND8	23 ND55 0 7 ND39 0 23 ND23 0 0 7 ND7	22 ND54 0 ND38 0 22 ND22 0 0 0 6 ND6	21 ND53 0 5 ND37 0 21 ND21 0 0 5 ND5	20 ND52 0 4 ND36 20 20 ND20 0 0 4 ND4	19 ND51 0 3 ND35 0 19 ND19 0 0 3 ND3	18 ND50 2 ND34 0 18 ND18 0 0 2 ND2	17 ND49 0 1 ND33 0 17 ND17 0 ND17 1 ND12	16 ND48 0 ND32 0 16 ND16 0 0 ND16 0 ND0

ND[127:0] New Data

The flags are set when a valid received data frame matches the message buffer's filter configuration, independent of the payload length received or the payload length configured for that message buffer. The flags are not set after reception of null frames except for message buffers belonging to the receive FIFO. An **ND** flag is reset when the header section of the corresponding message buffer is reconfigured or when the data section has been transferred to the Output Buffer.

18.8.7. Message Buffer Status Changed 1/2/3/4 (MBSC1/2/3/4)

The four registers reflect the state of the **MBC** flags of all configured message buffers. If the number of configured message buffers is less than 128, the remaining **MBC** flags have no meaning. The registers are reset when the CC leaves CONFIG state or enters STARTUP state.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MBSC4	R	MBC127	MBC126	MBC125	MBC124	MBC123	MBC122	MBC121	MBC120	MBC119	MBC118	MBC117	MBC116	MBC115	MBC114	MBC113	MBC112
0x034C	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	MBC111	MBC110	MBC109	MBC108	MBC107	MBC106	MBC105	MBC104	MBC103	MBC102	MBC101	MBC100	MBC99	MBC98	MBC97	MBC96
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MBSC3	R	MBC95	MBC94	MBC93	MBC92	MBC91	MBC90	MBC89	MBC88	MBC87	MBC86	MBC85	MBC84	MBC83	MBC82	MBC81	MBC80
0x0348	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	MBC79	MBC78	MBC77	MBC76	MBC75	MBC74	MBC73	MBC72	MBC71	MBC70	MBC69	MBC68	MBC67	MBC66	MBC65	MBC64
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		31	30	20	28	27	26	25	24	23	22	21	20	10	18	17	16
Bit MBSC2	P	31	30	29	28	27	26	25	24	23	22	21	20	19 MRC51	18 MBC50	17 MBC49	16 MBC48
Bit MBSC2	R	31 MBC63	30 MBC62	29 MBC61	28 MBC60	27 MBC59	26 MBC58	25 MBC57	24 MBC56	23 MBC55	22 MBC54	21 MBC53	20 MBC52	19 MBC51	18 MBC50	17 MBC49	16 MBC48
Bit MBSC2 0x0344 Reset	R W	31 MBC63	30 MBC62	29 MBC61	28 MBC60	27 MBC59	26 MBC58	25 MBC57	24 MBC56	23 MBC55	22 MBC54	21 MBC53	20 MBC52	19 MBC51	18 MBC50	17 MBC49	16 MBC48
Bit MBSC2 0x0344 Reset	R W	31 MBC63 0	30 MBC62 0	29 MBC61 0	28 MBC60 0	27 MBC59 0	26 MBC58 0	25 MBC57 0	24 MBC56 0	23 MBC55 0	22 MBC54 0	21 MBC53 0	20 MBC52 0	19 MBC51 0	18 MBC50 0	17 MBC49 0	16 MBC48 0
Bit MBSC2 0x0344 Reset Bit	R W	31 MBC63 0 15	30 MBC62 0 14	29 MBC61 0 13	28 MBC60 0 12	27 MBC59 0 11	26 MBC58 0 10	25 MBC57 0 9	24 MBC56 0 8	23 MBC55 0 7	22 MBC54 0 6	21 MBC53 0 5	20 MBC52 0 4	19 MBC51 0 3	18 MBC50 0 2	17 MBC49 0 1	16 MBC48 0 0
Bit MBSC2 0x0344 Reset Bit	R W R	31 MBC63 0 15 MBC47	30 MBC62 0 14 MBC46	29 MBC61 0 13 MBC45	28 MBC60 0 12 MBC44	27 MBC59 0 11 MBC43	26 MBC58 0 10 MBC42	25 MBC57 0 9 MBC41	24 MBC56 0 8 MBC40	23 MBC55 0 7 MBC39	22 MBC54 0 6 MBC38	21 MBC53 0 5 MBC37	20 MBC52 0 4 MBC36	19 MBC51 0 3 MBC35	18 MBC50 0 2 MBC34	17 MBC49 0 1 MBC33	16 MBC48 0 0 MBC32
Bit MBSC2 0x0344 Reset Bit	R W R W	31 MBC63 0 15 MBC47	30 MBC62 0 14 MBC46	29 MBC61 0 13 MBC45	28 MBC60 0 12 MBC44	27 MBC59 0 11 MBC43	26 MBC58 0 10 MBC42	25 MBC57 0 9 MBC41	24 MBC56 0 8 MBC40	23 MBC55 0 7 MBC39	22 MBC54 0 6 MBC38	21 MBC53 0 5 MBC37	20 MBC52 0 4 MBC36	19 MBC51 0 3 MBC35	18 MBC50 0 2 MBC34	17 MBC49 0 1 MBC33	16 MBC48 0 0 MBC32
Bit MBSC2 0x0344 Reset Bit Reset	R W R W	31 MBC63 0 15 MBC47 0	30 MBC62 0 14 MBC46 0	29 MBC61 0 13 MBC45 0	28 MBC60 0 12 MBC44 0	27 MBC59 0 11 MBC43 0	26 MBC58 0 10 MBC42 0	25 MBC57 0 9 MBC41 0	24 MBC56 0 8 MBC40 0	23 MBC55 0 7 MBC39 0	22 MBC54 0 6 MBC38 0	21 MBC53 0 5 MBC37 0	20 MBC52 0 4 MBC36 0	19 MBC51 0 3 MBC35 0	18 MBC50 0 2 MBC34 0	17 MBC49 0 1 MBC33 0	16 MBC48 0 0 MBC32 0
Bit MBSC2 0x0344 Reset Bit Reset Bit	R W R W	31 MBC63 0 15 MBC47 0 31	30 MBC62 0 14 MBC46 0 30	29 MBC61 0 13 MBC45 0 0 29	28 MBC60 0 12 MBC44 0 28	27 MBC59 0 11 MBC43 0 27	26 MBC58 0 10 MBC42 0 26	25 MBC57 0 9 MBC41 0 25	24 MBC56 0 8 MBC40 0 24	23 MBC55 0 7 MBC39 0 23	22 MBC54 0 6 MBC38 0 0 22	21 MBC53 0 5 MBC37 0 21	20 MBC52 0 4 MBC36 0 20	19 MBC51 0 3 MBC35 0 0	18 MBC50 0 2 MBC34 0 18	17 MBC49 0 1 MBC33 0 0	16 MBC48 0 0 MBC32 0 16
Bit MBSC2 0x0344 Reset Bit Reset Bit MBSC1	R W W	31 MBC63 0 15 MBC47 0 31 MBC31	30 MBC62 0 14 MBC46 0 30 MBC30	29 MBC61 0 13 MBC45 0 29 MBC29	28 MBC60 0 12 MBC44 0 28 MBC28	27 MBC59 0 11 MBC43 0 27 MBC27	26 MBC58 0 10 MBC42 0 26 MBC26	25 MBC57 0 9 MBC41 0 25 MBC25	24 MBC56 0 8 MBC40 0 24 MBC24	23 MBC55 0 7 MBC39 0 23 MBC23	22 MBC54 0 6 MBC38 0 22 MBC22	21 MBC53 0 5 MBC37 0 21 MBC21	20 MBC52 0 4 MBC36 0 20 MBC20	19 MBC51 0 3 MBC35 0 19 NBC19	18 MBC50 0 2 MBC34 0 18 MBC18	17 MBC49 0 1 MBC33 0 17 NBC17	16 MBC48 0 0 MBC32 0 16 MBC16
Bit MBSC2 0x0344 Reset Bit Reset Bit MBSC1 0x0340	R W R W	31 MBC63 0 15 MBC47 0 31 MBC31	30 MBC62 0 14 MBC46 0 30 MBC30	29 MBC61 0 13 MBC45 0 29 MBC29	28 MBC60 0 12 MBC44 0 28 MBC28	27 MBC59 0 11 MBC43 0 27 MBC27	26 MBC58 0 10 MBC42 0 26 MBC26	25 MBC57 0 9 MBC41 0 25 MBC25	24 MBC56 0 8 MBC40 0 24 MBC24	23 MBC55 0 7 MBC39 0 23 MBC23	22 MBC54 0 6 MBC38 0 22 MBC22	21 MBC53 0 5 MBC37 0 21 MBC21	20 MBC52 0 4 MBC36 0 20 MBC20	19 MBC51 0 3 MBC35 0 19 MBC19	18 MBC50 0 2 MBC34 0 18 MBC18	17 MBC49 0 1 MBC33 0 0 17 MBC17	16 MBC48 0 0 MBC32 0 16 MBC16
Bit MBSC2 0x0344 Reset Bit Reset Bit MBSC1 0x0340 Reset	R W W	31 MBC63 0 15 MBC47 0 31 MBC31 0	30 MBC62 0 14 MBC46 0 30 MBC30 0	29 MBC61 0 13 MBC45 0 29 MBC29 0	28 MBC60 0 12 MBC44 0 28 MBC28 0	27 MBC59 0 11 MBC43 0 27 MBC27 0	26 MBC58 0 10 MBC42 0 26 MBC26 0	25 MBC57 0 9 MBC41 0 25 MBC25 0	24 MBC56 0 8 MBC40 0 24 MBC24 0	23 MBC55 0 7 MBC39 0 23 MBC23 0	22 MBC54 0 6 MBC38 0 22 MBC22 0	21 MBC53 0 5 MBC37 0 21 MBC21 0	20 MBC52 0 4 MBC36 0 20 MBC20 0	19 MBC51 0 3 MBC35 0 19 MBC19 0	18 MBC50 0 2 MBC34 0 18 MBC18 0	17 MBC49 0 1 MBC33 0 17 MBC17 0	16 MBC48 0 0 MBC32 0 16 MBC16 0
Bit MBSC2 0x0344 Reset Bit Reset Bit MBSC1 0x0340 Reset	R W W	31 MBC63 0 15 MBC47 0 31 MBC31 0	30 MBC62 0 14 MBC46 0 30 MBC30 0	29 MBC61 0 13 MBC45 0 29 MBC29 0	28 MBC60 0 12 MBC44 0 28 MBC28 0	27 MBC59 0 11 MBC43 0 27 MBC27 0	26 MBC58 0 10 MBC42 0 26 MBC26 0	25 MBC57 0 9 MBC41 0 25 MBC25 0	24 MBC56 0 8 MBC40 0 24 MBC24 0	23 MBC55 0 7 MBC39 0 23 MBC23 0	22 MBC54 0 MBC38 0 22 MBC22 0	21 MBC53 0 5 MBC37 0 21 MBC21 0	20 MBC52 0 4 MBC36 20 MBC20 0	19 MBC51 0 3 MBC35 0 19 MBC19 0	18 MBC50 0 2 MBC34 0 18 MBC18	17 MBC49 0 1 MBC33 0 17 MBC17 0 0	16 MBC48 0 0 MBC32 0 16 MBC16 0
Bit MBSC2 0x0344 Reset Bit Reset Bit MBSC1 0x0340 Reset Bit	R W W	31 MBC63 0 15 MBC47 0 31 MBC31 0 15	30 MBC62 0 14 MBC46 0 30 MBC30 0 MBC30	29 MBC61 0 13 MBC45 0 29 MBC29 0 MBC29 0 13	28 MBC60 0 12 MBC44 0 28 MBC28 0 0 12	27 MBC59 0 11 MBC43 0 27 MBC27 0 MBC27 0 11	26 MBC58 0 10 MBC42 0 26 MBC26 0 0 10	25 MBC57 0 9 MBC41 0 25 MBC25 0 0 9	24 MBC56 0 8 MBC40 0 24 MBC24 0 0 8	23 MBC55 0 7 MBC39 0 23 MBC23 0 0 7	22 MBC54 0 6 MBC38 0 22 MBC22 0 0 6	21 MBC53 0 5 MBC37 0 21 MBC21 0 0 5	20 MBC52 0 4 MBC36 0 20 MBC20 0 MBC20	19 MBC51 0 3 MBC35 0 19 MBC19 0 0 3	18 MBC50 0 2 MBC34 0 18 MBC18 0 0 2	17 MBC49 0 1 MBC33 0 17 MBC17 0 MBC17 0 1	16 MBC48 0 0 MBC32 0 16 MBC16 0 0
Bit MBSC2 0x0344 Reset Bit Reset Bit MBSC1 0x0340 Reset Bit	R W R W	31 MBC63 0 15 MBC47 0 31 MBC31 0 15 MBC15	30 MBC62 0 14 MBC46 0 30 MBC30 0 0 14 MBC14	29 MBC61 0 13 MBC45 0 29 MBC29 0 0 13 MBC13	28 MBC60 0 12 MBC44 0 28 MBC28 0 0 12 MBC12	27 MBC59 0 11 MBC43 0 27 MBC27 0 0 11 MBC11	26 MBC58 0 10 MBC42 0 26 MBC26 0 0 10 MBC10	25 MBC57 0 9 MBC41 0 25 MBC25 0 0 9 MBC9	24 MBC56 0 8 MBC40 0 24 MBC24 0 8 8 MBC8	23 MBC55 0 7 MBC39 0 23 MBC23 0 7 MBC7	22 MBC54 0 MBC38 0 22 MBC22 0 0 6 MBC6	21 MBC53 0 5 MBC37 0 21 MBC21 0 0 5 MBC5	20 MBC52 0 4 MBC36 0 20 MBC20 0 0 4 MBC4	19 MBC51 0 3 MBC35 0 19 MBC19 0 0 3 MBC13	18 MBC50 0 2 MBC34 0 18 MBC18 0 0 2 MBC2	17 MBC49 0 1 MBC33 0 17 MBC17 0 0 1 MBC12	16 MBC48 0 MBC32 0 16 MBC16 0 0 MBC16
Bit MBSC2 0x0344 Reset Bit Reset Bit MBSC1 0x0340 Reset Bit	R W R W	31 MBC63 0 15 MBC47 0 31 MBC31 0 15 MBC15	30 MBC62 0 14 MBC46 0 30 30 MBC30 0 14 MBC14	29 MBC61 0 13 MBC45 0 29 MBC29 0 MBC29 13 MBC13	28 MBC60 0 12 MBC44 0 28 MBC28 0 0 12 MBC12	27 MBC59 0 11 MBC43 0 27 MBC27 0 0 11 MBC11	26 MBC58 0 10 MBC42 0 26 MBC26 0 0 10 MBC10	25 MBC57 0 9 MBC41 0 25 MBC25 0 0 9 MBC9	24 MBC56 0 8 MBC40 0 24 MBC24 0 0 8 MBC28	23 MBC55 0 7 MBC39 0 23 MBC23 0 0 7 MBC7	22 MBC54 0 MBC38 0 22 MBC22 0 0 6 MBC6	21 MBC53 0 5 MBC37 0 21 MBC21 0 0 5 MBC5	20 MBC52 0 4 MBC36 20 20 MBC20 0 4 MBC4	19 MBC51 0 3 MBC35 0 19 MBC19 0 0 3 MBC13	18 MBC50 0 2 MBC34 0 18 MBC18 0 0 0 2 MBC2	17 MBC49 0 1 MBC33 0 17 MBC17 0 0 1 MBC17 1 MBC12	16 MBC48 0 0 MBC32 0 16 MBC16 0 0 MBC16 0 0 MBC0

MBC[127:0] Message Buffer Status Changed

An **MBC** flag is set whenever the Message Handler changes one of the status flags **VFRA**, **VFRB**, **SEOA**, **SEOB**, **CEOA**, **CEOB**, **SVOA**, **SVOB**, **TCIA**, **TCIB**, **ESA**, **ESB**, **MLST**, **FTA**, **FTB** in the header section (see 18.11.5.Message Buffer Status (MBS) and 19.12.1.Header Partition, header 4) of the respective message buffer. An **MBC** flag is reset when the header section of the corresponding message buffer is reconfigured or when it has been transferred to the Output Buffer.

18.9. Identification Registers

18.9.1. Core Release Register (CREL)

The table below shows how releases are coded in register CREL.

Coding for releases

Release	Step	Sub-Step	Name
0	7	0	Beta2
0	7	1	Beta2ct
1	0	0	Revision 1.0.0

18.9.2. Endian Register (ENDN)

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ENDN	R	ETV31	ETV30	ETV29	ETV28	ETV27	ETV26	ETV25	ETV24	ETV23	ETV22	ETV21	ETV20	ETV19	ETV18	ETV17	ETV16
0x03F4	W																
Reset		1	0	0	0	0	1	1	1	0	1	1	0	0	1	0	1
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	ETV15	ETV14	ETV13	ETV12	ETV11	ETV10	ETV9	ETV8	ETV7	ETV6	ETV5	ETV4	ETV3	ETV2	ETV1	ETV0
	W																
Reset		0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1

ETV[31:0] Endianness Test Value

The endianness test value is 0x87654321.

18.10. Input Buffer

Double buffer structure consisting of Input Buffer Host and Input Buffer Shadow. While the Host can write to Input Buffer Host, the transfer to the Message RAM is done from Input Buffer Shadow. The Input Buffer holds the header and data sections to be transferred to the selected message buffer in the Message RAM. It is used to configure the message buffers in the Message RAM and to update the data sections of transmit buffers.

When updating the header section of a message buffer in the Message RAM from the Input Buffer, the Message Buffer Status as described in Section 18.11.5. Message Buffer Status (MBS) is automatically reset to zero.

The header sections of message buffers belonging to the receive FIFO can only be (re)configured when the CC is in DEFAULT_CONFIG or CONFIG state. For those message buffers only the payload length configured and the data pointer need to be configured via **WRHS2.PLC[6.0]** and **WRHS3.DP[10:0]**. All information required for acceptance filtering is taken from the FIFO rejection filter mask.

The data transfer between Input Buffer (IBF) and Message RAM is described in detail in Section Data Transfer from Input Buffer to Message RAM.

18.10.1. Write Data Section [1...64] (WRDSn)

Holds the data words to be transferred to the data section of the addressed message buffer. The data words (DW_n) are written to the Message RAM in transmission order from DW_1 (byte0, byte1) to DW_{PL} (PL = number of data words as defined by the payload length configured **WRHS2.PLC[6:0]**).

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
WRDSn 0x0400 - 0x04FC	R W	MD31	MD30	MD29	MD28	MD27	MD26	MD25	MD24	MD23	MD22	MD21	MD20	MD19	MD18	MD17	MD16
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R W	MD15	MD14	MD13	MD12	MD11	MD10	MD9	MD8	MD7	MD6	MD5	MD4	MD3	MD2	MD1	MD0
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MD[31:0] Message Data

 $\begin{array}{l} \textbf{MD[7:0]=} DW_n, \ byte_{n-1} \\ \textbf{MD[15:8]=} DW_n, \ byte_n \\ \textbf{MD[23:16]=} DW_{n+1}, \ byte_{n+1} \\ \textbf{MD[31:24]=} DW_{n+1}, \ byte_{n+2} \end{array}$

Note: DW127 is located on WRDS64.MD[15:0]. In this case WRDS64.MD[31:16] is unused (no valid data). The Input Buffer RAMs are initialized to zero when leaving hard reset or by CHI command CLEAR_RAMS.

18.10.2. Write Header Section 1 (WRHS1)

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
WRHS1	R	0	0	MDI	TVM	DDIT	CEC	CIID	CUA	0	CVC6	CVC5	CVC4	CVC2	CVC2	CVC1	CVC0
0x0500	W			NIDI	IAN	PPII	CrG	Спв	СПА			CICS	CTC4	0105	CTC2	CICI	CICO
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	EID10	EID0	EID6	EID7	EID(EID5	EID4	EID2	EID2	EID1	EID0
	W						FIDIO	FID9	ГID8	ΓID/	FID0	FID3	ГID4	FIDS	FID2	FIDI	FID0
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

FID[10:0] Frame ID

Frame ID of the selected message buffer. The frame ID defines the slot number for transmission / reception of the respective message. **Message buffers with frame ID = '0' are considered as not valid.**

CYC[6:0] Cycle Code

The 7-bit cycle code determines the cycle set used for cycle counter filtering. For details about the configuration of the cycle code see Section 19.7.2.Cycle Counter Filtering.

CHA, CHB Channel Filter Control

The 2-bit channel filtering field associated with each buffer serves as a filter for receive buffers, and as a control field for transmit buffers.

СНА	СНВ	Transmit Buffer transmit frame on	Receive Buffer store frame received from
1	1	both channels (static segment only)	channel A or B (store first semantically valid frame, static segment only)
1	0	channel A	channel A
0	1	channel B	channel B
0	0	no transmission	ignore frame

If a message buffer is configured for the dynamic segment and both bits of the channel filtering field are set to '1', no frames are transmitted resp. received frames are ignored (same function as **CHA = CHB =** '0')

CFG Message Buffer Direction Configuration Bit

This bit is used to configure the corresponding buffer as transmit buffer or as receive buffer. For message buffers belonging to the receive FIFO the bit is not evaluated.

1 =The corresponding buffer is configured as **Transmit Buffer**

0 =The corresponding buffer is configured as **Receive Buffer**

PPIT Payload Preamble Indicator Transmit

This bit is used to control the state of the Payload Preamble Indicator in transmit frames. If the bit is set in a static message buffer, the respective message buffer holds network management information. If the bit is set in a dynamic message buffer the first two bytes of the payload segment may be used for message ID filtering by the receiver. Message ID filtering of received FlexRay frames is not supported by the E-Ray module, but can be done by the Host.

1 =Payload Preamble Indicator set

0 =Payload Preamble Indicator not set

TXM Transmission Mode

This bit is used to select the transmission mode (see Section 19.8.3.Transmit Buffers).

1 =Single-shot mode

0 =Continuous mode

MBI Message Buffer Interrupt

This bit enables the receive / transmit interrupt for the corresponding message buffer. After a dedicated receive buffer has been updated by the Message Handler, flag **SIR.RXI** and /or **SIR.MBSI** are set. After a transmission has completed flag **SIR.TXI** is set.

- 1 =The corresponding message buffer interrupt is enabled
- 0 =The corresponding message buffer interrupt is disabled

18.10.3. Write Header Section 2 (WRHS2)

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
WRHS2	R	0	0	0	0	0	0	0	0	0	DI C6	DI C5	DI CA	DI C2	DI C2	DI C1	DI CO
0x0504	W										FLC0	FLC5	FLC4	FLC5	FLC2	FLUI	FLC0
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	CDC10	CDCO	CDC9	CDC7	CDCC	CDC5	CDC4	CDC2	CDC2	CDC1	CDCO
	W						CKC10	CRC9	CKC8	CRC/	CKCO	CRC5	CRC4	CRUS	CRC2	CRUI	CKCU
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CRC[10:0] Header CRC (vRF!Header!HeaderCRC)

Receive Buffer: Configuration not required

Transmit Buffer: Header CRC calculated and configured by the Host

For calculation of the header CRC the payload length of the frame send on the bus has to be considered. In static segment the payload length of all frames is configured by **MHDC.SFDL[6:0]**.

PLC[6:0] Payload Length Configured

Length of data section (number of 2-byte words) as configured by the Host. During static segment the static frame payload length as configured by **MHDC.SFDL[6:0]** defines the payload length for all static frames. If the payload length configured by **PLC[6:0]** is shorter than this value padding bytes are inserted to ensure that frames have proper physical length. The padding pattern is logical zero.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
WRHS3	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0508	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	DB10	DB0	אמת	D P 7	DB6	DB5		DB3	DP2	DB1	DP0
	W						DF10	DF9	DF8	DF/	DF0	DF5	DF4	DF3	DF2	DFI	DF0
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

18.10.4. Write Header Section 3 (WRHS3)

DP[10:0] Data Pointer

Pointer to the first 32-bit word of the data section of the addressed message buffer in the Message RAM.

18.10.5. Input Buffer Command Mask (IBCM)

Configures how the message buffer in the Message RAM selected by register IBCR is updated. When IBF Host and IBF Shadow are swapped, also mask bits **LHSH**, **LDSH**, and **STXRH** are swapped with bits **LHSS**, **LDSS**, and **STXRS** to keep them attached to the respective Input Buffer transfer.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IBCM	R	0	0	0	0	0	0	0	0	0	0	0	0	0	STXRS	LDSS	LHSS
0x0510	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R W	0	0	0	0	0	0	0	0	0	0	0	0	0	STXRH	LDSH	LHSH
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LDSH	 HSH Load Header Section Host 1 =Header section selected for transfer from Input Buffer to the Message RAM 0 =Header section selected for transfer from Input Buffer to the Message RAM 0 =Data section selected for transfer from Input Buffer to the Message RAM 0 =Data section is not updated TXRH Set Transmission Request Host If this bit is set to '1', the TXR flag for the selected message buffer is set in the TXRQ1/2/3/4 registers to release the message buffer for transmission. In single-shot mode the flag is cleared by the CC after transmission has completed. TXR is evaluated for transmit buffers only. 1 =Set TXR flag, transmit buffer released for transmission 0 =Reset TXR flag 																
STXRS	1 =He (trans _DSS 1 =Da (trans 0 =Da 1 =Se 0 =Re	eader s sfer on eader s ata sec sfer on ata sec Set ⁻ et TXR eset T	section s going or section i Load D ction self going or ction is r Transmis flag, tra KR flag	selected finishe s not up ata Sec ected fo finishe not upda ssion R ansmit b	d for tran d) odated stion Sha or transf d) ated equest ouffer re	adow er from Shadow leased f	im Input Input B for trans	t Buffer uffer to	to the Mes the Mes	Aessage R ssage R	e RAM RAM going o	r finishe	d)				

18.10.6. Input Buffer Command Request (IBCR)

When the Host writes the number of the target message buffer in the Message RAM to **IBRH[6:0]**, IBF Host and IBF Shadow are swapped. In addition the message buffer numbers stored under **IBRH[6:0]** and **IBRS[6:0]** are also swapped (see also Section Data Transfer from Input Buffer to Message RAM).

With this write operation the **IBSYS** is set to '1'. The Message Handler then starts to transfer the contents of IBF Shadow to the message buffer in the Message RAM selected by **IBRS[6:0]**.

While the Message Handler transfers the data from IBF Shadow to the target message buffer in the Message RAM, the Host may write the next message into the IBF Host. After the transfer between IBF Shadow and the Message RAM has completed, **IBSYS** is set back to '0' and the next transfer to the Message RAM may be started by the Host by writing the respective target message buffer number to **IBRH[6:0]**.

If a write access to **IBRH[6:0]** occurs while **IBSYS** is '1', **IBSYH** is set to '1'. After completion of the ongoing data transfer from IBF Shadow to the Message RAM, IBF Host and IBF Shadow are swapped, **IBSYH** is reset to '0'. **IBSYS** remains set to '1', and the next transfer to the Message RAM is started. In addition the message buffer numbers stored under **IBRH[6:0]** and **IBRS[6:0]** are also swapped.

Any write access to an Input Buffer register while both **IBSYS** and **IBSYH** are set will cause the error flag **EIR.IIBA** to be set. In this case the Input Buffer will not be changed.

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IBCR	R IBSYS	0	0	0	0	0	0	0	0	IBRS6	IBRS5	IBRS4	IBRS3	IBRS2	IBRS1	IBRS0
0x0514	W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R IBSYH	0	0	0	0	0	0	0	0	IDDIIC	IBRH5	IBRH4	IBRH3	IBRH2	IBRH1	IBRH0
	W									прице						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

IBRH[6:0] Input Buffer Request Host

Selects the target message buffer in the Message RAM for data transfer from Input Buffer.

Valid values are 0x00 to 0x7F (0...127).

IBSYH Input Buffer Busy Host

Set to '1' by writing **IBRH[6:0]** while **IBSYS** is still '1'. After the ongoing transfer between IBF Shadow and the Message RAM has completed, the **IBSYH** is set back to '0'.

- 1 = Request while transfer between IBF Shadow and Message RAM in progress
- 0 = No request pending
- IBRS[6:0] Input Buffer Request Shadow

Number of the target message buffer actually updated / lately updated.

Valid values are 0x00 to 0x7F (0...127).

IBSYS Input Buffer Busy Shadow

Set to '1' after writing **IBRH[6:0]**. When the transfer between IBF Shadow and the Message RAM has completed, **IBSYS** is set back to '0'.

1 =Transfer between IBF Shadow and Message RAM in progress

0 =Transfer between IBF Shadow and Message RAM completed

18.11. Output Buffer

Double buffer structure consisting of Output Buffer Host and Output Buffer Shadow. Used to read out message buffers from the Message RAM. While the Host can read from Output Buffer Host, the Message Handler transfers the selected message buffer from Message RAM to Output Buffer Shadow. The data transfer between Message RAM and Output Buffer (OBF) is described in Section Data Transfer from Message RAM to Output Buffer.

18.11.1. Read Data Section [1...64] (RDDSn)

Holds the data words read from the data section of the addressed message buffer. The data words (DW_n) are read from the Message RAM in reception order from DW₁ (byte0, byte1) to DW_{PL} (PL = number of data words as defined by the payload length configured **RDHS2.PLC[6:0]**).

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
RDDSn	R	MD31	MD30	MD29	MD28	MD27	MD26	MD25	MD24	MD23	MD22	MD21	MD20	MD19	MD18	MD17	MD16
0x0600 - 0x06FC	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	MD15	MD14	MD13	MD12	MD11	MD10	MD9	MD8	MD7	MD6	MD5	MD4	MD3	MD2	MD1	MD0
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Note: DW127 is located on RDDS64.MD[15:0]. In this case RDDS64.MD[31:16] is unused (no valid data). The Output Buffer RAMs are initialized to zero when leaving hard reset or by CHI command CLEAR_RAMS.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
RDHS1	R	0	0	MBI	TXM	PPIT	CFG	CHB	CHA	0	CYC6	CYC5	CYC4	CYC3	CYC2	CYC1	CYC0
0x0700	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	FID10	FID9	FID8	FID7	FID6	FID5	FID4	FID3	FID2	FID1	FID0
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

18.11.2. Read Header Section 1 (RDHS1)

Values as configured by the Host via WRHS1:

FID[10:0] Frame ID

CYC[6:0] Cycle Code

CHA, CHB Channel Filter Control

CFG Message Buffer Direction Configuration Bit

PPIT Payload Preamble Indicator Transmit

TXM Transmission Mode

MBI Message Buffer Interrupt

In case that the message buffer read from the Message RAM belongs to the receive FIFO, **FID[10:0]** holds the received frame ID, while **CYC[6:0]**, **CHA**, **CHB**, **CFG**, **PPIT**, **TXM**, and **MBI** are reset to '0'.

18.11.3. Read Header Section 2 (RDHS2)

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
RDHS2	R	0	PLR6	PLR5	PLR4	PLR3	PLR2	PLR1	PLR0	0	PLC6	PLC5	PLC4	PLC3	PLC2	PLC1	PLC0
0x0704	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	CRC10	CRC9	CRC8	CRC7	CRC6	CRC5	CRC4	CRC3	CRC2	CRC1	CRC0
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CRC[10:0] Header CRC (vRF!Header!HeaderCRC)

Receive Buffer: Header CRC updated from received data frames

Transmit Buffer: Header CRC calculated and configured by the Host

PLC[6:0] Payload Length Configured

Length of data section (number of 2-byte words) as configured by the Host.

PLR[6:0] Payload Length Received (vRF!Header!Length)

Payload length value updated from received data frames (exception: if message buffer belongs to the receive FIFO **PLR[6:0]** is also updated from received null frames)

When a message is stored into a message buffer the following behaviour with respect to payload length received and payload length configured is implemented:

PLR[6:0] > PLC[6:0]: The payload data stored in the message buffer is truncated to the payload

length configured if PLC[6:0] even or else truncated to PLC[6:0] + 1.

- $PLR[6:0] \leq PLC[6:0]$: The received payload data is stored into the message buffers data section.
- The remaining data bytes of the data section as configured by PLC[6:0] are filled with undefined data

PLR[6:0] = zero: The message buffer's data section is filled with undefined data

- **PLC[6:0]** = zero:Message buffer has no data section configured. No data is stored into the message buffer's data section.
- Note: The Message RAM is organized in 4-byte words. When received data is stored into a message buffer's data section, the number of 2-byte data words written into the message buffer is **PLC[6:0]** rounded to the next even value. **PLC[6:0]** should be configured identical for all message buffers belonging to the receive FIFO. Header 2 is updated from data frames only.

18.11.4. Read Header Section 3 (RDHS3)

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
RDHS	3 R	0	0	RES	PPI	NFI	SYN	SFI	RCI	0	0	RCC5	RCC4	RCC3	RCC2	RCC1	RCC0
0x070	8 W																
Reset	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	DP10	DP9	DP8	DP7	DP6	DP5	DP4	DP3	DP2	DP1	DP0
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	~ 1		Dist														
DP[10:	Pointer to the first 32-bit word of the data section of the addressed message buffer in the Message RAM																
PCCIS	in Receive Cycle Count (vRFIHeader/CycleCount)																
Rec[]	Cvcl		er value	e undate	d from	receive	d data f	rame									
RCI	e y en	Rece	eived on	Chann	el Indica	ator (vS	S!Chan	nel)									
	Indic	ates the	e chann	el from	which t	he rece	ived dat	a frame	e was ta	ken to ι	update	the resp	ective r	eceive	buffer.		
	1 =F	rame re	eceived	on char	nel A												
	0 =F	rame re	eceived	on char	nel B												
SFI	Startup Frame Indicator (vRF!Header!SuFIndicator)																
	A startup frame is marked by the startup frame indicator.																
	1 =T	he rece	eived fra	me is a	startup	frame											
0)/11	0 = 1	he rece	eived fra	me is no	ot a sta	rtup frai	ne	(; t)									
SIN	A	Sync	: Frame	Indicate	or (VRF)	Heade	SyFind	licator)									
	A Syl	he rece	ived fra		sync fr	c frame	indicat	01.									
	0 =T	he rece	ived fra	me is n	ot a svr	anie Ic frame	`										
NFI	0 - 1	Null	Frame I	ndicato		leader	NFIndic	ator)									
	ls se	t to '1' a	after sto	rage of	the first	receive	ed data	frame.									
	1 =A	t least o	one data	a frame	has be	en store	d into th	ne resp	ective m	nessage	e buffer						
	0 =U	p to no	w no da	ita frame	e has b	een sto	red into	the res	pective	messag	ge buffe	r					
PPI		Payle	oad Pre	amble l	ndicato	r (vRF!ŀ	leader!	PPIndic	ator)	-	-						
	The	payload	d pream	ble indic	ator de	fines wh	nether a	networ	k manag	gement	vector	or mess	age ID i	s contai	ned with	nin the p	ayload
	segn	nent of	the rece	eived fra	ime.												
	1 =S	tatic se	gment:	Vetwork	manag	ement	vector ir	the fire	st part o	f the pa	yload						
	Dynamic segment: Message ID in the first part of the payload																
DEC	0 = 1	he payl	oad seg		the red	ceived f	rame do	bes not	contain	a netwo	ork mar	lagemei	nt vecto	r nor a	messag	e ID	
REG	Dofle	Rest		l (VRF!F f the rec	reauer!	Reserver	su) Lhit Th	o rocori	und hit i	e tranen	nittad a	e 'O'					
	Hear	lor 2 io	undate	d from d	lata frar	nes onl	1 DIL. 111 V	e reserv		5 (1 0) 15	mueu a	50.					
	iicat		upuale				у.										

18.11.5. Message Buffer Status (MBS)

The message buffer status is updated by the CC with respect to the assigned channel(s) latest at the end of the slot following the slot assigned to the message buffer. The flags are updated only when the CC is in NORMAL_ACTIVE or NORMAL_PASSIVE state. If only one channel (A or B) is assigned to a message buffer, the channel-specific status flags of the other channel are written to zero. If both channels are assigned to a message buffer, the channel-specific status flags of both channels are updated. The message buffer status is updated only when the slot counter reached the configured frame ID and when the cycle counter filter matched. When the Host updates a message buffer via Input Buffer, all MBS flags are reset to zero independent of which IBCM bits are set or not. For details about receive / transmit filtering see Sections 19.7.Filtering and Masking, 19.8.Transmit Process, and 19.9.Receive Process. Whenever the Message Handler changes one of the flags VFRA, VFRB, SEOA, SEOB, CEOA, CEOB, SVOA, SVOB, TCIA, TCIB, ESA, ESB, MLST, FTA, FTB the respective message buffer's MBC flag in registers MBSC1/2/3/4 is set.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MBS	R	0	0	RESS	PPIS	NFIS	SYNS	SFIS	RCIS	0	0	CCS5	CCS4	CCS3	CCS2	CCS1	CCS0
0x070C	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	FTB	FTA	0	MLST	ESB	ESA	TCIB	TCIA	SVOB	SVOA	CEOB	CEOA	SEOB	SEOA	VFRB	VFRA
	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VFRA		Valid	Frame	Receiv	ed on C	hannel	A (vSS	ValidFr	ameA)								
A	vali	id fram	e indica	ation is s	set if a v	alid frai	ne was	receive	ed on ch	nannel A	۸.						
1	=Va	alid frar	ne rece	eived on	channe	el A											
C	V =INO Valid frame received on Channel A Valid Frame Received on Channel B (vSSIValidFrameB)																
VFRB	valid Frame Received on Channel B (VSS!ValidFrameB) A valid frame indication is set if a valid frame was received on channel B																
F	A valid frame indication is set if a valid frame was received on channel B. 1 =Valid frame received on channel B																
1	1 = valid frame received on channel B 0 =No valid frame received on channel B																
	U =No valid frame received on channel B Suntax Error Observed on Channel A (VSSISvotaxErrorA)																
SEOA	:OA Syntax Error Observed on Channel A (vSS!SyntaxErrorA)																
F	A syntax error was observed in the assigned slot on channel A.																
1	1 =Syntax error observed on channel A																
0500	0 =No syntax error observed on channel A																
SEOR		Synta	ax Erroi		veaon	Jnanne	B (VSS	Syntax	XELLOLD)							
F	A Syn	itax err	or was	observe	ea in the	e assign	ed slot	on char	inel B.								
	-3) \ -N/	/iiiax e			n chan		,										
CEOA		Cont	x enoi					SICont	ontErro	د ۸ ک							
CEUA		topt or			od in th		and clot	on cha		A)							
- 1		nem er	orror ob	sorved		c assiyi nol A	ieu siot	Un cha	nnei A.								
י ר) =N(o conte	nt error	ohearv		hannel	Δ										
CEOR	/ - 1 10	Cont	ont Erro	obsciv or Obse	rved on	Channe		SIConte	entErro	rB)							
	or	ntent er	ror was	s observ	ed in th	e assini	ned slot	on cha	nnel R	0)							
, 1	=Ca	ontent e	error ob	served	on char	nel B		on ond	inner B.								
C) =Na	o conte	ent error	observ	red on c	hannel	в										
SVOA		Slot I	Bounda	rv Viola	tion Ob	served	on Char	nnel A (vSSIBV	/iolation	A)						
A	sloi	t bound	arv vio	lation (c	channel	active a	t the sta	art or at	the en	d of the	assione	ed slot)	was ob	served	on chan	nel A.	
. 1	=SI	ot bour	ndarv vi	iolation	observe	ed on ch	annel A				accigin						
C) =No	o slot b	oundar	v violati	on obse	erved or	channe	el A									
SVOB	'OB Slot Boundary Violation Observed on Channel B (vSS!BViolationB)																
A	A slot	t bound	ary vio	lation (c	hannel	active a	t the sta	art or at	the en	d of the	assigne	ed slot)	was ob	served	on chan	nel B.	
1	=SI	ot bour	ndary vi	iolation	observe	d on ch	annel B			-	0	-7	-	-			
C	0 =No slot boundary violation observed on channel B																

- TCIA Transmission Conflict Indication Channel A (vSS!TxConflictA)
 - A transmission conflict indication is set if a transmission conflict has occurred on channel A.
 - 1 =Transmission conflict occurred on channel A
 - 0 =No transmission conflict occurred on channel A
- TCIB Transmission Conflict Indication Channel B (vSS!TxConflictB)
 - A transmission conflict indication is set if a transmission conflict has occurred on channel B.
 - 1 =Transmission conflict occurred on channel B
 - 0 =No transmission conflict occurred on channel B
- ESA Empty Slot Channel A
 - In an empty slot there is no activity detected on the bus. The condition is checked in static and dynamic slots.
 - 1 =No bus activity detected in the assigned slot on channel A
 - 0 =Bus activity detected in the assigned slot on channel A
- ESB Empty Slot Channel B
 - In an empty slot there is no activity detected on the bus. The condition is checked in static and dynamic slots.
 - 1 =No bus activity detected in the assigned slot on channel B
 - 0 =Bus activity detected in the assigned slot on channel B
- MLST Message Lost
 - The flag is set in case the Host did not read the message before the message buffer was updated from a received data frame. Not affected by reception of null frames except for message buffers belonging to the receive FIFO. The flag is reset by a Host write to the message buffer via IBF or when a new message is stored into the message buffer **after** the message buffers **ND** flag was reset by reading out the message buffer via OBF.
 - 1 =Unprocessed message was overwritten
- 0 =No message lost FTA Frame Transr
 - Frame Transmitted on Channel A
 - Indicates that this node has transmitted a data frame in the configured slot on channel A.
 - 1 =Data frame transmitted on channel A
 - 0 =No data frame transmitted on channel A
- FTB Frame Transmitted on Channel B

Indicates that this node has transmitted a data frame in the configured slot on channel B.

- 1 =Data frame transmitted on channel B
- 0 =No data frame transmitted on channel B

The FlexRay protocol specification requires that **FTA**, and **FTB** can only be reset by the Host. Therefore the Cycle Count Status **CCS**[5:0] for these bits is only valid for the cycle where the bits are set to '1'.

CCS[5:0] Cycle Count Status

Actual cycle count when status was updated.

The following status bits are updated from both valid data and null frames. If no valid frame was received, the previous value is maintained.

RCIS Received on Channel Indicator Status (vSS!Channel)

Indicates the channel on which the frame was received.

1 =Frame received on channel A

- 0 =Frame received on channel B
- SFIS Startup Frame Indicator Status (vRF!Header!SuFIndicator)
 - A startup frame is marked by the startup frame indicator.
 - 1 =The received frame is a startup frame
 - 0 =No startup frame received

SYNS Sync Frame Indicator Status (vRF!Header!SyFIndicator)

- A sync frame is marked by the sync frame indicator.
- 1 =The received frame is a sync frame
- 0 =No sync frame received

NFIS Null Frame Indicator Status (vRF!Header!NFIndicator)

- If set to '0' the payload segment of the received frame contains no usable data.
- 1 =Received frame is **not** a null frame
- 0 =Received frame is a null frame
- PPIS Payload Preamble Indicator Status (vRF!Header!PPIndicator)

The payload preamble indicator defines whether a network management vector or message ID is contained within the payload segment of the received frame.

1 =Static segment: Network management vector at the beginning of the payload

Dynamic segment: Message ID at the beginning of the payload

- 0 =The payload segment of the received frame does not contain a network management vector or a message ID
- **RESS** Reserved Bit Status (vRF!Header!Reserved)

Reflects the state of the received reserved bit. The reserved bit is transmitted as '0'.

18.11.6. Output Buffer Command Mask (OBCM)

Configures how the Output Buffer is updated from the message buffer in the Message RAM selected by register OBCR. When OBF Host and OBF Shadow are swapped, also mask bits **RDSH** and **RHSH** are swapped with bits **RDSS** and **RHSS** to keep them attached to the respective Output Buffer transfer.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
OBCM	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	RDSH	RHSH
0x0710	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DDCC	DUCC
	W															KD55	кпээ
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

RHSS Read Header Section Shadow

1 =Header section selected for transfer from Message RAM to Output Buffer

0 =Header section is not read

- RDSS Read Data Section Shadow
 - 1 =Data section selected for transfer from Message RAM to Output Buffer
 - 0 =Data section is not read

RHSH Read Header Section Host

1 =Header section selected for transfer from Message RAM to Output Buffer

0 =Header section is not read

RDSH Read Data Section Host

1 =Data section selected for transfer from Message RAM to Output Buffer

- 0 =Data section is not read
- Note: After the transfer of the header section from the Message RAM to OBF Shadow has completed, the message buffer status changed flag **MBC** of the selected message buffer in the MBSC1/2/3/4 registers is cleared. After the transfer of the data section from the Message RAM to OBF Shadow has completed, the new data flag **ND** of the selected message buffer in the NDAT1/2/3/4 registers is cleared.

18.11.7. Output Buffer Command Request (OBCR)

The message buffer selected by **OBRS[6:0]** is transferred from the Message RAM to the Output Buffer as soon as the Host has set **REQ** to '1'. Bit **REQ** can only be set to '1' while **OBSYS** is '0' (see also Section Data Transfer from Message RAM to Output Buffer).

After setting **REQ** to '1', **OBSYS** is automatically set to '1', and the transfer of the message buffer selected by **OBRS[6:0]** from the Message RAM to OBF Shadow is started. When the transfer between the Message RAM and OBF Shadow has completed, this is signalled by setting **OBSYS** back to '0'. By setting the **VIEW** bit to '1' while **OBSYS** is '0', OBF Host and OBF Shadow are swapped. Now the Host can read the transferred message buffer from OBF Host. In parallel the Message Handler may transfer the next message from the Message RAM to OBF Shadow if **VIEW** and **REQ** are set at the same time.

Any write access to an Output Buffer register while **OBSYS** is set will cause the error flag **EIR.IOBA** to be set. In this case the Output Buffer will not be changed.

Bit		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
OBCR	R	0	0	0	0	0	0	0	0	0	OBRH6	OBRH5	OBRH4	OBRH3	OBRH2	OBRH1	OBRH0
0x0714	W																
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	OBSYS	0	0	0	0	0	DEO	VIEW	0	ODDS6	OPPS5	ODDSA	ODDS3	OPPS2	ODDS1	OPPSO
	W							KEQ	VIEW		OBKS0	OBKSS	UBK54	OBK55	OBK52	OBK51	OBK50
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

OBRS[6:0] Output Buffer Request Shadow

Number of source message buffer to be transferred from the Message RAM to OBF Shadow. Valid values are 0x00 to 0x7F (0...127). If the number of the first message buffer of the receive FIFO is written to this register the Message Handler transfers the message buffer addressed by the GET Index (GIDX, see Section 19.10.FIFO Function) to OBF Shadow.

VIEW View Shadow Buffer

Toggles between OBF Shadow and OBF Host. Only writable while OBSYS = '0'.

1 =Swap OBF Shadow and OBF Host

0 =No action

REQ Request Message RAM Transfer

Requests transfer of message buffer addressed by **OBRS[6:0]** from Message RAM to OBF Shadow. Only writable while **OBSYS** = '0'.

1 =Transfer to OBF Shadow requested

0 =No request

OBSYS Output Buffer Busy Shadow

Set to '1' after setting bit **REQ**. When the transfer between the Message RAM and OBF Shadow has completed, **OBSYS** is set back to '0'.

1 =Transfer between Message RAM and OBF Shadow in progress

0 =No transfer in progress

OBRH[6:0] Output Buffer Request Host

Number of message buffer currently accessible by the Host via RDHS[1...3], MBS, and RDDS[1...64]. By writing **VIEW** to '1' OBF Shadow and OBF Host are swapped and the transferred message buffer is accessible by the Host. Valid values are 0x00 to 0x7F (0...127).

19. Functional Description

This chapter describes the E-Ray implementation together with the related FlexRay protocol features. More information about the FlexRay protocol itself can be found in the FlexRay protocol specification v2.1.

Communication on FlexRay networks is based on frames and symbols. The wakeup symbol (WUS) and the collision avoidance symbol (CAS) are transmitted outside the communication cycle to setup the time schedule. Frames and media access test symbols (MTS) are transmitted inside the communication cycle.

19.1. Communication Cycle

A FlexRay communication cycle consists of the following elements:

- Static Segment
- Dynamic Segment (optional)
- Symbol Window (optional)
- Network Idle Time (NIT)

Static segment, dynamic segment, and symbol window form the Network Communication Time (NCT). For each communication channel the slot counter starts at 1 and counts up until the end of the dynamic segment is reached. Both channels share the same arbitration grid which means that they use the same synchronized macrotick.

Structure of communication cycle

19.1.1. Static Segment

The Static Segment is characterized by the following features:

- Time slots of fixed length (optionally protected by bus guardian)
- · Start of frame transmission at action point of the respective static slot
- · Payload length same for all frames on both channels

Parameters: Number of Static Slots GTUC7.NSS[9:0], Static Slot Length GTUC7.SSL[9:0], Payload Length Static MHDC.SFDL[6:0], Action Point Offset GTUC9.APO[5:0]

19.1.2. Dynamic Segment

The Dynamic Segment is characterized by the following features:

- All controllers have bus access (no bus guardian protection possible)
- · Variable payload length and duration of slots, different for both channels
- · Start of transmission at minislot action point

Parameters: Number of Minislots GTUC8.NMS[12:0],

Minislot Length GTUC8.MSL[5:0],

Minislot Action Point Offset GTUC9.MAPO[4:0],

Start of Latest Transmit (last minislot) MHDC.SLT[12:0]

19.1.3. Symbol Window

During the symbol window only one media access test symbol (MTS) may be transmitted per channel. MTS symbols are send in NORMAL_ACTIVE state to test the bus guardian.

The symbol window is characterized by the following features:

- Send single symbol
- · Transmission of the MTS symbol starts at the symbol windows action point

Parameters: Symbol Window Action Point Offset **GTUC9.APO[4:0]** (same as for static slots), Network Idle Time Start **GTUC4.NIT[13:0]**

19.1.4. Network Idle Time (NIT)

During network idle time the CC has to perform the following tasks:

- Calculate clock correction terms (offset and rate)
- · Distribute offset correction over multiple macroticks after offset correction start
- Perform cluster cycle related tasks

Parameters: Network Idle Time Start GTUC4.NIT[13:0], Offset Correction Start GTUC4.OCS[13:0]

19.1.5. Configuration of NIT Start and Offset Correction Start

Configuration of NIT start and offset correction start

gNumberOfMinislots • gdMinislot - 1 MT

The static segment length is configured by **GTUC7.SSL** and **GTUC7.NSS**. The dynamic segment length is configured by **GTUC8.MSL** and **GTUC8.NMS**.

The dynamic segment offset is:

If gdActionPointOffset ≤ gdMinislotActionPointOffset:

dynamic segment offset = 0 MT

Else if gdActionPointOffset > gdMinislotActionPointOffset:

dynamic segment offset = gdActionPointOffset - gdMinislotActionPointOffset

The NIT starts with macrotick k+1 and ends with the last macrotick of cycle m-1. It has to be configured by setting GTUC4.NIT = k.

For the E-Ray the offset correction start is required to be **GTUC4.OCS** \geq **GTUC4.NIT** + 1 = k+1.

The length of symbol window results from the number of macroticks between the end of the static / dynamic segment and the beginning of the NIT. It can be calculated by k - n.

19.2. Communication Modes

The FlexRay Protocol Specification v2.1 defines the Time-Triggered Distributed (TT-D) mode.

19.2.1. Time-triggered Distributed (TT-D)

- In TT-D mode the following configurations are possible:
 - Pure static: Minimum 2 static slots + symbol window (optional)
 - Mixed static/dynamic: Minimum 2 static slots + dynamic segment + symbol window (optional)

A minimum of two coldstart nodes needs to be configured for distributed time-triggered operation. Two fault-free coldstart nodes are necessary for the cluster startup. Each startup frame must be a sync frame, therefore all coldstart nodes are sync nodes.

19.3. Clock Synchronization

In TT-D mode a distributed clock synchronization is used. Each node individually synchronizes itself to the cluster by observing the timing of received sync frames from other nodes.

19.3.1. Global Time

Activities in a FlexRay node, including communication, are based on the concept of a global time, even though each individual node maintains its own view of it. It is the clock synchronization mechanism that differentiates the FlexRay cluster from other node collections with independent clock mechanisms. The global time is a vector of two values; the cycle (cycle counter) and the cycle time (macrotick counter).

Cluster specific:

- Macrotick (MT) = basic unit of time measurement in a FlexRay network, a macrotick consists of an integer number of microticks (μT)
- · Cycle length = duration of a communication cycle in units of macroticks (MT)

19.3.2. Local Time

Internally, nodes time their behaviour with microtick resolution. Microticks are time units derived from the oscillator clock tick of the specific node. Therefore microticks are controller-specific units. They may have different duration in different controllers. The precision of a node's local time difference measurements is a microtick (μ T).

Node specific:

- Oscillator clock -> prescaler -> microtick (μT)
- mT = basic unit of time measurement in a CC, clock correction is done in units of mTs
- · Cycle counter + macrotick counter = nodes local view of the global time

19.3.3. Synchronization Process

Clock synchronization is performed by means of sync frames. Only preconfigured nodes (sync nodes) are allowed to send sync frames. In a two-channel cluster a sync node has to send its sync frame on both channels.

For synchronization in FlexRay the following constraints have to be considered:

- Maximum of one sync frame per node in one communication cycle
- Maximum of 15 sync frames per cluster in one communication cycle
- Every node has to use a preconfigured number of sync frames (GTUC2.SNM[3:0]) for clock synchronization
- Minimum of two sync nodes required for clock synchronization and startup

For clock synchronization the time difference between expected and observed arrival time of sync frames received during the static segment is measured. In a two channel cluster the sync node has to be configured to send sync frames on both channels. The calculation of correction terms is done during NIT (offset: every cycle, rate: every odd cycle) by using an FTM algorithm. For details see FlexRay protocol specification v2.1, chapter 8.

Offset (phase) Correction

- Only deviation values measured and stored in the current cycle used
- · For a two channel node the smaller value will be taken
- Calculation during NIT of every communication cycle
- Offset correction value calculated in even cycles used for error checking only
- · Checked against limit values
- Correction value is a signed integer number of mTs
- Correction done in odd numbered cycles, distributed over the macroticks beginning at offset correction start up to cycle end (end of NIT) to shift nodes next start of cycle (MTs lengthened / shortened)

Rate (frequency) Correction

- · Pairs of deviation values measured and stored in even / odd cycle pair used
- · For a two channel node the average of the differences from the two channels is used
- · Calculated during NIT of odd numbered cycles
- · Cluster drift damping is performed using global damping value
- Checked against limit values
- Correction value is a signed integer number of mTs
- · Distributed over macroticks comprising the next even / odd cycle pair (MTs lengthened / shortened)

Sync Frame Transmission

Sync frame transmission is only possible from buffer 0 and 1. Message buffer 1 may be used for sync frame transmission in case that sync frames should have different payloads on the two channels. In this case bit **MRC.SPLM** has to be programmed to '1'.

Message buffers used for sync frame transmission have to be configured with the key slot ID and can be (re)configured in DEFAULT_CONFIG or CONFIG state only. For nodes transmitting sync frames **SUCC1.TXSY** must be set to '1'.

19.3.4. External Clock Synchronization

During normal operation, independent clusters can drift significantly. If synchronous operation across independent clusters is desired, external synchronization is necessary; even though the nodes within each cluster are synchronized. This can be accomplished with synchronous application of host-deduced rate and offset correction terms to the clusters.

- · External offset / rate correction value is a signed integer
- · External offset / rate correction value is added to calculated offset / rate correction value
- · Aggregated offset / rate correction term (external + internal) is not checked against configured limits

19.4. Error Handling

The implemented error handling concept is intended to ensure that, in case of a lower layer protocol error in one single node, communication between non-affected nodes can be maintained. In some cases, higher layer program activity is required for the CC to resume normal operation. A change of the error handling state will set **EIR.PEMC** and may trigger an interrupt to the Host if enabled. The actual error mode is signalled by **CCEV.ERRM[1:0]**.

Error modes of the POC (degradation model)

Error Mode	Activity
ACTIVE (green)	Full operation , State: NORMAL_ACTIVE The CC is fully synchronized and supports the cluster wide clock synchronization. The host is informed of any error condition(s) or status change by interrupt (if enabled) or by reading the error and status interrupt flags from registers EIR and SIR.
PASSIVE (yellow)	Reduced operation , State: NORMAL_PASSIVE, CC self rescue allowed The CC stops transmitting frames and symbols, but received frames are still processed. Clock synchronization mechanisms are continued based on received frames. No active contribution to the cluster wide clock synchronization. The host is informed of any error condition(s) or status change by interrupt (if enabled) or by reading the error and status interrupt flags from registers EIR and SIR.
COMM_HALT (red)	Operation halted , State: HALT, CC self rescue not allowed The CC stops frame and symbol processing, clock synchronization processing, and the macrotick generation. The host has still access to error and status information by reading the error and status interrupt flags from registers EIR and SIR. The bus drivers are disabled.

19.4.1. Clock Correction Failed Counter

When the Clock Correction Failed Counter reaches the "maximum without clock correction passive" limit defined by **SUCC3.WCP[3:0]**, the POC transits from NORMAL_ACTIVE to NORMAL_PASSIVE state. When it reaches the "maximum without clock correction fatal" limit defined by **SUCC3.WCF[3:0]**, it transits from NORMAL_ACTIVE or NORMAL_PASSIVE to HALT state.

The Clock Correction Failed Counter **CCEV.CCFC[3:0]** allows the Host to monitor the duration of the inability of a node to compute clock correction terms after the CC passed protocol startup phase. It will be incremented by one at the end of any odd communication cycle during which either the missing offset correction **SFS.MOCS** or the missing rate correction **SFS.MRCS** flag is set.

The Clock Correction Failed Counter is reset to zero at the end of an odd communication cycle if neither the missing offset correction **SFS.MOCS** nor the missing rate correction **SFS.MRCS** flag is set.

The Clock Correction Failed Counter stops incrementing when the "maximum without clock correction fatal" value **SUCC3.WCF[3:0]** is reached (i.e. incrementing the counter at its maximum value will not cause it to wrap around back to zero). The Clock Correction Failed Counter is initialized to zero when the CC enters READY state or when NORMAL_ACTIVE state is entered.

19.4.2. Passive to Active Counter

The passive to active counter controls the transition of the POC from NORMAL_PASSIVE to NORMAL_ACTIVE state. **SUCC1.PTA[4:0]** defines the number of consecutive even / odd cycle pairs that must have valid clock correction terms before the CC is allowed to transit from NORMAL_PASSIVE to NORMAL_ACTIVE state. If **SUCC1.PTA[4:0]** is set to zero the CC is not allowed to transit from NORMAL_PASSIVE to NORMAL_ACTIVE state.

19.4.3. HALT Command

In case the Host wants to stop FlexRay communication of the local node it can bring the CC into HALT state by asserting the HALT command. This can be done by writing SUCC1.CMD[3:0] = "0110". In order to shut down communication on an entire FlexRay network, a higher layer protocol is required to assure that all nodes apply the HALT command at the same time.

The POC state from which the transition to HALT state took place can be read from CCSV.PSL[5:0].

When called in NORMAL_ACTIVE or NORMAL_PASSIVE state the POC transits to HALT state at the end of the current cycle. When called in any other state **SUCC1.CMD[3:0]** will be reset to "0000" = command_not_accepted and bit **EIR.CNA** is set to '1'. If enabled an interrupt to the Host is generated.

19.4.4. FREEZE Command

In case the Host detects a severe error condition it can bring the CC into HALT state by asserting the FREEZE command. This can be done by writing **SUCC1.CMD[3:0]** = "0111". The FREEZE command triggers the entry of the HALT state immediately regardless of the actual POC state.

The POC state from which the transition to HALT state took place can be read from CCSV.PSL[5:0].

19.5. Communication Controller States

19.5.1. Communication Controller State Diagram

Overall state diagram of E-Ray communication controller

State transitions are controlled by externals pins **eray_reset** and **eray_rxd1**,**2**, by the POC state machine, and by the CHI Command Vector **SUCC1.CMD[3:0]**.

The CC exits from all states to HALT state after application of the FREEZE command (SUCC1.CMD[3:0] = "0111") State transitions of E-Ray overall state machine

T#	Condition	From	То
1	Hard reset	All States	DEFAULT_CONFIG
2	Command CONFIG, SUCC1.CMD[3:0] = "0001"	DEFAULT_CONFIG	CONFIG
3	Unlock sequence followed by command MONITOR_MODE, SUCC1.CMD[3:0] = "1011"	CONFIG	MONITOR_MODE
4	Command CONFIG, SUCC1.CMD[3:0] = "0001"	MONITOR_MODE	CONFIG
5	Unlock sequence followed by command READY, SUCC1.CMD[3:0] = "0010"	CONFIG	READY
6	Command CONFIG, SUCC1.CMD[3:0] = "0001"	READY	CONFIG
7	Command WAKEUP, SUCC1.CMD[3:0] = "0011"	READY	WAKEUP
8	Complete, non-aborted transmission of wakeup pattern OR received WUP OR received frame header OR wakeup collision OR command READY, SUCC1.CMD[3:0] = "0010"	WAKEUP	READY
9	Command RUN, SUCC1.CMD[3:0] = "0100"	READY	STARTUP
10	Successful startup	STARTUP	NORMAL_ACTIVE
11	Clock Correction Failed counter reached Maximum Without Clock Correction Passive limit configured by SUCC3.WCP[3:0]	NORMAL_ACTIVE	NORMAL_PASSIVE
12	Number of valid correction terms reached the Passive to Active limit configured by SUCC1.PTA[4:0]	NORMAL_PASSIVE	NORMAL_ACTIVE
13	Command READY, SUCC1.CMD[3:0] = "0010"	STARTUP, NORMAL_ACTIVE, NORMAL_PASSIVE	READY
14	Clock Correction Failed counter reached Maximum Without Clock Correction Fatal limit configured by SUCC3.WCF[3:0] AND bit SUCC1.HCSE set to '1' OR command HALT, SUCC1.CMD[3:0] = "0110"	NORMAL_ACTIVE	HALT
15	Clock Correction Failed counter reached Maximum Without Clock Correction Fatal limit configured by SUCC3.WCF[3:0] AND bit SUCC1.HCSE set to '1' OR command HALT, SUCC1.CMD[3:0] = "0110"	NORMAL_PASSIVE	HALT
16	Command FREEZE, SUCC1.CMD[3:0] = "0111"	All States	HALT
17	Command CONFIG, SUCC1.CMD[3:0] = "0001"	HALT	DEFAULT_CONFIG

19.5.2. DEFAULT_CONFIG State

In DEFAULT_CONFIG state, the CC is stopped. All configuration registers are accessible and the pins to the physical layer are in their inactive state.

The CC enters this state

- When leaving hard reset (external reset signal eray_reset is deactivated)
- When exiting from HALT state

To leave DEFAULT_CONFIG state the Host has to write **SUCC1.CMD[3:0]** = "0001". The CC then transits to CONFIG state.

19.5.3. CONFIG State

In CONFIG state, the CC is stopped. All configuration registers are accessible and the pins to the physical layer are in their inactive state. This state is used to initialize the CC configuration.

The CC enters this state

- When exiting from DEFAULT_CONFIG state
- When exiting from MONITOR_MODE or READY state

When the state has been entered via HALT and DEFAULT_CONFIG state, the Host can analyse status information and configuration. Before leaving CONFIG state the Host has to assure that the configuration is fault-free.

To leave CONFIG state, the Host has to perform the unlock sequence as described in 18.3.3.Lock Register (LCK). Directly after unlocking the CONFIG state the Host has to write SUCC1.CMD[3:0] to enter the next state.

Internal counters and the CC status flags are reset when the CC leaves CONFIG state.

Note: Status bits MHDS[14:0], registers TXRQ1/2/3/4, and status data stored in the Message RAM are not affected by the transition of the POC from CONFIG to READY state.

When the CC is in CONFIG state it is also possible to bring the CC into a power saving mode by halting the module clocks (eray_sclk, eray_bclk). To do this the Host has to assure that all Message RAM transfers have finished before turning off the clocks.

19.5.4. MONITOR_MODE

After unlocking CONFIG state and writing **SUCC1.CMD[3:0]** = "1011" the CC enters MONITOR_MODE. In this mode the CC is able to receive FlexRay frames. The temporal integrity of received frames is not checked, and therefore cycle counter filtering is not supported. This mode can be used for debugging purposes in case e.g. that startup of a FlexRay network fails. After writing **SUCC1.CMD[3:0]** = "0001" the CC transits back to CONFIG state.

In MONITOR_MODE the pick first valid mechanism is disabled. This means that a receive message buffer may only be configured to receive on one channel. Received frames are stored into message buffers according to frame ID and receive channel. Null frames are handled like data frames. After frame reception only status bits **MBS.VFRA**, **MBS.VFRB**, **MBS.MLST**, **MBS.RCIS**, **MBS.SFIS**, **MBS.SYNS**, **MBS.NFIS**, **MBS.RFIS**, **MBS.RESS** have valid values. In MONITOR MODE the receive FIFO is not available.

19.5.5. READY State

After unlocking CONFIG state and writing **SUCC1.CMD[3:0]** = "0010" the CC enters READY state. From this state the CC can transit to WAKEUP state and perform a cluster wakeup or to STARTUP state to perform a coldstart or to integrate into a running cluster.

The CC enters this state

• When exiting from CONFIG, WAKEUP, STARTUP, NORMAL_ACTIVE, or NORMAL_PASSIVE state by writing **SUCC1.CMD[3:0]** = "0010" (READY command).

The CC exits from this state

- To CONFIG state by writing SUCC1.CMD[3:0] = "0001" (CONFIG command)
- To WAKEUP state by writing SUCC1.CMD[3:0] = "0011" (WAKEUP command)
- To STARTUP state by writing **SUCC1.CMD[3:0]** = "0100" (RUN command)

Internal counters and the CC status flags are reset when the CC enters STARTUP state.

Note: Status bits MHDS[14:0], registers TXRQ1/2/3/4, and status data stored in the Message RAM are not affected by the transition of the POC from READY to STARTUP state.

19.5.6. WAKEUP State

The description below is intended to help configuring wakeup for the E-Ray IP-module. A detailed description of the wakeup procedure together with the respective SDL diagrams can be found in the FlexRay protocol specification v2.1, section 7.1.

The CC enters this state

• When exiting from READY state by writing SUCC1.CMD[3:0] = "0011" (WAKEUP command).

The CC exits from this state to READY state

- · After complete non-aborted transmission of wakeup pattern
- After WUP reception
- After detecting a WUP collision
- · After reception of a frame header
- By writing SUCC1.CMD[3:0] = "0010" (READY command)

The cluster wakeup must precede the communication startup in order to ensure that all nodes in a cluster are awake. The minimum requirement for a cluster wakeup is that all bus drivers are supplied with power. A bus driver has the ability to wake up the other components of its node when it receives a wakeup pattern on its channel. At least one node in the cluster needs an **external** wakeup source.

The Host completely controls the wakeup procedure. It is informed about the state of the cluster by the bus driver and the CC and configures bus guardian (if available) and CC to perform the cluster wakeup. The CC provides to the Host the ability to transmit a special wakeup pattern on each of its available channels separately. The CC needs to recognize the wakeup pattern only during WAKEUP state.

Wakeup may be performed on only one channel at a time. The Host has to configure the wakeup channel while the CC is in CONFIG state by writing SUCC1.WUCS. The CC ensures that ongoing communication on this channel is not disturbed. The CC cannot guarantee that all nodes connected to the configured channel awake upon the transmission of the wakeup pattern, since these nodes cannot give feedback until the startup phase. The wakeup procedure enables single-channel devices in a two-channel system to trigger the wakeup, by only transmitting the wakeup pattern on the single channel to which they are connected. Any coldstart node that deems a system startup necessary will then wake the remaining channel before initiating communication startup.

The wakeup procedure tolerates any number of nodes simultaneously trying to wakeup a single channel and resolves this situation such that only one node transmits the pattern. Additionally the wakeup pattern is collision resilient, so even in the presence of a fault causing two nodes to simultaneously transmit a wakeup pattern, the resulting collided signal can still wake the other nodes.

After wakeup the CC returns to READY state and signals the change of the wakeup status to the Host by setting flag **SIR.WST**. The wakeup status vector can be read from **CCSV.WSV[2:0]**. If a valid wakeup pattern was received also either flag **SIR.WUPA** or flag **SIR.WUPB** is set.

Structure of POC state WAKEUP

State transitions WAKEUP

T#	Condition	From	То
enter	Host commands change to WAKEUP state by writ- ing SUCC1.CMD[3:0] = "0011" (WAKEUP com- mand)	READY	WAKEUP
1	CHI command WAKEUP triggers wakeup FSM to transit to WAKEUP_LISTEN state	WAKEUP_STANDBY	WAKEUP_LISTEN
2	Received WUP on wakeup channel selected by bit SUCC1.WUCS OR frame header on either avail- able channel	WAKEUP_LISTEN	WAKEUP_STANDBY
3	Timer event	WAKEUP_LISTEN	WAKEUP_SEND
4	Complete, non-aborted transmission of wakeup pattern	WAKEUP_SEND	WAKEUP_STANDBY
5	Collision detected	WAKEUP_SEND	WAKEUP_DETECT
6	Wakeup timer expired OR WUP detected on wake- up channel selected by bit SUCC1.WUCS OR frame header received on either available channel	WAKEUP_DETECT	WAKEUP_STANDBY
exit	Wakeup completed (after T2 or T4 or T6) OR Host commands change to READY state by writing SUCC1.CMD[3:0] = "0010" (READY command). This command also resets the wakeup FSM to WAKEUP_STANDBY state	WAKEUP	READY

The WAKEUP_LISTEN state is controlled by the wakeup timer and the wakeup noise timer. The two timers are controlled by the parameters listen timeout **SUCC2.LT[20:0]** and listen timeout noise **SUCC2.LTN[3:0]**. Listen timeout enables a fast cluster wakeup in case of a noise free environment, while listen timeout noise enables wakeup under more difficult conditions regarding noise interference.

In WAKEUP_SEND state the CC transmits the wakeup pattern on the configured channel and checks for collisions. After return from wakeup the Host has to bring the CC into STARTUP state by CHI command RUN.

In WAKEUP_DETECT state the CC attempts to identify the reason for the wakeup collision detected in WAKEUP_SEND state. The monitoring is bounded by the expiration of listen timeout as configured by **SUCC2.LT[20:0]**. Either the detection of a wakeup pattern indicating a wakeup attempt by another node or the reception of a frame header indicating ongoing communication, causes the direct transition to READY state. Otherwise WAKEUP_DETECT is left after expiration of listen timeout; in this case the reason for wakeup collision is unknown.

The Host has to be aware of possible failures of the wakeup and act accordingly. It is advisable to delay any potential startup attempt of the node having instigated the wakeup by the minimal time it takes another coldstart node to become awake and to be configured.

The FlexRay Protocol Specification v2.1 recommends that two different CCs shall awake the two channels.

Host activities

The host must coordinate the wakeup of the two channels and must decide whether, or not, to wake a specific channel. The sending of the wakeup pattern is initiated by the Host. The wakeup pattern is detected by the remote BDs and signalled to their local Host.

Wakeup procedure controlled by Host (single-channel wakeup):

- Configure the CC in CONFIG state
- Select wakeup channel by programming bit SUCC1.WUCS
- · Check local BDs whether a WUP was received
- · Activate BD of selected wakeup channel
- · Command CC to enter READY state
- Command CC to start wakeup on the configured channel by writing SUCC1.CMD[3:0] = "0011"
- CC enters WAKEUP
- CC returns to READY state and signals status of wakeup attempt to the Host
- · Wait predefined time to allow the other nodes to wakeup and configure themselves
- · Coldstart node:
- In a dual channel cluster wait for WUP on the other channel
- Reset coldstart inhibit flag CCSV.CSI by writing SUCC1.CMD[3:0] = "1001" (ALLOW_COLDSTART command)
- Command CC to enter startup by writing **SUCC1.CMD[3:0]** = "0100" (RUN command)

Wakeup procedure triggered by BD:

- Wakeup recognized by BD
- BD triggers power-up of Host (if required)
- · BD signals wakeup event to Host
- · Host configures its local CC
- If necessary, Host commands wakeup of second channel and waits predefined time to allow the other nodes to wakeup and configure themselves
- Host commands CC to enter STARTUP state by writing SUCC1.CMD[3:0] = "0100" (RUN command)

Wakeup pattern (WUP)

The wakeup pattern (WUP) is composed of at least two wakeup symbols (WUS). Wakeup symbol and wakeup pattern are configured by registers PRTC1 and PRTC2.

- Single channel wakeup, wakeup symbol may not be sent on both channels at the same time
- Wakeup symbol collision resilient for at least two sending nodes
- (two overlapping wakeup symbols always recognizable)Wakeup symbol must be configured identical in all nodes of a cluster
- Wakeup symbol must be configured identical in all nodes of a cluste
 Wakeup symbol transmit low time configured by **DDTC2 TVL [5:0]**
- Wakeup symbol transmit low time configured by PRTC2.TXL[5:0]
- Wakeup symbol idle time used to listen for activity on the bus, configured by PRTC2.TXI[7:0]
- A wakeup pattern composed of at least two Tx-wakeup symbols needed for wakeup
- Number of repetitions configurable by **PRTC1.RWP[5:0]** (2 to 63 repetitions)
- Wakeup symbol receive window length configured by PRTC1.RXW[8:0]
- Wakeup symbol receive low time configured by PRTC2.RXL[5:0]
- Wakeup symbol receive idle time configured by **PRTC2.RXI[5:0]**

Timing of wakeup pattern

19.5.7. STARTUP State

The description below is intended to help configuring startup for the E-Ray IP-module. A detailed description of the startup procedure together with the respective SDL diagrams can be found in the FlexRay protocol specification v2.1, section 7.2.

Any node entering STARTUP state that has coldstart capability should assure that both channels attached have been awakened before initiating coldstart.

It cannot be assumed that all nodes and stars need the same amount of time to become completely awake and to be configured. Since at least two nodes are necessary to start up the cluster communication, it is advisable to delay any potential startup attempt of the node having instigated the wakeup by the minimal amount of time it takes another coldstart node to become awake, to be configured and to enter startup. It may require several hundred milliseconds (depending on the hardware used) before all nodes and stars are completely awakened and configured.

Startup is performed on all channels synchronously. During startup, a node only transmits startup frames. Startup frames are both sync frames and null frames during startup.

A fault-tolerant, distributed startup strategy is specified for initial synchronization of all nodes. In general, a node may enter NORMAL_ACTIVE state via (see figureState diagram time-triggered startup):

- · Coldstart path initiating the schedule synchronization (leading coldstart node)
- · Coldstart path joining other coldstart nodes (following coldstart node)
- Integration path integrating into an existing communication schedule (all other nodes)

A coldstart attempt begins with the transmission of a collision avoidance symbol (CAS). Only a coldstart node that had transmitted the CAS transmits frames in the first four cycles after the CAS, it is then joined firstly by the other coldstart nodes and afterwards by all other nodes.

A coldstart node has bits **SUCC1.TXST** and **SUCC1.TXSY** set to '1'. Message buffer 0 holds the key slot ID which defines the slot number where the startup frame is send. In the frame header of the startup frame the startup frame indicator bit is set.

In clusters consisting of three or more nodes, at least three nodes shall be configured to be coldstart nodes. In clusters consisting of two nodes, both nodes must be coldstart nodes. At least two fault-free coldstart nodes are necessary for the cluster to startup.

Each startup frame must also be a sync frame; therefore each coldstart node will also be a sync node. The number of coldstart attempts is configured by **SUCC1.CSA[4:0]**.

A non-coldstart node requires at least two startup frames from distinct nodes for integration. It may start integration before the coldstart nodes have finished their startup. It will not finish its startup until at least two coldstart nodes have finished their startup.

Both non-coldstart nodes and coldstart nodes start passive integration via the integration path as soon as they receive sync frames from which to derive the TDMA schedule information. During integration, the node has to adapt its own clock to the global clock (rate and offset) and has to make its cycle time consistent with the global schedule observable at the network. Afterwards, these settings are checked for consistency with all available network nodes. The node can only leave the integration phase and actively participate in communication when these checks are passed.

State diagram time-triggered startup

Coldstart Inhibit Mode

In coldstart inhibit mode the node is prevented from initializing the TDMA communication schedule. If bit **CCSV.CSI** is set, the node is not allowed to initialize the cluster communication, i.e. entering the coldstart path is prohibited. The node is allowed to integrate to a running cluster or to transmit startup frames after another coldstart node started the initialization of the cluster communication.

The coldstart inhibit bit **CCSV.CSI** is set whenever the POC enters READY state. The bit has to be cleared under control of the Host by CHI command ALLOW_COLDSTART (**SUCC1.CMD[3:0]** = "1001")

Startup Timeouts

The CC supplies two different mT timers supporting two timeout values, startup timeout and startup noise timeout. The two timers are started when the CC enters the COLDSTART_LISTEN state. The expiration of either of these timers causes the node to leave the initial sensing phase (COLDSTART_LISTEN state) with the intention of starting up communication.

Note: The startup and startup noise timers are identical with the wakeup and wakeup noise timers and use the same configuration values SUCC2.LT[20:0] and SUCC2.LTN[3:0].

Startup Timeout

The startup timeout limits the listen time used by a node to determine if there is already communication between other nodes or at least one coldstart node actively requesting the integration of others. The startup timer is configured by programming **SUCC2.LT[20:0]** (see 18.5.2.SUC Configuration Register 2 (SUCC2)).

The startup timeout is: pdListenTimeout = SUCC2.LT[20:0]

The startup timer is restarted upon:

- Entering the COLDSTART_LISTEN state
- Both channels reaching idle state while in COLDSTART_LISTEN state

The startup timer is stopped:

- If communication channel activity is detected on one of the configured channels while the node is in the COLDSTART_LISTEN state
- When the COLDSTART_LISTEN state is left

Once the startup timeout expires, neither an overflow nor a cyclic restart of the timer is performed. The timer status is kept for further processing by the startup state machine.

Startup Noise Timeout

At the same time the startup timer is started for the first time (transition from STARTUP_PREPARE state to COLDSTART_LISTEN state), the startup noise timer is started. This additional timeout is used to improve reliability of the startup procedure in the presence of noise. The startup noise timeout is configured by programming **SUCC2.LTN[3:0]** (see 18.5.2.SUC Configuration Register 2 (SUCC2)).

The startup noise timeout is: pdListenTimeout • gListenNoise = SUCC2.LT[20:0] • (SUCC2.LTN[3:0] + 1)

The startup noise timer is restarted upon:

- Entering the COLDSTART_LISTEN state
- Reception of correctly decoded headers or CAS symbols while the node is in COLDSTART_LISTEN state

The startup noise timer is stopped when the COLDSTART_LISTEN state is left.

Once the startup noise timeout expires, neither an overflow nor a cyclic restart of the timer is performed. The status is kept for further processing by the startup state machine. Since the startup noise timer won't be restarted when random channel activity is sensed, this timeout defines the fall-back solution that guarantees that a node will try to start up the communication cluster even in the presence of noise.

Path of leading Coldstart Node (initiating coldstart)

When a coldstart node enters COLDSTART_LISTEN, it listens to its attached channels.

If no communication is detected, the node enters the COLDSTART_COLLISION_RESOLUTION state and commences a coldstart attempt. The initial transmission of a CAS symbol is succeeded by the first regular cycle. This cycle has the number zero.

From cycle zero on, the node transmits its startup frame. Since each coldstart node may perform a coldstart attempt, it may occur that several nodes simultaneously transmit the CAS symbol and enter the coldstart path. This situation is resolved during the first four cycles after CAS transmission.

As soon as a node that initiates a coldstart attempt receives a CAS symbol or a frame header during these four cycles, it re-enters the COLDSTART_LISTEN state. Thereby, only one node remains in this path. In cycle four, other coldstart nodes begin to transmit their startup frames.

After four cycles in COLDSTART_COLLISION_RESOLUTION state, the node that initiated the coldstart enters the COLDSTART_CONSISTENCY_CHECK state. It collects all startup frames from cycle four and five and performs the clock correction. If the clock correction does not deliver any errors and it has received at least one valid startup frame pair, the node leaves COLDSTART_CONSISTENCY_CHECK and enters NORMAL_ACTIVE state.

The number of coldstart attempts that a node is allowed to perform is configured by **SUCC1.CSA[4:0]**. The number of remaining coldstarts attempts can be read from **CCSV.RCA[4:0]**. The number of remaining coldstart attempts is reduced by one for each attempted coldstart. A node may enter the COLDSTART_LISTEN state only if this value is larger than one and it may enter the COLDSTART_COLLISION_RESOLUTION state only if this value is larger than zero. If the number of coldstart attempts is one, coldstart is inhibited but integration is still possible.

Path of following Coldstart Node (responding to leading Coldstart Node)

When a coldstart node enters the COLDSTART_LISTEN state, it tries to receive a valid pair of startup frames to derive its schedule and clock correction from the leading coldstart node.

As soon as a valid startup frame has been received the INITIALIZE_SCHEDULE state is entered. If the clock synchronization can successfully receive a matching second valid startup frame and derive a schedule from this, the INTEGRATION_COLDSTART_CHECK state is entered.

In INTEGRATION_COLDSTART_CHECK state it is assured that the clock correction can be performed correctly and that the coldstart node from which this node has initialized its schedule is still available. The node collects all sync frames and performs clock correction in the following double-cycle. If clock correction does not signal any errors and if the node continues to receive sufficient frames from the same node it has integrated on, the COLDSTART_JOIN state is entered.

In COLDSTART_JOIN state following coldstart nodes begin to transmit their own startup frames and continue to do so in subsequent cycles. Thereby, the leading coldstart node and the nodes joining it can check if their schedules agree with each other. If the clock correction signals any error, the node aborts the integration attempt. If a node in this state sees at least one valid startup frame during all even cycles in this state and at least one valid startup frame pair during all double cycles in this state, the node leaves COLDSTART_JOIN state and enters NORMAL_ACTIVE state. Thereby it leaves STARTUP at least one cycle after the node that initiated the coldstart.

Path of Non-coldstart Node

When a non-coldstart node enters the INTEGRATION LISTEN state, it listens to its attached channels.

As soon as a valid startup frame has been received, the INITIALIZE_SCHEDULE state is entered. If the clock synchronization can successfully receive a matching second valid startup frame and derive a schedule from this, the INTEGRATION CONSISTENCY CHECK state is entered.

In INTEGRATION_CONSISTENCY_CHECK state the node verifies that the clock correction can be performed correctly and that enough coldstart nodes (at least 2) are sending startup frames that agree with the node's own schedule. Clock correction is activated, and if any errors are signalled, the integration attempt is aborted.

During the first even cycle in this state, either two valid startup frames or the startup frame of the node that this node has integrated on must be received; otherwise the node aborts the integration attempt.

During the first double-cycle in this state, either two valid startup frame pairs or the startup frame pair of the node that this node has integrated on must be received; otherwise the node aborts the integration attempt.

If after the first double-cycle less than two valid startup frames are received within an even cycle, or less than two valid startup frame pairs are received within a double-cycle, the startup attempt is aborted.

Nodes in this state need to see two valid startup frame pairs for two consecutive double-cycles each to be allowed to leave STARTUP and enter NORMAL_OPERATION. Consequently, they leave startup at least one double-cycle after the node that initiated the coldstart and only at the end of a cycle with an odd cycle number.

19.5.8. NORMAL_ACTIVE State

As soon as the node that transmitted the first CAS symbol (resolving the potential access conflict and entering STARTUP via coldstart path) and one additional node have entered the NORMAL_ACTIVE state, the startup phase for the cluster has finished. In the NORMAL_ACTIVE state, all configured messages are scheduled for transmission. This includes all data frames as well as the sync frames. Rate and offset measurement is started in all even cycles (even / odd cycle pairs required).

In NORMAL_ACTIVE state the CC supports regular communication functions

- The CC performs transmissions and reception on the FlexRay bus as configured
- Clock synchronization is running
- The Host interface is operational

The CC exits from that state to

- HALT state by writing SUCC1.CMD[3:0] = "0110"
- (HALT command, at the end of the current cycle)
- HALT state by writing SUCC1.CMD[3:0] = "0111" (FREEZE command, immediately)
- · HALT state due to change of the error state from ACTIVE to COMM_HALT
- NORMAL_PASSIVE state due to change of the error state from ACTIVE to PASSIVE
- READY state by writing SUCC1.CMD[3:0] = "0010" (READY command)

19.5.9. NORMAL_PASSIVE State

NORMAL_PASSIVE state is entered from NORMAL_ACTIVE state when the error state changes from ACTIVE to PASSIVE.

In NORMAL_PASSIVE state, the node is able to receive all frames (node is fully synchronized and performs clock synchronization). Contrary to the NORMAL_ACTIVE state, the node does not actively participate in communication, i.e. neither symbols nor frames are transmitted.

In NORMAL_PASSIVE state

- The CC performs reception on the FlexRay bus
- The CC does not transmit any frames or symbols on the FlexRay bus
- Clock synchronization is running
- The Host interface is operational

The CC exits from this state to

- HALT state by writing SUCC1.CMD[3:0] = "0110"
 - (HALT command, at the end of the current cycle)
- HALT state by writing SUCC1.CMD[3:0] = "0111" (FREEZE command, immediately)
- HALT state due to change of the error state from PASSIVE to COMM_HALT
- NORMAL_ACTIVE state due to change of the error state from PASSIVE to ACTIVE. The transition takes place when CCEV.PTAC[4:0] equals SUCC1.PTA[4:0] - 1
- To READY state by writing SUCC1.CMD[3:0] = "0010" (READY command)

19.5.10. HALT State

In this state all communication (reception and transmission) is stopped.

The CC enters this state

- By writing SUCC1.CMD[3:0] = "0110" (HALT command) while the CC is in NORMAL_ACTIVE or NORMAL_PASSIVE state
- By writing SUCC1.CMD[3:0] = "0111" (FREEZE command) from all states
- When exiting from NORMAL_ACTIVE state because the clock correction failed counter reached the "maximum without clock correction fatal" limit
- When exiting from NORMAL_PASSIVE state because the clock correction failed counter reached the "maximum without clock correction fatal" limit

The CC exits from this state to DEFAULT_CONFIG state

• By writing SUCC1.CMD[3:0] = "0001" (CONFIG command)

When the CC enters HALT state, all configuration and status data is maintained for analyzing purposes.

When the Host writes **SUCC1.CMD[3:0]** = "0110" (HALT command), the CC sets bit **CCSV.HRQ** and enters HALT state after the current communication cycle has finished.

When the Host writes **SUCC1.CMD[3:0]** = "0111" (FREEZE command), the CC enters HALT state immediately and sets bit **CCSV.FSI**. The POC state from which the transition to HALT state took place can be read from **CCSV.PSL[5:0]**.

19.6. Network Management

The accrued Network Management (NM) vector can be read from registers NMV1...3. The CC performs a bit-wise OR operation over all NM vectors out of all received valid NM frames with the Payload Preamble Indicator (**PPI**) bit set. Only static frames may be configured to hold NM information. The CC updates the NM vector at the end of each cycle.

The length of the NM vector can be configured from 0 to 12 bytes by **NEMC.NML[3:0]**. The NM vector length must be configured identically in all nodes of a cluster.

To configure a transmit buffer to send FlexRay frames with the **PPI** bit set, bit **PPIT** in the header section of the respective transmit buffer has to be set via **WRHS1.PPIT**. In addition the Host has to write the NM information to the data section of the respective transmit buffer.

The evaluation of the NM vector has to be done by the application running on the Host.

Note: In case a message buffer is configured for transmission / reception of network management frames, the payload length configured in header 2 of that message buffer should be equal or greater than the length of the NM vector configured by **NEMC.NML[3:0]**.

19.7. Filtering and Masking

Filtering is done by comparison of the configuration of assigned message buffers against actual slot and cycle counter values and channel ID (channel A, B). A message buffer is only updated / transmitted if the required matches occur.

Filtering is done on:

- Slot Counter
- Cycle Counter
- Channel ID

The following filter combinations for acceptance / transmit filtering are allowed:

- Slot Counter + Channel ID
- Slot Counter + Cycle Counter + Channel ID

All configured filters must match in order to store a received message in a message buffer.

Note: For the FIFO the acceptance filter is configured by the FIFO Rejection Filter and the FIFO Rejection Filter Mask.

A message will be transmitted in the time slot corresponding to the configured frame ID on the configured channel(s). If cycle counter filtering is enabled the configured cycle filter value must also match.

19.7.1. Slot Counter Filtering

Every transmit and receive buffer contains a frame ID stored in the header section. This frame ID is compared against the actual slot counter value in order to assign receive and transmit buffers to the corresponding slot.

If two or more message buffers are configured with the same frame ID, and if they have a matching cycle counter filter value for the same slot, then the message buffer with the **lowest** message buffer number is used.

19.7.2. Cycle Counter Filtering

Cycle counter filtering is based on the notion of a cycle set. For filtering purposes, a match is detected if any one of the elements of the cycle set is matched. The cycle set is defined by the cycle code field in header section 1 of each message buffer.

If message buffer 0 resp. 1 is configured to hold the startup / sync frame or the single slot frame by bits **SUCC1.TXST**, **SUCC1.TXSY**, and **SUCC1.TSM**, cycle counter filtering for message buffer 0 resp. 1 must be disabled.

Note: Sharing of a static time slot via cycle counter filtering between different nodes of a FlexRay network is not allowed.

The set of cycle numbers belonging to a cycle set is determined as described in the following table.

Definition of cycle set

Cycle Code	Matching Cycle Counter Values							
0b000000x	all Cycles							
0b00000 <mark>1c</mark>	every second Cycle	at (Cycle Count)mod2	= C					
0b0000 <mark>1cc</mark>	every fourth Cycle	at (Cycle Count)mod4	= CC					
0b0001ccc	every eighth Cycle	at (Cycle Count)mod8	= ccc					
0b001cccc	every sixteenth Cycle	at (Cycle Count)mod16	= cccc					
0b01ccccc	every thirty-second Cycle	at (Cycle Count)mod32	= ccccc					
0b1cccccc	every sixty-fourth Cycle	at (Cycle Count)mod64	= cccccc					

The following table gives some examples for valid cycle sets to be used for cycle counter filtering:

Examples for valid cycle sets

Cycle Code	Matching Cycle Counter Values
0b00000 <mark>1</mark> 1	1-3-5-763 ,
0b0000100	0-4-8-1260 ,
0b0001110	6-14-22-3062 .J
0b0011000	8-24-40-56 , J
0b0100011	3-35 .⊣
0b1001001	9.1

The received message is stored only if the cycle counter value of the cycle during which the message is received matches an element of the receive buffer's cycle set. Other filter criteria must also be met.

The content of a transmit buffer is transmitted on the configured channel(s) when an element of the cycle set matches the current cycle counter value. Other filter criteria must also be met.

19.7.3. Channel ID Filtering

There is a 2-bit channel filtering field (**CHA**, **CHB**) located in the header section of each message buffer in the Message RAM. It serves as a filter for receive buffers, and as a control field for transmit buffers (See the following table).

Channel filtering configuration

СНА	СНВ	Transmit Buffer transmit frame	Receive Buffer store valid receive frame
1	1	on both channels (static segment only)	received on channel A or B (store first semantically valid frame, static segment only)
1	0	on channel A	received on channel A
0	1	on channel B	received on channel B
0	0	no transmission	ignore frame

The contents of a transmit buffer is transmitted on the channels specified in the channel filtering field when the slot counter filtering and cycle counter filtering criteria are also met. Only in static segment a transmit buffer may be set up for transmission on both channels (CHA and CHB set).

Valid received frames are stored if they are received on the channels specified in the channel filtering field when the slot counter filtering and cycle counter filtering criteria are also met. Only in static segment a receive buffer may be setup for reception on both channels (CHA and CHB set).

Note: If a message buffer is configured for the dynamic segment and both bits of the channel filtering field are set to '1', no frames are transmitted resp. received frames are ignored (same function as CHA = CHB = '0').

19.7.4. FIFO Filtering

For FIFO filtering there is one rejection filter and one rejection filter mask available. The FIFO filter consists of channel filter **FRF.CH[1:0]**, frame ID filter **FRF.FID[10:0]**, and cycle counter filter **FRF.CYF[6:0]**. Registers FRF and FRFM can be configured in DEFAULT_CONFIG or CONFIG state only. The filter configuration in the header section of message buffers belonging to the FIFO is ignored.

The 7-bit cycle counter filter determines the cycle set to which frame ID and channel rejection filter are applied. In cycles not belonging to the cycle set specified by **FRF.CYF[6:0]**, all frames are rejected.

A valid received frame is stored in the FIFO if channel ID, frame ID, and cycle counter are not rejected by the configured rejection filter and rejection filter mask, and if there is no matching dedicated receive buffer.

19.8. Transmit Process

19.8.1. Static Segment

For the static segment, if there are several messages pending for transmission, the message with the frame ID corresponding to the next sending slot is selected for transmission.

The data section of transmit buffers assigned to the static segment can be updated until the end of the preceding time slot. This means that a transfer from the Input Buffer has to be started by writing to the Input Buffer Command Request register latest at this time.

19.8.2. Dynamic Segment

In the dynamic segment, if several messages are pending, the message with the highest priority (lowest frame ID) is selected next. In the dynamic segment different slot counter sequences on channel A and channel B are possible (concurrent sending of different frame IDs on both channels).

The data section of transmit buffers assigned to the dynamic segment can be updated until the end of the preceding slot. This means that a transfer from the Input Buffer has to be started by writing to the Input Buffer Command Request register latest at this time.

The start of latest transmit configured by **MHDC.SLT[12:0]** defines the maximum minislot value allowed before inhibiting new frame transmission in the dynamic segment of the current cycle.

19.8.3. Transmit Buffers

E-Ray message buffers can be configured as transmit buffers by programming bit CFG in the header section of the respective message buffer to '1' via WRHS1.

There exist the following possibilities to assign a transmit buffer to the CC channels:

- Static segment: channel A or channel B,
 - channel A and channel B
- Dynamic segment: channel A or channel B

Message buffer 0 resp. 1 is dedicated to hold the startup frame, the sync frame, or the designated single slot frame as configured by **SUCC1.TXST**, **SUCC1.TXST**, and **SUCC1.TSM**. In this case, it can be reconfigured in DEFAULT_CONFIG or CONFIG state only. This ensures that any node transmits at most one startup / sync frame per communication cycle. Transmission of startup / sync frames from other message buffers is not possible.

All other message buffers configured for transmission in static or dynamic segment are reconfigurable during runtime depending on the configuration of **MRC.SEC[1:0]** (see 19.11.1.Reconfiguration of Message Buffers. Due to the organization of the data partition in the Message RAM (reference by data pointer), reconfiguration of the configured payload length and the data pointer in the header section of a message buffer may lead to erroneous configurations.

If a message buffer is reconfigured (header section updated) during runtime, it may happen that this message buffer is not send out in the respective communication cycle.

The CC does not have the capability to calculate the header CRC. The Host is supposed to provide the header CRCs for all transmit buffers. If network management is required, the Host has to set the **PPIT** bit in the header section of the respective message buffer to '1' and write the network management information to the data section of the message buffer (see 19.6.Network Management).

The payload length field configures the payload length in 2-byte words. If the configured payload length of a static transmit buffer is shorter than the payload length configured for the static segment by **MHDC.SFDL[6:0]**, the CC generates padding bytes to ensure that frames have proper physical length. The padding pattern is logical zero.

Each transmit buffer provides a transmission mode flag **TXM** that allows the Host to configure the transmission mode for the transmit buffer. If this bit is set, the transmitter operates in the single-shot mode. If this bit is cleared, the transmitter operates in the continuous mode.

In **single-shot mode** the CC resets the respective **TXR** flag after transmission has completed. Now the Host may update the transmit buffer.

In **continuous mode**, the CC does not reset the respective transmission request flag **TXR** after successful transmission. In this case a frame is sent out each time the filter criteria match. The **TXR** flag can be reset by the Host by writing the respective message buffer number to the IBCR register while bit **IBCM.STXRH** is set to '0'.

If two or more transmit buffers meet the filter criteria simultaneously, the transmit buffer with the lowest message buffer number will be transmitted in the respective slot.

19.8.4. Frame Transmission

The following steps are required to prepare a message buffer for transmission:

- · Configure the transmit buffer in the Message RAM via WRHS1, WRHS2, and WRHS3
- Write the data section of the transmit buffer via WRDSn
- Transfer the configuration and message data from Input Buffer to the Message RAM by writing the number of the target message buffer to register IBCR
- If configured in register IBCM, the transmission request flag **TXR** for the respective message buffer will be set as soon as the transfer has completed, and the message buffer is ready for transmission.
- Check whether the message buffer has been transmitted by checking the respective TXR bit (TXR = '0') in the TRXQ1/2/3/4 registers (single-shot mode only).

After transmission has completed, the respective **TXR** flag in the TXRQ1/2/3/4 register is reset (single-shot mode), and, if bit **MBI** in the header section of the message buffer is set, flag **SIR.TXI** is set to '1'. If enabled, an interrupt is generated.

19.8.5. Null Frame Transmission

If in static segment the Host does not set the transmission request flag before transmit time, and if there is no other transmit buffer with matching filter criteria, the CC transmits a null frame with the null frame indication bit set to '0' and the payload data **set to zero**.

In the following cases the CC transmits a null frame:

- If the message buffer with the lowest message buffer number matching the filter criteria does not have its transmission request flag set (**TXR** = '0').
- No transmit buffer configured for the slot has a cycle counter filter that matches the current cycle. In this case, no message buffer status MBS is updated.

Null frames are not transmitted in the dynamic segment.

19.9. Receive Process

19.9.1. Dedicated Receive Buffers

A portion of the E-Ray message buffers can be configured as dedicated receive buffers by programming bit **CFG** in the header section of the respective message buffer to '0' via WRHS1.

The following possibilities exist to assign a receive buffer to the CC channels:

- Static segment: channel A or channel B,
 - channel A and channel B (the CC stores the first semantically valid frame)
- Dynamic segment: channel A or channel B

The CC transfers the payload data of valid received messages from the shift register of the FlexRay channel protocol controller (channel A or B) to the receive buffer with the matching filter configuration. A receive buffer stores all frame elements except the frame CRC.

All message buffers configured for reception in static or dynamic segment are reconfigurable during runtime depending on the configuration of **MRC.SEC[1:0]** (see 19.11.1.Reconfiguration of Message Buffers). If a message buffer is reconfigured (header section updated) during runtime it may happen that in the respective communication cycle a received message is lost.

If two or more receive buffers meet the filter criteria simultaneously, the receive buffer with the lowest message buffer number is updated with the received message.

19.9.2. Frame Reception

The following steps are required to prepare a dedicated message buffer for reception:

• Configure the receive buffer in the Message RAM via WRHS1, WRHS2, and WRHS3

Transfer the configuration from Input Buffer to the Message RAM by writing the number of the target message buffer to register
 IBCR

Once these steps are performed, the message buffer functions as an active receive buffer and participates in the internal acceptance filtering process which takes place every time the CC receives a message. The first matching receive buffer is updated from the received message.

If a valid payload segment was stored in the data section of a message buffer, the respective **ND** flag in the NDAT1/2/3/4 registers is set, and, if bit **MBI** in the header section of that message buffer is set, flag **SIR.RXI** is set to '1'. If enabled, an interrupt is generated.

In case that bit **ND** was already set when the Message Handler updates the message buffer, bit **MBS.MLST** of the respective message buffer is set and the unprocessed message data is lost.

If no frame, a null frame, or a corrupted frame was received in a slot, the data section of the message buffer configured for this slot is not updated. In this case only the respective message buffer status MBS is updated.

When the Message Handler changed the message buffer status MBS in the header section of a message buffer, the respective **MBC** flag in the MBSC1/2/3/4 registers is set, and if bit **MBI** in the header section of that message buffer is set, flag **SIR.MBSI** is set to '1'. If enabled an interrupt is generated.

If the payload length of a received frame **PLR[6:0]** is longer than the value programmed by **PLC[6:0]** in the header section of the respective message buffer, the data field stored in the message buffer is truncated to that length.

To read a receive buffer from the Message RAM via the Output Buffer, proceed as described in Data Transfer from Message RAM to Output Buffer.

Note: The **ND** and **MBC** flags are automatically cleared by the Message Handler when the payload data and the header of a received message have been transferred to the Output Buffer, respectively.

19.9.3. Null Frame Reception

The payload segment of a received null frame is not copied into the matching dedicated receive buffer. If a null frame has been received, only the message buffer status MBS of the matching message buffer is updated from the received null frame. All bits in header 2 and 3 of the matching message buffer remain unchanged. They are updated from received data frames only.

When the Message Handler changed the message buffer status MBS in the header section of a message buffer, the respective **MBC** flag in the MBSC1/2/3/4 register is set, and if bit **MBI** in the header section of that message buffer is set, flag **SIR.MBSI** is set to '1'. If enabled, an interrupt is generated.

19.10. FIFO Function

19.10.1. Description

A group of the message buffers can be configured as a cyclic First-In-First-Out (FIFO) buffer. The group of message buffers belonging to the FIFO is contiguous in the register map starting with the message buffer referenced by **MRC.FFB[7:0]** and ending with the message buffer referenced by **MRC.LCB[7:0]**. Up to 128 message buffers can be assigned to the FIFO.

Every **valid** incoming message not matching with any dedicated receive buffer but passing the programmable FIFO filter is stored into the FIFO. In this case frame ID, payload length, receive cycle count, and the message buffer status MBS of the addressed FIFO message buffer are overwritten with frame ID, payload length, receive cycle count, and the status from the received frame. Bit **SIR.RFNE** shows that the FIFO is not empty, bit **SIR.RFCL** is set when the receive FIFO fill level **FSR.RFFL[7:0]** is equal or greater than the critical level as configured by **FCL.CL[7:0]**, bit **EIR.RFO** shows that a FIFO overrun has been detected. If enabled, interrupts are generated.

If null frames are not rejected by the FIFO rejection filter, the null frames will be treated like data frames when they are stored into the FIFO.

There are two index registers associated with the FIFO. The PUT Index Register (PIDX) is an index to the next available location in the FIFO. When a new message has been received it is written into the message buffer addressed by the PIDX register. The PIDX register is then incremented and addresses the next available message buffer. If the PIDX register is incremented past the highest numbered message buffer of the FIFO, the PIDX register is loaded with the number of the first (lowest numbered) message buffer in the FIFO chain. The GET Index Register (GIDX) is used to address the next message buffer of the FIFO to be read. The GIDX register is incremented after transfer of the contents of a message buffer belonging to the FIFO to the Output Buffer. The PUT Index Register and the GET Index Register are not accessible by the Host.

The FIFO is completely filled when the PUT index (PIDX) reaches the value of the GET index (GIDX). When the next message is written to the FIFO before the oldest message has been read, both PUT index and GET index are incremented and the new message overwrites the oldest message in the FIFO. This will set FIFO overrun flag **EIR.RFO**.

A FIFO non empty status is detected when the PUT index (PIDX) differs from the GET index (GIDX). In this case flag **SIR.RFNE** is set. This indicates that there is at least one received message in the FIFO. The FIFO empty, FIFO not empty, and the FIFO overrun states are explained in the figure "FIFO status: empty, not empty, overrun" for a three message buffer FIFO.

The programmable FIFO Rejection Filter (FRF) defines a filter pattern for messages to be rejected. The FIFO filter consists of channel filter, frame ID filter, and cycle counter filter. If bit **FRF.RSS** is set to '1' (default), all messages received in the static segment are rejected by the FIFO. If bit **FRF.RNF** is set to '1' (default), received null frames are not stored in the FIFO.

The FIFO Rejection Filter Mask (FRFM) specifies which bits of the frame ID filter in the FIFO Rejection Filter register are marked 'don't care' for rejection filtering.

FIFO status: empty, not empty, overrun

19.10.2. Configuration of the FIFO

(Re)configuration of message buffers belonging to the FIFO is only possible when the CC is in DEFAULT_CONFIG or CONFIG state. While the CC is in DEFAULT_CONFIG or CONFIG state, the FIFO function is not available.

For all message buffers belonging to the FIFO the payload length configured should be programmed to the same value via **WRHS2.PLC[6:0]**. The data pointer to the first 32-bit word of the data section of the respective message buffer in the Message RAM has to be configured via **WRHS3.DP[10:0]**.

All information required for acceptance filtering is taken from the FIFO rejection filter and the FIFO rejection filter mask. The values configured in the header sections of the message buffers belonging to the FIFO are, with exception of DP and PLC, irrelevant.

Note: If the payload length of a received frame is longer than the value programmed by **WRHS2.PLC[6:0]** in the header section of the respective message buffer, the data field stored in a message buffer of the FIFO is truncated to that length.

19.10.3. Access to the FIFO

For FIFO access outside DEFAULT_CONFIG and CONFIG state, the Host has to trigger a transfer from the Message RAM to the Output Buffer by writing the number of the first message buffer of the FIFO (referenced by **MRC.FFB[7:0]**) to the register OBCR. The Message Handler then transfers the message buffer addressed by the GET Index Register (GIDX) to the Output Buffer. After this transfer the GET Index Register (GIDX) is incremented.

19.11. Message Handling

The Message Handler controls data transfers between the Input / Output Buffer and the Message RAM and between the Message RAM and the two Transient Buffer RAMs. All accesses to the internal RAMs are 32+1 bit accesses. The additional bit is used for parity checking.

Access to the message buffers stored in the Message RAM is done under control of the Message Handler state machine. This avoids conflicts between accesses of the two FlexRay channel protocol controllers and the Host to the Message RAM.

Frame IDs of message buffers assigned to the static segment have to be in the range from 1 to **GTUC7.NSS[9:0]**. Frame IDs of message buffers assigned to the dynamic segment have to be in the range from **GTUC7.NSS[9:0]** + 1 to 2047.

Received messages with no matching dedicated receive buffer (static or dynamic segment) are stored in the receive FIFO (if configured) if they pass the FIFO rejection filter.

19.11.1. Reconfiguration of Message Buffers

In case that an application needs to operate with more than 128 different messages, static and dynamic message buffers may be reconfigured during FlexRay operation. This is done by updating the header section of the respective message buffer via Input Buffer registers WRHS1....3.

Reconfiguration has to be enabled via control bits MRC.SEC[1:0] in the Message RAM Configuration register.

If a message buffer has not been transmitted / updated from a received frame before reconfiguration starts, the respective message is lost.

The point in time when a reconfigured message buffer is ready for transmission / reception according to the reconfigured frame ID depends on the actual state of the slot counter when the update of the header section has completed. Therefore it may happen that a reconfigured message buffer is not transmitted / updated from a received frame in the cycle where it was reconfigured.

The Message RAM is scanned according to the table below:

Scan of Message RAM

Start of Scan in Slot	Scan for Slots
1	215, 1 (next cycle)
8	1623, 1 (next cycle)
16	2431, 1 (next cycle)
24	3239, 1 (next cycle)

A Message RAM scan is terminated with the start of NIT regardless whether it has completed or not. The scan of the Message RAM for slots 2 to 15 starts at the beginning of slot 1 of the actual cycle. The scan of the Message RAM for slot 1 is done in the cycle before by checking in parallel to each scan of the Message RAM whether there is a message buffer configured for slot 1 of the next cycle.

The number of the first dynamic message buffer is configured by **MRC.FDB[7:0]**. In case a Message RAM scan starts while the CC is in dynamic segment, the scan starts with the message buffer number configured by **MRC.FDB[7:0]**.

In case a message buffer should be reconfigured to be used in slot 1 of the next cycle, the following has to be considered:

- If the message buffer to be reconfigured for slot 1 is part of the "Static Buffers", it will only be found if it is reconfigured before the last Message RAM scan in the static segment of the actual cycle evaluates this message buffer.
- If the message buffer to be reconfigured for slot 1 is part of the "Static + Dynamic Buffers", it will be found if it is reconfigured before the last Message RAM scan in the actual cycle evaluates this message buffer.
- The start of NIT terminates the Message RAM scan. In case the Message RAM scan has not evaluated the reconfigured message buffer until this point in time, the message buffer will not be considered for the next cycle.
- Note: Reconfiguration of message buffers may lead to the loss of messages and therefore has to be used very carefully. In worst case (reconfiguration in consecutive cycles) it may happen that a message buffer is never transmitted / updated from a received frame.

19.11.2. Host access to Message RAM

The message transfer between Input Buffer and Message RAM as well as between Message RAM and Output Buffer is triggered by the Host by writing the number of the target / source message buffer to be accessed to IBCR or OBCR register.

The IBCM and OBCM registers can be used to write / read header and data section of the selected message buffer separately.

If bit **IBCM.STXR** is set to = '1', the transmission request flag **TXR** of the selected message buffer is automatically set after the message buffer has been updated. If bit **IBCM.STXR** is reset to '0', the transmission request flag TXR of the selected message buffer is reset. This can be used to stop transmission from message buffers operated in continuous mode.

Input Buffer (IBF) and Output Buffer (OBF) are build up as a double buffer structure. One half of this double buffer structure is accessible by the Host (IBF Host / OBF Host), while the other half (IBF Shadow / OBF Shadow) is accessed by the Message Handler for data transfers between IBF / OBF and Message RAM.

Host access to Message RAM

Data Transfer from Input Buffer to Message RAM

To configure / update a message buffer in the Message RAM, the Host has to write the data to WRDSn and the header to WRHS1...3. The specific action is selected by configuring the Input Buffer Command Mask IBCM.

When the Host writes the number of the target message buffer in the Message RAM to **IBCR.IBRH[6:0]**, IBF Host and IBF Shadow are swapped (see the figure below).

Double buffer structure Input Buffer

In addition the bits in the IBCM and IBCR registers are also swapped to keep them attached to the respective IBF section (see the figure below).

Swapping of IBCM and IBCR bits

With this write operation bit **IBCR.IBSYS** is set to '1'. The Message Handler then starts to transfer the contents of IBF Shadow to the message buffer in the Message RAM selected by **IBCR.IBRS[6:0]**.

While the Message Handler transfers the data from IBF Shadow to the target message buffer in the Message RAM, the Host may write the next message to IBF Host. After the transfer between IBF Shadow and the Message RAM has completed, bit **IBCR.IBSYS** is set back to '0' and the next transfer to the Message RAM may be started by the Host by writing the respective target message buffer number to **IBCR.IBRH[6:0]**.

If a write access to **IBCR.IBRH[6:0]** occurs while **IBCR.IBSYS** is '1', **IBCR.IBSYH** is set to '1'. After completion of the ongoing data transfer from IBF Shadow to the Message RAM, IBF Host and IBF Shadow are swapped, **IBCR.IBSYH** is reset to '0', **IBCR.IBSYS** remains set to '1', and the next transfer to the Message RAM is started. In addition the message buffer numbers stored under **IBCR.IBRH[6:0]** and **IBCR.IBRS[6:0]** and the command mask flags are also swapped.

Example of a 8/16/32-bit Host access sequence:

Configure / update n-th message buffer via IBF

- Wait until IBCR.IBSYH is reset
- Write data section to WRDSn
- Write header section to WRHS1...3
- Write Command Mask: write IBCM.STXRH, IBCM.LDSH, IBCM.LHSH
- Demand data transfer to target message buffer: write IBCR.IBRH[6:0]

Configure / update (n+1)th message buffer via IBF

- Wait until IBCR.IBSYH is reset
- Write data section to WRDSn
- Write header section to WRHS1...3
- Write Command Mask: write IBCM.STXRH, IBCM.LDSH, IBCM.LHSH
- Demand data transfer to target message buffer: write IBCR.IBRH[6:0]

Note: Any write access to IBF while IBCR.IBSYH is '1' will set error flag EIR.IIBA to '1'. In this case the write access has no effect.

Assignment of IBCM bits

Pos.	Access	Bit	Function
18	r	STXRS	Set Transmission Request Shadow ongoing or finished
17	r	LDSS	Load Data Section Shadow ongoing or finished
16	r	LHSS	Load Header Section Shadow ongoing or finished
2	r/w	STXRH	Set Transmission Request Host
1	r/w	LDSH	Load Data Section Host
0	r/w	LHSH	Load Header Section Host

Assignment of IBCR bits

Pos.	Access	Bit	Function
31	r	IBSYS	IBF Busy Shadow, signals ongoing transfer from IBF Shadow to Message RAM
2216	r	IBRS[6:0]	IBF Request Shadow, number of message buffer currently / lately updated
15	r	IBSYH	IBF Busy Host, transfer request pending for message buffer referenced by IBRH[6:0]
60	r/w	IBRH[6:0]	IBF Request Host, number of message buffer to be updated next

Data Transfer from Message RAM to Output Buffer

To read a message buffer from the Message RAM, the Host has to write to register OBCR to trigger the data transfer as configured in OBCM. After the transfer has completed, the Host can read the transferred data from RDDSn, RDHS1...3, and MBS.

Double buffer structure Output Buffer

OBF Host and OBF Shadow as well as bits OBCM.RHSS, OBCM.RDSS, OBCM.RHSH, OBCM.RDSH and bits OBCR.OBRS[6:0], OBCR.OBRH[6:0] are swapped under control of bits OBCR.VIEW and OBCR.REQ.

Writing bit **OBCR.REQ** to '1' copies bits **OBCM.RHSS**, **OBCM.RDSS** and bits **OBCR.OBRS[6:0]** to an internal storage (see figure "Swapping of OBCM and OBCR bits").

After setting **OBCR.REQ** to '1', **OBCR.OBSYS** is set to '1', and the transfer of the message buffer selected by **OBCR.OBRS[6:0]** from the Message RAM to OBF Shadow is started. After the transfer between the Message RAM and OBF Shadow has completed, the **OBCR.OBSYS** bit is set back to '0'. Bits **OBCR.REQ** and **OBCR.VIEW** can only be set to '1' while **OBCR.OBSYS** is '0'.

Swapping of OBCM and OBCR bits

OBF Host and OBF Shadow are swapped by setting bit **OBCR.VIEW** to '1' while bit **OBCR.OBSYS** is '0' (see figure "Double buffer structure Output Buffer").

In addition bits **OBCR.OBRH[6:0]** and bits **OBCM.RHSH**, **OBCM.RDSH** are swapped with the registers internal storage thus assuring that the message buffer number stored in **OBCR.OBRH[6:0]** and the mask configuration stored in **OBCM.RHSH**, **OBCM.RDSH** matches the transferred data stored in OBF Host (see figure "Swapping of OBCM and OBCR bits").

Now the Host can read the transferred message buffer from OBF Host while the Message Handler may transfer the next message from the Message RAM to OBF Shadow.

Example of an 8/16/32-bit Host access to a single message buffer:

If a single message buffer has to be read out, two separate write accesses to OBCR.REQ and OBCR.VIEW are necessary:

- Wait until **OBCR.OBSYS** is reset
- Write Output Buffer Command Mask OBCM.RHSS, OBCM.RDSS
- Request transfer of message buffer to OBF Shadow by writing OBCR.OBRS[6:0] and OBCR.REQ (in case of and 8-bit Host interface, OBCR.OBRS[6:0] has to be written before OBCR.REQ).
- Wait until OBCR.OBSYS is reset
- Toggle OBF Shadow and OBF Host by writing OBCR.VIEW = '1'
- · Read out transferred message buffer by reading RDDSn, RDHS1...3, and MBS

Example of an 8/16/32-bit Host access sequence:

Request transfer of 1st message buffer to OBF Shadow

- Wait until OBCR.OBSYS is reset
- Write Output Buffer Command Mask OBCM.RHSS, OBCM.RDSS for 1st message buffer
- Request transfer of 1st message buffer to OBF Shadow by writing OBCR.OBRS[6:0] and OBCR.REQ (in case of an 8-bit Host interface, OBCR.OBRS[6:0] has to be written before OBCR.REQ).

Toggle OBF Shadow and OBF Host to read out 1st transferred message buffer and request transfer of 2nd message buffer:

- Wait until OBCR.OBSYS is reset
- Write Output Buffer Command Mask OBCM.RHSS, OBCM.RDSS for 2nd message buffer
- Toggle OBF Shadow and OBF Host and start transfer of 2nd message buffer to OBF Shadow simultaneously by writing OB-CR.OBRS[6:0] of 2nd message buffer, OBCR.REQ, and OBCR.VIEW (in case of and 8-bit Host interface, OBCR.OBRS[6:0] has to be written before OBCR.REQ and OBCR.VIEW).
- Read out 1st transferred message buffer by reading RDDSn, RDHS1...3, and MBS

Demand access to last requested message buffer without request of another message buffer:

- Wait until OBCR.OBSYS is reset
- · Demand access to last transferred message buffer by writing OBCR.VIEW
- Read out last transferred message buffer by reading RDDSn, RDHS1...3, and MBS

Assignment of OBCM bits

Pos.	Access	Bit	Function
17	r	RDSH	Data Section available for Host access
16	r	RHSH	Header Section available for Host access
1	r/w	RDSS	Read Data Section Shadow
0	r/w	RHSS	Read Header Section Shadow

Assignment of OBCR bits

Pos.	Access	Bit	Function
2216	r	OBRH[6:0]	OBF Request Host, number of message buffer available for Host access
15	r	OBSYS	OBF Busy Shadow, signals ongoing transfer from Message RAM to OBF Shadow
9	r/w	REQ	Request Transfer from Message RAM to OBF Shadow
8	r/w	VIEW	View OBF Shadow, swap OBF Shadow and OBF Host
60	r/w	OBRS[6:0]	OBF Request Shadow, number of message buffer for next request

19.11.3. FlexRay Protocol Controller access to Message RAM

The two Transient Buffer RAMs (TBF A,B) are used to buffer the data for transfer between the two FlexRay Protocol Controllers and the Message RAM.

Each Transient Buffer RAM is build up as a double buffer, able to store two complete FlexRay messages. There is always one buffer assigned to the corresponding Protocol Controller while the other one is accessible by the Message Handler.

If e.g. the Message Handler writes the next message to be send to Transient Buffer Tx, the FlexRay Channel Protocol Controller can access Transient Buffer Rx to store the message it is actually receiving. During transmission of the message stored in Transient Buffer Tx, the Message Handler transfers the last received message stored in Transient Buffer Rx to the Message RAM (if it passes acceptance filtering) and updates the respective message buffer.

Data transfers between the Transient Buffer RAMs and the shift registers of the FlexRay Channel Protocol Controllers are done in words of 32 bit. This enables the use of a 32 bit shift register independent of the length of the FlexRay messages.

Access to Transient Buffer RAMs

19.12. Message RAM

To avoid conflicts between Host access to the Message RAM and FlexRay message reception / transmission, the Host cannot directly access the message buffers in the Message RAM. These accesses are handled via the Input and Output Buffers. The Message RAM is able to store up to 128 message buffers depending on the configured payload length.

The Message RAM is organized $2048 \times 33 = 67,584$ bit. Each 32-bit word is protected by a parity bit. To achieve the required flexibility with respect to different numbers of data bytes per FlexRay frame (0...254), the Message RAM has a structure as shown in the figure "Configuration example of message buffers in the Message RAM".

The data partition is allowed to start at Message RAM word number: (MRC.LCB + 1) • 4

Configuration example of message buffers in the Message RAM

Header Partition

- · Stores header sections of the configured message buffers:
- · Supports a maximum of 128 message buffers
- · Each message buffer has a header section of four 32+1 bit words
- · Header 3 of each message buffer holds the 11-bit data pointer to the respective data section in the data partition

Data Partition

Flexible storage of data sections with different length. Some maximum values are:

- 30 message buffers with 254 byte data section each
- Or 56 message buffers with 128 byte data section each
- Or 128 message buffers with 48 byte data section each

Restriction: header partition + data partition may not occupy more than 2048 33-bit words.

19.12.1. Header Partition

The elements used for configuration of a message buffer as well as the actual message buffer status are stored in the header partition of the Message RAM as listed in the table "Header section of a message buffer in the Message RAM". Configuration of the header sections of the message buffers is done via IBF (WRHS1...3). Read access to the header sections is done via OBF (RDHS1...3 + MBS). The data pointer has to be calculated by the programmer to define the starting point of the data section for the respective message buffer in the data partition of the Message RAM. The data pointer should not be modified during runtime. For message buffers belonging to the receive FIFO (re)configuration is possible in DEFAULT_CONFIG or CONFIG state only.

The header section of each message buffer occupies four 33-bit words in the header partition of the Message RAM. The header of message buffer 0 starts with the first word in the Message RAM.

For transmit buffers the Header CRC has to be calculated by the Host.

Payload Length Received **PLR[6:0]**, Receive Cycle Count **RCC[5:0]**, Received on Channel Indicator RCI, Startup Frame Indicator **SFI**, Sync Frame Indicator **SYN**, Null Frame Indicator **NFI**, Payload Preamble Indicator **PPI**, and Reserved Bit **RES** are updated from received valid data frames only.

Header word 3 of each configured message buffer holds the respective Message Buffer Status MBS.

Header section of a message buffer in the Message RAM

Bit Word	32	31	30	29	28	27	26	25	24	23	22	21	20	19	9 18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Ρ			M B I	T X M	P P I T	C F G	C H B	C H A				Сус	cle (Code												Fra	ame	ID				
1	Ρ			Ρ	aylo Re	ad L eceiv	eng ved	th				Ρ	aylo Cor	ad nfig	Leng Jured	th							T F	ັx Bເ ໃx Bເ	uffer: uffer:	Hea Hea	ader ader	CRC CRC	C Co C Re	nfigu ceiv	ured ed		
2	Ρ			R E S	P P I	N F I	S Y N	S F I	R C I				C	Re ycle	eceive e Cou	int											Data	a Poi	inter				
3	Ρ			RESS	P P I S	N F I S	S Y N S	S F I S	R C I S			C	Cycle	e Co	ount s	Statu	IS	F T B	F T A		M L S T	E S B	E S A	T C I B	T C I A	S V B	S V O A	C E O B	C E O A	S E O B	S E O A	V F R B	V F R A
	Ρ																																
	Ρ																																

- Frame Configuration
- Filter Configuration
- Message Buffer Control
- Message RAM Configuration
- Updated from received Data Frame
- Message Buffer Status MBS
- Parity Bit
- unused

Header 1 (word 0)

Write access via WRHS1, read access via RDHS1:

- Frame ID
 Slot counter filtering configuration
- Cycle Code
 Cycle counter filtering configuration
- CHA, CHB
 Channel filtering configuration
- CFG
 - G Message buffer direction configuration: receive / transmit
- PPIT Payload Preamble Indicator Transmit
- TXM Transmit mode configuration: single-shot / continuous
- MBI Message buffer receive / transmit interrupt enable

Header 2 (word 1)

Write access via WRHS2, read access via RDHS2:

- Header CRC
 Transmit Buffer: Configured by the Host (calculated from frame header)
 Receive Buffer: Updated from received frame
- Payload Length Configured- Length of data section (2-byte words) as configured by the Host
- Payload Length Received Length of payload segment (2-byte words)
 - stored from received frame

Header 3 (word 2)

Write access via WRHS3, read access via RDHS3:

• Data Pointer - Pointer to the beginning of the corresponding data section in the data partition

Read access via RDHS3, valid for receive buffers only, updated from received frames:

- Receive Cycle Count Cycle count from received frame
- RCI Received on Channel Indicator
- SFI Startup Frame Indicator
- SYN Sync Frame Indicator
- NFI Null Frame Indicator
- PPI Payload Preamble Indicator
- RES Reserved bit

Message Buffer Status MBS (word 3)

Read access via MBS, updated by the CC at the end of the configured slot.

- VFRA Valid Frame Received on channel A
- VFRB Valid Frame Received on channel B
- SEOA Syntax Error Observed on channel A
- SEOB Syntax Error Observed on channel B
- CEOA Content Error Observed on channel A
- CEOB Content Error Observed on channel B
- SVOA Slot boundary Violation Observed on channel A
- SVOB Slot boundary Violation Observed on channel B
- TCIA
 Transmission Conflict Indication channel A
- TCIB Transmission Conflict Indication channel B
- ESA Empty Slot Channel A
- ESB Empty Slot Channel B
- MLST Message LoST
- FTA Frame Transmitted on Channel A
- FTB Frame Transmitted on Channel B
- · Cycle Count Status Actual cycle count when status was updated
- RCIS Received on Channel Indicator Status
- SFIS Startup Frame Indicator Status
- SYNS Sync Frame Indicator Status
- NFIS Null Frame Indicator Status
- PPIS Payload Preamble Indicator Status
- RESS Reserved bit Status

19.12.2. Data Partition

The data partition of the Message RAM stores the data sections of the message buffers configured for reception / transmission as defined in the header partition. The number of data bytes for each message buffer can vary from 0 to 254. To optimize the data transfer between the shift registers of the two FlexRay Protocol Controllers and the Message RAM as well as between the Host interface and the Message RAM, the physical width of the Message RAM is set to 4 bytes plus one parity bit.

The data partition starts after the last word of the header partition. When configuring the message buffers in the Message RAM the programmer has to assure that the data pointers point to addresses within the data partition. The table "Example for structure of the data partition in the Message RAM" below shows an example how the data sections of the configured message buffers can be stored in the data partition of the Message RAM.

The beginning and the end of a message buffer's data section is determined by the data pointer and the payload length configured in the message buffer's header section, respectively. This enables a flexible usage of the available RAM space for storage of message buffers with different data length.

If the size of the data section is an odd number of 2-byte words, the remaining 16 bits in the last 32-bit word are unused (see the table "Example for structure of the data partition in the Message RAM" below).

Example for structure of the data partition in the Message RAM

Bit Word	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Р				unu	ised							unu	sed							unu	sed							unu	sed			
	Ρ				unu	ised							unu	sed							unu	sed							unu	sed			
	Р			N	IBn	Data	a3					M	Bn [Data	a2					N	IBn	Data	1					M	IBn	Data	a0		
	Р																																
	Ρ		 MBn Data(m)																														
	Р		 MBn Data(m)									MB	n Da	nta(r	m-1)					MB	n Da	ata(n	า-2)					MB	n Da	ata(r	n-3)		
	Р																												•				
	Ρ																				•								•				
	Ρ				•									•							•								•				
	Ρ			N	IB1	Data	13					N	I B1 [Data	a2					N	IB1	Data	1					N	IB1	Data	10		
	Ρ													•															•				
	Р		 MB1 Data(k)									MB	1 Da	ata(k-1)					ME	81 D	ata(ł	(-2)					MB	81 D	ata(I	(-3)		
2046	Р			N	1B0	Data	13					N	B0 [Data	a2					N	IB0	Data	1					N	IB0	Data	10		
2047	Ρ				unu	ised							unu	sed						N	IB0	Data	5					N	IB0	Data	4		

19.12.3. Parity Check

There is a parity checking mechanism implemented in the E-Ray core to assure the integrity of the data stored in the seven RAM blocks. The RAM blocks have a parity generator / checker attached as shown in the figure "Parity generation and check". When data is written to a RAM block, the local parity generator generates the parity bit. The E-Ray core uses an even parity (with an even number of ones in the 32-bit data word a zero parity bit is generated). The parity bit is stored together with the respective data word. The parity is checked each time a data word is read from any of the RAM blocks. The E-Ray core's internal data buses have a width of 32 bits.

If a parity error is detected, the respective error flag is set. The parity error flags **MHDS.PIBF**, **MHDS.POBF**, **MHDS.PMR**, **MHDS.PTBF1**, **MHDS.PTBF2**, and the faulty message buffer indicators MHDS.FMBD, MHDS.MFMB, MHDS.FMB[6:0] are located in the Message Handler Status register. These single error flags control the error interrupt flag **EIR.PERR**.

The figure "Parity generation and check" shows the data paths between the RAM blocks and the parity generators/checkers.

Parity generation and check

Note: Parity generator & checker are not part of the RAM blocks, but of the RAM access logic which is part of the E-Ray core. When a parity error has been detected the following actions will be performed:

In all cases

- The respective parity error flag in register MHDS is set
- The parity error flag EIR.PERR is set and, if enabled, a module interrupt to the Host will be generated.

Additionally in specific cases

- 1) Parity error during data transfer from Input Buffer RAM 1,2 \Rightarrow Message RAM
- a) Transfer of header and data section:
 - MHDS.PIBF bit is set
 - MHDS.FMBD bit is set to indicate that MHDS.FMB[6:0] points to a faulty message buffer
 - MHDS.FMB[6:0] indicates the number of the faulty message buffer
 - · Transmit buffer: Transmission request for the respective message buffer is not set
- b) Transfer of data section only:

Parity error when reading header section of respective message buffer from Message RAM.

- MHDS.PMR bit is set
- · MHDS.FMBD bit is set to indicate that MHDS.FMB[6:0] points to a faulty message buffer
- MHDS.FMB[6:0] indicates the number of the faulty message buffer
- · The data section of the respective message buffer is not updated
- · Transmit buffer: Transmission request for the respective message buffer is not set

2) Parity error during Host reading Input Buffer RAM 1,2

• MHDS.PIBF bit is set

3) Parity error during scan of header sections in Message RAM

- MHDS.PMR bit is set
- · MHDS.FMBD bit is set to indicate that MHDS.FMB[6:0] points to a faulty message buffer
- MHDS.FMB[6:0] indicates the number of the faulty message buffer
- Ignore message buffer (message buffer is skipped)

4) Parity error during data transfer from Message RAM ⇒Transient Buffer RAM 1, 2

- MHDS.PMR bit is set
- · MHDS.FMBD bit is set to indicate that MHDS.FMB[6:0] points to a faulty message buffer
- MHDS.FMB[6:0] indicates the number of the faulty message buffer
- · Frame not transmitted, frames already in transmission are invalidated by setting the frame CRC to zero

5) Parity error during data transfer from Transient Buffer RAM 1, $2 \Rightarrow$ Protocol Controller 1, 2

- MHDS.PTBF1,2 bit is set
- · Frames already in transmission are invalidated by setting the frame CRC to zero
- 6) Parity error during data transfer from Transient Buffer RAM 1, $2 \Rightarrow$ Message RAM
- a) Parity error when reading header section of respective message buffer from Message RAM:
 - MHDS.PMR bit is set
 - · MHDS.FMBD bit is set to indicate that MHDS.FMB[6:0] points to a faulty message buffer
 - MHDS.FMB[6:0] indicates the number of the faulty message buffer
 - The data section of the respective message buffer is not updated
- b) Parity error when reading Transient Buffer RAM 1, 2:
 - MHDS.PTBF1,2 bit is set
 - · MHDS.FMBD bit is set to indicate that MHDS.FMB[6:0] points to a faulty message buffer
 - · MHDS.FMB[6:0] indicates the number of the faulty message buffer

7) Parity error during data transfer from Message RAM ⇒Output Buffer RAM

- MHDS.PMR bit is set
- · MHDS.FMBD bit is set to indicate that MHDS.FMB[6:0] points to a faulty message buffer
- MHDS.FMB[6:0] indicates the number of the faulty message buffer
- 8) Parity error during Host reading Output Buffer RAM 1,2

MHDS.POBF bit is set

9) Parity error during data read of Transient Buffer RAM 1, 2

When a parity error occurs when the Message Handler reads a frame with network management information (PPI = '1') from the Transient Buffer RAM 1, 2 the corresponding network management vector register NMV1...3 is not updated from that frame.

19.13. Module Interrupt

In general, interrupts provide a close link to the protocol timing as they are triggered almost immediately when an error or status change is detected by the CC, a frame is received or transmitted, a configured timer interrupt is activated, or a stop watch event occurred. This enables the Host to react very quickly on specific error conditions, status changes, or timer events. On the other hand too many interrupts can cause the Host to miss deadlines required for the application. Therefore the CC supports enable / disable controls for each individual interrupt source separately.

- An interrupt may be triggered when
- An error was detected
- · A status flag is set
- A timer reaches a preconfigured value
- A message transfer from Input Buffer to Message RAM or from Message RAM to Output Buffer has completed
- A stop watch event occurred

Tracking status and generating interrupts when a status change or an error occurs are two independent tasks. Regardless of whether an interrupt is enabled or not, the corresponding status is tracked and indicated by the CC. The Host has access to the actual status and error information by reading registers EIR and SIR.

Bit Function Register PEMC Protocol Error Mode Changed CNA Command Not Valid SFBM Sync Frames Below Minimum SFO Sync Frame Overflow CCF **Clock Correction Failure** CCL CHI Command Locked PERR Parity Error RFO Receive FIFO Overrun Empty FIFO Access EFA EIR IIBA Illegal Input Buffer Access IOBA Illegal Output Buffer Access MHF Message Handler Constraints Flag EDA Frror Detected on Channel A LTVA Latest Transmit Violation Channel A TABA Transmission Across Boundary Channel A FDB Frror Detected on Channel B LTVB Latest Transmit Violation Channel B TABB Transmission Across Boundary Channel B

Module interrupt flags and interrupt line enable

Register	Bit	Function
	WST	Wakeup Status
	CAS	Collision Avoidance Symbol
	CYCS	Cycle Start Interrupt
	TXI	Transmit Interrupt
	RXI	Receive Interrupt
	RFNE	Receive FIFO not Empty
	RFCL	Receive FIFO Critical Level
	NMVC	Network Management Vector Changed
	TIO	Timer Interrupt 0
SIR	TI1	Timer Interrupt 1
OIX	TIBC	Transfer Input Buffer Completed
	TOBC	Transfer Output Buffer Completed
	SWE	Stop Watch Event
	SUCS	Startup Completed Successfully
	MBSI	Message Buffer Status Interrupt
	SDS	Start of Dynamic Segment
	WUPA	Wakeup Pattern Channel A
	MTSA	MTS Received on Channel A
	WUPB	Wakeup Pattern Channel B
	MTSB	MTS Received on Channel B
ШЕ	EINT0	Enable Interrupt Line 0
ILE	EINT1	Enable Interrupt Line 1

The interrupt lines to the Host, eray_int0 and eray_int1, are controlled by the enabled interrupts. In addition each of the two interrupt lines can be enabled/disabled separately by programming bit **ILE.EINT0** and **ILE.EINT1**.

The two timer interrupts generated by interrupt timer 0 and 1 are available on pins eray_tint0 and eray_tint1. They can be configured via registers T0C and T1C.

A stop watch event may be triggered via input pin eray_stpwt.

The status of the data transfer between IBF/OBF and the Message RAM is signalled on pins **eray_ibusy** and **eray_obusy**. When a transfer has completed bit **SIR.TIBC** or **SIR.TOBC** is set.

20. Appendix

20.1. Register Bit Overview

TEST1		Test Re	gister 1														
0x0010		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	CERB3	CERB2	CERB1	CERB0	CERA3	CERA2	CERA1	CERA0	0	0	TYEND	TYENA	TVD	TVA	RXB	RXA
	W											TXENB	IXENA	IXB	IXA		
p33		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	0	AOB	AOA	0	0	TMCI	TMCO	0	0	FLDE	WDTEN
	W											IMCI	TMC0			ELBE	WRIEN
TEST2		Test Re	gister 2														
0x0014		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	W																
p37		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	RDPB	WRPB	0	0	0	0	0	0	0	SSEL 2	SSEL 1	SSEL 0	0	RS2	RS1	RSO
	W		WIG D								55EE2	DDEET	DDLLU		102	Roi	100
LCK		Lock R	egister														
0x001C		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	W																
p39		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	W	TMK7	TMK6	TMK5	TMK4	TMK3	TMK2	TMK1	TMK0	CLK7	CLK6	CLK5	CLK4	CLK3	CLK2	CLK1	CLK0
EIR		Error I	nterrupt F	Register													
0x0020		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	TABB	LTVB	EDB	0	0	0	0	0	TABA	LTVA	EDA
	W																
p40		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	MHF	IOBA	IIBA	EFA	RFO	PERR	CCL	CCF	SFO	SFBM	CNA	PEMC
	W																
SIR		Status I	nterrupt I	Register	•		• (• •	10	10		4.6
0x0024		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	MTSB	WUPB	0	0	0	0	0	0	MTSA	WUPA
12	w	16	14	12	12	11	10		0	7			4	2	2	1	
p43	D	15	14	13	12	11	10	9	8	/	6	5	4	3	2	1	0
	K	SDS	MBSI	SUCS	SWE	TOBC	TIBC	TI1	TIO	NMVC	RFCL	RFNE	RXI	TXI	CYCS	CAS	WST
FILC	w	F I.														L	
0::0028		21		20	20	27	26	25	24	22	22	21	20	10	10	17	16
0x0028	P	0	0	29	20	27 0	20	23	24	23 0	- 22	21	20	19	10	1/	10
	к w	U	0	0	0	0	TABBL	LTVBL	EDBL	0	0	0	0	U	TABAL	LTVAL	EDAL
n46	vv	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
pro	R	0	0	0	0	11	10	2	0	/	3	5	+	5	2	1	5
1	n	0	0	0	U	MILLI	TODAT	TIDAT	DD41	DEOL	DEDDI	COLL	COPI	GEOI	OFD) (I	COLLI	DEMOI
	w					MHFL	IOBAL	IIBAL	EFAL	RFOL	PEKKL	CCLL	CCFL	SFUL	SFBML	CNAL	PEMCL

SILS		Status I	nterrupt I	Line Select													
0x002C		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	MTCDI	WIDDI	0	0	0	0	0	0	MTCAL	WIIDAI
	W							MISBL	WUPBL							MISAL	WUPAL
p47		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R W	SDSL	MBSIL	SUCSL	SWEL	TOBCL	TIBCL	TIIL	TIOL	NMVCL	RFCLL	RFNEL	RXIL	TXIL	CYCSL	CASL	WSTL
EIES EIER		Error I Error I	nterrupt E nterrupt E	Enable Set Enable Res	et												
0x0030 0x0034		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0.00001	R	0	0	0	0	0	20	25	21	0	0	0	0	0	10	17	10
	W	•		Ŭ	Ŭ		TABBE	LTVBE	EDBE				Ŭ	Ŭ	TABAE	LTVAE	EDAE
p48		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0) (UEE	LODIE		FRAF	DECE	DEDDE	COL F	COPE	GEOE		OULE	
	W					MHFE	IOBAE	IIBAE	EFAE	RFOE	PERRE	CCLE	CCFE	SFOE	SFBME	CNAE	PEMCE
SIES SIER		Status I Status I	nterrupt H nterrupt H	Enable Set Enable Res	et												
0x0038 0x003C		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0.10050	R	0	0	0	0	0	0	20	2.	0	0	0	0	0	0	17	10
	W	•		-	-	-	-	MTSBE	WUPBE						-	MTSAE	WUPAE
p49		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R W	SDSE	MBSIE	SUCSE	SWEE	TOBCE	TIBCE	TI1E	TI0E	NMVCE	RFCLE	RFNEE	RXIE	TXIE	CYCSE	CASE	WSTE
ILE		Interru	pt Line Er	nable					1	1			1				1
0x0040		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	W																
p50		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EDIT1	EDITO
	W															EINTI	EINTO
TOC		Timer () Configur	ation													
0x0044		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R W	0	0	T0MO 13	T0MO 12	T0MO 11	T0MO 10	T0MO9	T0MO8	T0MO7	T0MO6	T0MO5	T0MO4	Т0МОЗ	T0MO2	T0MO1	Т0МО0
p51		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	TRACK	TAGGE	TACCI	TAGGA	TAGG	TAGGI	TAGGA	0	0	0	0	0	0	700.40	TODG
	W		10006	10005	10004	10003	10002	100001	10000							TOMS	TORC
T1C		Timer 1	Configur	ation													
0x0048		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R W	0	0	T1MC 13	T1MC 12	T1MC 11	T1MC 10	T1MC9	T1MC8	T1MC7	T1MC6	T1MC5	T1MC4	T1MC3	T1MC2	T1MC1	T1MC0
p52		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
P.2.2	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0		~
	W				· · ·		· · ·								· · ·	T1MS	T1RC

0x004C 31 30 29 28 27 26 25 24 23 22 21 20 19 18 p53 R 0 0 SMTV SMTV SMTV SMTV SMTV SMTV SMTV2						
R 0 0 SMTV SMTV SMTV SMTV SMTV9 SMTV8 SMTV7 SMTV6 SMTV5 SMTV4 SMTV3 SMTV2 SMTV2 SMTV2 p53 W Image: Constraint of the state of						
p53 W IS I4 I3 I2 I1 I0 9 8 7 6 5 4 3 2 R 0 0 SCCV5 SCCV4 SCCV3 SCCV2 SCCV0 0 EINT1 EINT0 EETP SSWT EDGE SV STPW2 Stop Watch Register 2						
p53 15 14 13 12 11 10 9 8 7 6 5 4 3 2 R 0 0 SCCV5 SCCV4 SCCV3 SCCV2 SCCV0 0 EINT1 EINT0 EETP SSWT EDGE SV STPW2 Stop Watch Register 2 Or 0050 21 20 27 26 21 21 20 28 27 24 23 21 20 28 21 21 20 28 21 20 28 21 20 28 21 20 28 21 20 28 21 20 28 21 20 28 21 20 28 21 20 <th 2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"<="" colspan="6" th=""></th>						
R 0 0 SCCV5 SCCV4 SCCV3 SCCV1 SCCV0 0 EINT1 EINT0 EETP SSWT EDGE SV W Image: Stop Watch Register 2 Image:						
W STPW2 Stop Watch Register 2 0x:0050 21 20 28 27 26 25 24 22 21 20 10 18						
STPW2 Stop Watch Register 2 0x:0050 21 20 28 27 26 25 24 22 21 20 10 18						
$0_{10}050$ 21 20 20 20 27 26 25 24 22 22 21 20 10 10						
0x0030 31 30 27 28 27 20 23 24 23 22 21 20 19 18						
R 0 0 0 0 0 SSCVB1 SSCVB9 SSCVB8 SSCVB7 SSCVB6 SSCVB4 SSCVB3 SSCVB3 SSCVB2 SS						
p54 15 14 13 12 11 10 9 8 7 6 5 4 3 2						
R 0 0 0 0 0 SSCVAI SSCVA9 SSCVA8 SSCVA7 SSCVA6 SSCVA5 SSCVA4 SSCVA3 SSCVA2 SS						
W N N N N N N N N N N N N N N N N N N N						
SUCC1 SUC Configuration Register 1						
0x0080 31 30 29 28 27 26 25 24 23 22 21 20 19 18						
R 0 0 0 0 0 CCHB* CCHA* MTSB* MTSA* HCSE* TSM* WUCS* PTA4* PTA3* PTA2* PT						
p55 15 14 13 12 11 10 9 8 7 6 5 4 3 2						
p55 <u>15 14 13 12 11 10 9 8 7 6 5 4 3 2</u> R <u>R R R R R R R R R R R R R R R R R R </u>						
p55 <u>R</u> <u>CSA4*</u> <u>CSA3*</u> <u>CSA2*</u> <u>CSA1*</u> <u>CSA0*</u> <u>0</u> <u>TXSY*</u> <u>TXST*</u> <u>PBSY</u> <u>0</u> <u>0</u> <u>0</u> <u>CMD3</u> <u>CMD2</u> <u>CMD2</u> <u>CMD3</u> <u>CMD3</u> <u>CMD2</u> <u>CMD3</u> <u>CMD2</u> <u>CMD3</u> <u>CMD3</u> <u>CMD3</u> <u>CMD2</u> <u>CMD3</u>						
p55 15 14 13 12 11 10 9 8 7 6 5 4 3 2 R W CSA4* CSA3* CSA2* CSA1* CSA0* 0 TXSY* TXST* PBSY 0 0 0 CMD3 CMD2 C SUCC2 SUC Configuration Register 2 C C C C C C C						
p55 15 14 13 12 11 10 9 8 7 6 5 4 3 2 R W CSA4* CSA3* CSA2* CSA1* CSA0* 0 TXSY* PBSY 0 0 0 CMD3 CMD2 C SUCC2 SUC Configuration Register 2 2 26 25 24 23 22 21 20 19 18						
p55 15 14 13 12 11 10 9 8 7 6 5 4 3 2 R W CSA4* CSA3* CSA2* CSA1* CSA0* 0 TXSY* TXST* PBSY 0 0 0 CMD3 CMD2 C SUCC2 SUC Configuration Register 2 SUC Configuration Register 2 Z 24 23 22 21 20 19 18 Qx0084 31 30 29 28 27 26 25 24 23 22 21 20 19 18 W Q 0 0 0 0 0 0 0 111 11						
p55 15 14 13 12 11 10 9 8 7 6 5 4 3 2 R W CSA4* CSA3* CSA2* CSA1* CSA0* 0 TXSY* TXST* PBSY 0 0 0 CMD3 CMD2 CMD2 C SUCC2 SUC configuration Register 2 Configuration Register 2 CSA1* 26 25 24 23 22 21 20 19 18 0x0084 31 30 29 28 27 26 25 24 23 22 21 20 19 18 W M 0 0 0 0 0 0 0 0 1719* LT18* LT19* p59 15 14 13 12 11 10 9 8 7 6 5 4 3 2						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
p55 15 14 13 12 11 10 9 8 7 6 5 4 3 2 R W CSA4* CSA3* CSA2* CSA1* CSA0* 0 TXSY* TXST* PBSY 0 0 0 CMD3 CMD2 C SUCC2 SUC Configuration Register 2 CSA0* 0 TXSY* TXST* PBSY 0 0 0 CMD3 CMD2 C 959 R W 0 1720* LT18* LT18*						
p55 15 14 13 12 11 10 9 8 7 6 5 4 3 2 R W CSA4* CSA3* CSA2* CSA1* CSA0* 0 TXSY* TXST* PBSY 0 0 0 CMD3 CMD2 C SUCC2 SUC Configuration Register 2 Configuration Register 3 Succos Succos Succos Succos Succos Configuration Register 3 Configuration Register 3 Configuration Register 3 Configuration Register 3						
p55 15 14 13 12 11 10 9 8 7 6 5 4 3 2 R W CSA4* CSA3* CSA2* CSA1* CSA0* 0 TXSY* TXST* PBSY 0 0 0 CMD3 CMD2 C SUCC2 SUC Configuration Register 2 CSA1* CSA0* 0 TXSY* TXST* PBSY 0 0 0 CMD3 CMD2 C SUCC2 SUC Configuration Register 2 CSA1* CSA0* 0 TXSY* TXST* PBSY 0 0 0 CMD3 CMD2 C 0x0084 31 30 29 28 27 26 25 24 23 22 21 20 19 18 W I I I I I I I 0 0 0 0 0 111* I I I I I I I I I I I I I I I						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
p55 15 14 13 12 11 10 9 8 7 6 5 4 3 2 R CSA4* CSA3* CSA2* CSA1* CSA0* 0 TXSY* TXST* PBSY 0<						
p55 15 14 13 12 11 10 9 8 7 6 5 4 3 2 R CSA4* CSA3* CSA2* CSA1* CSA0* 0 TXSY* TXST* PBSY 0 0 0 CMD3 CMD2 C SUCC2 SUC configuration Register 2 CSA1* CSA0* 0 TXSY* TXST* PBSY 0 0 0 CMD3 CMD2 C SUCC2 SUC configuration Register 2 C 2 2 2 2 10 9 8 7 6 5 4 3 2 0x0084 31 30 29 28 27 26 25 24 23 22 21 20 19 18 p59 R 0 0 0 0 0 0 110 9 8 7 6 5 4 3 2 <tr< th=""></tr<>						
p55 15 14 13 12 11 10 9 8 7 6 5 4 3 2 R CSA4* CSA3* CSA2* CSA1* CSA0* CSA0* 0 TXSY* TXST* PBSY 0 0 0 CMD3 CMD2 CMD3 CMD2 C SUCC2 SUC-onfiguration Register - - - - - - - - - - CMD3 CMD2 C 0x0084 31 30 29 28 27 26 25 24 23 22 21 20 19 18 0x0084 31 30 29 28 27 26 25 24 23 22 21 20 19 18 p59 15 14 13 12 11 10 9 8 7 6 5 4 3 2						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						

PRTC1		PRT Co	onfiguratio	on Registe	r 1												
0x0090		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R W	RWP5*	RWP4*	RWP3*	RWP2*	RWP1*	RWP0*	0	RXW8*	RXW7*	RXW6*	RXW5*	RXW4*	RXW3*	RXW2*	RXW1*	RXW0*
p62		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R W	BRP1*	BRP0*	SPP1*	SPP0*	0	CASM6	CASM5*	CASM4*	CASM3*	CASM2*	CASM1*	CASM0*	TSST3*	TSST2*	TSST1*	TSST0*
PRTC2		PRT Co	onfiguratio	on Registe	r 2		1	1		1		1	1	1		1	
0x0094		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	TXL5*	TXL4*	TXL3*	TXL2*	TXL1*	TXL0*	TXI7*	TXI6*	TXI5*	TXI4*	TXI3*	TXI2*	TXI1*	TXI0*
	vv	15	14	12	12	11	10	0	0	7	6	5	4	2	2	1	0
p03	R	0	0	DVL 5*	12 DVI 4*	DVI 2*	DVI 2*	7 DVI 1*	o DVI 0*	0	0	J DVIC*	4 DVI4*	J DVI2*	L DVI2*	I DVI1*	DVI0*
	W			KAL3.	KAL4	KAL5.	KAL2	KALI.	KAL0.			KAI3'	KA14 ⁻	KAI5.	KAI2.	KAII	KAI0.
MHDC		MHD C	Configurat	ion Regist	er												
0x0098		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	SLT12*	SLT11*	SLT10*	SLT9*	SLT8*	SLT7*	SLT6*	SLT5*	SLT4*	SLT3*	SLT2*	SLT1*	SLT0*
	W	1															
p64		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R W	0	0	0	0	0	0	0	0	0	SFDL6*	SFDL5*	SFDL4*	SFDL3*	SFDL2*	SFDL1*	SFDL0*
GTUC1		GTU C	onfigurati	on Registe	er 1	1	1	1		1				1		1	
0x00A0		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	0	0	0	0	0	0				
	W	-	-	-	-	-	-	-	-	-	-	-	-	UT19*	UT18*	UT17*	UT16*
p65		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R W	UT15*	UT14*	UT13*	UT12*	UT11*	UT10*	UT9*	UT8*	UT7*	UT6*	UT5*	UT4*	UT3*	UT2*	UT1*	UT0*
GTUC2		GTU C	onfigurati	on Registe	er 2					1		1	1				
0x00A4		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	0	0	0	0	0	0				
	W						-	-						SNM3*	SNM2*	SNM1*	SNM0*
p65		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R W	0	0	MPC13*	MPC12*	MPC11*	MPC10*	MPC9*	MPC8*	MPC7*	MPC6*	MPC5*	MPC4*	MPC3*	MPC2*	MPC1*	MPC0*
CTUC2	vv	CTUC			2												
GIUCS		GIUC		on Registe	er 3	27	26	25	24	22	22	21	20	10	10	17	16
0x00A8	n	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R W	0	MIOB6*	MIOB5*	MIOB4*	MIOB3*	MIOB2*	MIOB1*	MIOB0*	0	MIOA6*	MIOA5*	MIOA4*	MIOA3*	MIOA2*	MIOA1*	MIOA0*
p66		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

61004		GIUCa	miguratio	in Register													
0x00AC		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R W	0	0	OCS13*	OCS12*	OCS11*	OCS10*	OCS9*	OCS8*	OCS7*	OCS6*	OCS5*	OCS4*	OCS3*	OCS2*	OCS1*	OCS0*
p67		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R W	0	0	NIT13*	NIT12*	NIT11*	NIT10*	NIT9*	NIT8*	NIT7*	NIT6*	NIT5*	NIT4*	NIT3*	NIT2*	NIT1*	NIT0*
GTUC5		GTUC	nfiguratio	on Register	r 5												
0x00B0		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R W	DEC7*	DEC6*	DEC5*	DEC4*	DEC3*	DEC2*	DEC1*	DEC0*	0	0	0	CDD4*	CDD3*	CDD2*	CDD1*	CDD0*
n68		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
P	R W	DCB7*	DCB6*	DCB5*	DCB4*	DCB3*	DCB2*	DCB1*	DCB0*	DCA7*	DCA6*	DCA5*	DCA4*	DCA3*	DCA2*	DCA1*	DCA0*
GTUC6		GTUC	nfiguratio	on Register	r 6												
0x00B4		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	MOD	MOD9*	MOD8*	MOD7*	MOD6*	MOD5*	MOD4*	MOD3*	MOD2*	MOD1*	MOD0*
	W						10.										
p68		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R W	0	0	0	0	0	ASR10*	ASR9*	ASR8*	ASR7*	ASR6*	ASR5*	ASR4*	ASR3*	ASR2*	ASR1*	ASR0*
GTUC7		GTU Co	onfiguratio	on Register	r 7												
0x00B8		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	NSS9*	NSS8*	NSS7*	NSS6*	NSS5*	NSS4*	NSS3*	NSS2*	NSS1*	NSS0*
	W																
p69		15	14							_		-					
	R	- 1	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		0	0	13 0	0	11 0	10 0	9 SSL9*	8 SSL8*	7 SSL7*	6 SSL6*	5 SSL5*	4 SSL4*	3 SSL3*	2 SSL2*	1 SSL1*	0 SSL0*
GENTICA	w	0	0	13 0	0	0	10 0	9 SSL9*	8 SSL8*	7 SSL7*	6 SSL6*	5 SSL5*	4 SSL4*	3 SSL3*	2 SSL2*	1 SSL1*	0 SSL0*
GTUC8	W	0 GTU Co	0 onfiguratio	13 0 on Register	12 0 r 8	0	10 0	9 SSL9*	8 SSL8*	7 SSL7*	6 SSL6*	5 SSL5*	4 SSL4*	3 SSL3*	2 SSL2*	1 SSL1*	0 SSL0*
GTUC8 0x00BC	W	0 GTU Co 31	0 onfiguration 30	13 0 n Register 29	12 0 r 8 28	11 0 27	10 0 26	9 SSL9* 25	8 SSL8* 24	7 SSL7* 23	6 SSL6* 22	5 SSL5* 21	4 SSL4* 20	3 SSL3* 19	2 SSL2* 18	1 SSL1* 17	0 SSL0* 16
GTUC8 0x00BC	W R W	0 GTU Co 31 0	0 nfiguratic 30 0	13 0 0 Register 29 0	12 0 r 8 28 NMS 12*	11 0 27 NMS 11*	10 0 26 NMS 10*	9 SSL9* 25 NMS9*	8 SSL8* 24 NMS8*	7 SSL7* 23 NMS7*	6 SSL6* 22 NMS6*	5 SSL5* 21 NMS5*	4 SSL4* 20 NMS4*	3 SSL3* 19 NMS3*	2 SSL2* 18 NMS2*	1 SSL1* 17 NMS1*	0 SSL0* 16 NMS0*
GTUC8 0x00BC p69	W R W	0 GTU Co 31 0 15	0 onfiguratic 30 0 14	13 0 on Registe 29 0 13	12 0 r 8 28 NMS 12* 12	11 0 27 NMS 11* 11	10 0 26 NMS 10* 10	9 SSL9* 25 NMS9* 9	8 SSL8* 24 NMS8* 8	7 SSL7* 23 NMS7* 7	6 SSL6* 22 NMS6* 6	5 SSL5* 21 NMS5* 5	4 SSL4* 20 NMS4* 4	3 SSL3* 19 NMS3* 3	2 SSL2* 18 NMS2* 2	1 SSL1* 17 NMS1* 1	0 SSL0* 16 NMS0* 0
GTUC8 0x00BC p69	W R R	0 GTU Co 31 0 15 0	0 0 0 0 0 14 0	13 0 on Register 29 0 13 0	12 0 r 8 28 NMS 12* 12 0	11 0 27 NMS 11* 11 0	10 0 26 NMS 10* 10 0	9 SSL9* 25 NMS9* 9 0	8 SSL8* 24 NMS8* 8 0	7 SSL7* 23 NMS7* 7 0	6 SSL6* 22 NMS6* 6 0	5 SSL5* 21 NMS5* 5	4 SSL4* 20 NMS4* 4	3 SSL3* 19 NMS3* 3	2 SSL2* 18 NMS2* 2	1 SSL1* 17 NMS1* 1	0 SSL0* 16 NMS0* 0
GTUC8 0x00BC p69	W R W W	0 GTU Cc 31 0 15 0	0 0 0 0 0 14 0 14	13 0 m Register 29 0 13 0	12 0 r 8 28 NMS 12* 12 0	11 0 27 NMS 11* 11 0	10 0 26 NMS 10* 10 0	9 SSL9* 25 NMS9* 9 0	8 SSL8* 24 NMS8* 8 0	7 SSL7* 23 NMS7* 7 0	6 SSL6* 22 NMS6* 6 0	5 SSL5* 21 NMS5* 5 MSL5*	4 SSL4* 20 NMS4* 4 MSL4*	3 SSL3* 19 NMS3* 3 MSL3*	2 SSL2* 18 NMS2* 2 MSL2*	1 SSL1* 17 NMS1* 1 MSL1*	0 SSL0* 16 NMS0* 0 MSL0*
GTUC8 0x00BC p69 GTUC9	W R W W	0 GTU Co 31 0 15 0 GTU Co	0 nfiguratio 30 0 14 0 nfiguratio	13 0 n Register 29 0 13 0 n Register	12 0 r 8 28 NMS 12* 12 0	11 0 27 NMS 11* 11 0	10 0 26 NMS 10* 10 0	9 SSL9* 25 NMS9* 9 0	8 SSL8* 24 NMS8* 8 0	7 SSL7* 23 NMS7* 7 0	6 SSL6* 22 NMS6* 6 0	5 SSL5* 21 NMS5* 5 MSL5*	4 SSL4* 20 NMS4* 4 MSL4*	3 SSL3* 19 NMS3* 3 MSL3*	2 SSL2* 18 NMS2* 2 MSL2*	1 SSL1* 17 NMS1* 1 MSL1*	0 SSL0* 16 NMS0* 0 MSL0*
GTUC8 0x00BC p69 GTUC9 0x00C0	W R W W	0 GTU Co 31 0 15 0 GTU Co 31	0 onfiguratic 30 0 14 0 nfiguratic 30	13 0 n Register 29 0 13 0 n Register 29	12 0 r 8 28 NMS 12* 12 0 0 28	11 0 27 NMS 11* 11 0 27	10 0 26 NMS 10* 10 0 26	9 SSL9* 25 NMS9* 9 0 0	8 SSL8* 24 NMS8* 8 0 24	7 SSL7* 23 NMS7* 7 0 23	6 SSL6* 22 NMS6* 6 0 22	5 SSL5* 21 NMS5* 5 MSL5* 21	4 SSL4* 20 NMS4* 4 MSL4* 20	3 SSL3* 19 NMS3* 3 MSL3* 19	2 SSL2* 18 NMS2* 2 MSL2* 18	1 SSL1* 17 NMS1* 1 MSL1* 17	0 SSL0* 16 NMS0* 0 MSL0* 16
GTUC8 0x00BC p69 GTUC9 0x00C0	W R W R W	0 GTU Co 31 0 15 0 GTU Co 31 0	0 mfiguratic 30 0 14 0 mfiguratic 30 0 0	13 0 29 0 13 0 13 0 0 0 0 8 8 9 8 9 0	12 0 r 8 28 NMS 12* 12 0 0 r 9 28 0	11 0 27 NMS 11* 11 0 27 0	10 0 26 NMS 10* 10 0 26 0	9 SSL9* 25 NMS9* 9 0 25 25 0	8 SSL8* 24 NMS8* 8 0 24 24 0	7 SSL7* 23 NMS7* 7 0 23 23 0	6 SSL6* 22 NMS6* 6 0 22 22 0	5 SSL5* 21 NMS5* 5 MSL5* 21 0	4 SSL4* 20 NMS4* 4 MSL4* 20 0	3 SSL3* 19 NMS3* 3 MSL3* 19 0	2 SSL2* 18 NMS2* 2 MSL2* 18 0	1 SSL1* 17 NMS1* 1 MSL1* 17 DSI1*	0 SSL0* 16 NMS0* 0 MSL0* 16 DSI0*
GTUC8 0x00BC p69 GTUC9 0x00C0	W R W W R W	0 GTU Co 31 0 15 0 GTU Co 31 0	0 nfiguratic 30 0 14 0 nfiguratic 30 0 14	13 0 29 0 13 0 13 0 0 13 0 0 29 0	12 0 x 8 28 NMS 12* 12 0 28 0 28 0	11 0 27 NMS 11* 11 0 27 0	10 0 26 NMS 10* 10 0 26 0	9 SSL9* 25 NMS9* 9 0 25 0	8 SSL8* 24 NMS8* 8 0 24 24 0	7 SSL7* 23 NMS7* 7 0 23 0 23 0	6 SSL6* 22 NMS6* 6 0 22 0	5 SSL5* 21 NMS5* 5 MSL5* 21 0	4 SSL4* 20 NMS4* 4 MSL4* 20 0	3 SSL3* 19 NMS3* 3 MSL3* 19 0	2 SSL2* 18 NMS2* 2 MSL2* 18 0	1 SSL1* 17 NMS1* 1 MSL1* 17 DS11*	0 SSL0* 16 NMS0* 0 MSL0* 16 DS10*
GTUC8 0x00BC p69 GTUC9 0x00C0 p70	W R W W R W	0 GTU Co 31 0 15 0 GTU Co 31 0 15 0	0 nfiguratio 30 0 14 0 nfiguratio 30 0 14 0 14 0 14	13 0 n Register 29 0 13 0 n Register 29 0 13 0 13	12 0 r 8 28 NMS 12* 12 0 28 0 28 0	11 0 27 NMS 11* 11 0 27 0 27 0	10 0 26 NMS 10* 10 0 26 0 26 0	9 SSL9* 25 NMS9* 9 0 0 25 0 9 9	8 SSL8* 24 NMS8* 8 0 24 0 24 0	7 SSL7* 23 NMS7* 7 0 23 0 23 0 7	6 SSL6* 22 NMS6* 6 0 22 0 22 0	5 SSL5* 21 NMS5* 5 MSL5* 21 0 0	4 SSL4* 20 NMS4* 4 MSL4* 20 0 0	3 SSL3* 19 NMS3* 3 MSL3* 19 0 0 3	2 SSL2* 18 NMS2* 2 MSL2* 18 0 2	1 SSL1* 17 NMS1* 1 MSL1* 17 DSI1* 1	0 SSL0* 16 NMS0* 0 MSL0* 16 DS10*

GTUC10		GTU C	onfigurati	ion Registe	er 10												
0x00C4		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R W	0	0	0	0	0	MRC 10*	MRC9*	MRC8*	MRC7*	MRC6*	MRC5*	MRC4*	MRC3*	MRC2*	MRC1*	MRC0*
p70	**	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
P/0	R	0	0	15	12		10	,	Ū	,		5		5	-		Ŭ
	W	0	0	13*	MOC 12*	MOC 11*	10*	MOC9*	MOC8*	MOC7*	MOC6*	MOC5*	MOC4*	MOC3*	MOC2*	MOC1*	MOC0*
GTUC11		GTU C	onfigurati	on Registe	er 11												
0x00C8		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	FRC2*	FRC1*	FRC0*	0	0	0	0	0	FOC2*	FOC1*	FOC0*
	W						LICE	LICT	LICO						LOCZ	LOCI	LOCO
p71		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	0	EPCC1	FRCCO	0	0	0	0	0	0	FOCC1	FOCCO
	W							LICCI	LICCO							LOCCI	LOCCO
CCSV		CC Stat	tus Vector														
0x0100		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	PSL5	PSL4	PSL3	PSL2	PSL1	PSL0	RCA4	RCA3	RCA2	RCA1	RCA0	WSV2	WSV1	WSV0
	W																
p72		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	CSI	CSAI	CSNI	0	0	SLM1	SLM0	HRQ	FSI	POCS5	POCS4	POCS3	POCS2	POCS1	POCS0
	W																
CCEV		CC Err	or Vector														
0x0104		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	W																
p75		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	PTAC4	PTAC3	PTAC2	PTAC1	PTAC0	ERRM1	ERRM0	0	0	CCFC3	CCFC2	CCFC1	CCFC0
	W																
SCV		Slot Co	unter Valu	ue													
0x0110		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	SCCB10	SCCB9	SCCB8	SCCB7	SCCB6	SCCB5	SCCB4	SCCB3	SCCB2	SCCB1	SCCB0
	W																
p76		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	SCCA10	SCCA9	SCCA8	SCCA7	SCCA6	SCCA5	SCCA4	SCCA3	SCCA2	SCCA1	SCCA0
	W																
MTCCV		Macrot	ick and C	ycle Coun	ter Value												
0x0114		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	0	0	0	0	CCV5	CCV4	CCV3	CCV2	CCV1	CCV0
	W																
p76		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	MTV13	MTV12	MTV11	MTV10	MTV9	MTV8	MTV7	MTV6	MTV5	MTV4	MTV3	MTV2	MTV1	MTV0
	W																

RCV		Rate Co	orrection	Value													
0x0118		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	W																
p77		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	RCV11	RCV10	RCV9	RCV8	RCV7	RCV6	RCV5	RCV4	RCV3	RCV2	RCV1	RCV0
	W																
OCV		Offset (Correction	Value													
0x011C		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	0	0	0	0	0	0	0	OCV18	OCV17	OCV16
	W																
p77		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	OCV15	OCV14	OCV13	OCV12	OCV11	OCV10	OCV9	OCV8	OCV7	OCV6	OCV5	OCV4	OCV3	OCV2	OCV1	OCV0
	W																
SFS		Sync Fr	ame Statu	15													
0x0120		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	0	0	0	0	0	0	RCLR	MRCS	OCLR	MOCS
	W																
p78		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	VSBO3	VSBO2	VSBO1	VSBO0	VSBE3	VSBE2	VSBE1	VSBE0	VSAO3	VSAO2	VSA01	VSA00	VSAE3	VSAE2	VSAE1	VSAE0
	W																
SWNIT		Symbol	Window	and NIT S	tatus												
0x0124		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	W																
p79		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	SBNB	SENB	SBNA	SENA	MTSB	MTSA	TCSB	SBSB	SESB	TCSA	SBSA	SESA
	W																
ACS		Aggreg	ated Chan	nel Status													
0x0128		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	W																
p81		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	CDVD	CID	CEDD	GEDD	VEDD	0	0	0	CDUA	CI.	CEDA	CED 4	VEDA
	W				SBAR	CIB	CEDB	SEDB	VFKB				SBVA	CIA	CEDA	SEDA	VFRA
ESIDn		Even Sy	nc ID [1	.15]													
0x0130 to)	_															
0x0168		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	W																
p83		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	RXEB	RXEA	0	0	0	0	EID9	EID8	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
	W																

MB91460X	Series
----------	--------

OSIDn		Odd Sy	nc ID [1	.15]													
0x0170 to)	21	20	20	20	25	24	25	24	22	22		20	10	10	15	16
0x01A8	р	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ĸ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
n94	vv	15	14	12	12	11	10	0	°	7	6	5	4	2	2	1	0
po4	D	PYOP	PYOA	0	12	0	10	<i>9</i>	0108	01D7		0105	4	01D2	01D2		
	w	KAOB	KAOA	0	0	0	0	01D9	OID8	OID/	OID0	OID5	01D4	OID3	OID2	OIDI	OID0
NMVn		Networ	k Manage	ment Vect	or [1 3]	1			1	1		1			1		
0x01B0 to)	1.001101			01 [10]												
0x01B8		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	NM31	NM30	NM29	NM28	NM27	NM26	NM25	NM24	NM23	NM22	NM21	NM20	NM19	NM18	NM17	NM16
	W																
p85		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	NM15	NM14	NM13	NM12	NM11	NM10	NM9	NM8	NM7	NM6	NM5	NM4	NM3	NM2	NM1	NM0
	W																
MRC		Messag	e RAM Co	onfiguratio	on		26					1	20	10	10	1.5	16
0x0300	n	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ĸ	0	0	0	0	0	SPLM*	SEC1*	SEC0*	LCB7*	LCB6*	LCB5*	LCB4*	LCB3*	LCB2*	LCB1*	LCB0*
n86	vv	15	14	13	12	11	10	0	8	7	6	5	4	3	2	1	0
poo	P	15	14	15	12	11	10	,	0	,	0	3	4	3	2	1	0
	W	FFB7*	FFB6*	FFB5*	FFB4*	FFB3*	FFB2*	FFB1*	FFB0*	FDB7*	FDB6*	FDB5*	FDB4*	FDB3*	FDB2*	FDB1*	FDB0*
FRF		FIFO R	ejection F	ïlter													
0x0304		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	0	RNF*	RSS*	CYF6*	CYE5*	CYF4*	CYF3*	CYF2*	CYF1*	CYF0*
	W								iu u	100	0110	0110	0111	0110	0112	0111	0110
p88		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	FID10*	FID9*	FID8*	FID7*	FID6*	FID5*	FID4*	FID3*	FID2*	FID1*	FID0*	CH1*	CH0*
	W																
FRFM		FIFO R	ejection F	ilter Masl	č		24					1	20	10	10	1.5	16
0x0308		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ĸ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	w	15	14	12	12	11	10	0	0	7	6	5	4	2	2	1	0
p89	D	15	14	15	12		10	9	0	/	0	3	4	3	2	1	0
	W	0	0	0	MFID 10*	MFID 9*	MFID 8*	MFID 7*	MFID 6*	MFID 5*	MFID 4*	MFID 3*	MFID 2*	MFID 1*	MFID 0*	0	0
FCL		FIFO C	Critical Le	vel			1		1	1				1		1	
0x030C		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	W																
p89		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	0	0	0	CI 7*		CI 5*	CL 42	CL 2*	CI 2*	CL 1*	CL 0*
	W									CL/*	CL6*	CL5*	CL4*	CL3*	CL2*	CL1*	CL0*

MB91	460X	Series
		001100

MHDS		Messag	e Handler	Status													
0x0310		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	MBU6	MBU5	MBU4	MBU3	MBU2	MBU1	MBU0	0	MBT6	MBT5	MBT4	MBT3	MBT2	MBT1	MBT0
	W																
p90		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	FMB6	FMB5	FMB4	FMB3	FMB2	FMB1	FMB0	CRAM	MEMB	FMBD	PTRE2	PTRF1	DMD	PORE	DIBE
	W										WIT WID	TNIDD	TTDF2	TIDIT	TWIK	TOBI	TIDI
LDTS		Last Dy	mamic Tra	ansmit Slo	t												
0x0314		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	LDTB10	LDTB9	LDTB8	LDTB7	LDTB6	LDTB5	LDTB4	LDTB3	LDTB2	LDTB1	LDTB0
	W																
p91		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	LDTA10	LDTA9	LDTA8	LDTA7	LDTA6	LDTA5	LDTA4	LDTA3	LDTA2	LDTA1	LDTA0
	W																
FSR		FIFO S	tatus Regi	ster													
0x0318		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	W																
p92		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	RFFL7	RFFL6	RFFL5	RFFL4	RFFL3	RFFL2	RFFL1	RFFL0	0	0	0	0	0	RFO	RFCL	RFNE
	W																
MHDF		Messag	e Handler	Constrair	ts Flags												
MHDF 0x031C		Messag 31	e Handler 30	Constrain 29	nts Flags 28	27	26	25	24	23	22	21	20	19	18	17	16
MHDF 0x031C	R	Messag 31 0	e Handler 30 0	Constrain 29 0	1 ts Flags 28 0	27 0	26 0	25 0	24 0	23 0	22 0	21 0	20 0	19 0	18 0	17 0	16 0
MHDF 0x031C	R W	Messag 31 0	e Handler 30 0	Constrain 29 0	ats Flags 28 0	27 0	26 0	25 0	24 0	23 0	22 0	21 0	20 0	19 0	18 0	17 0	16 0
MHDF 0x031C p93	R W	Messag 31 0 15	e Handler 30 0 14	Constrain 29 0 13	Its Flags 28 0 12 12 12	27 0 11	26 0 10	25 0 9	24 0 8	23 0 7	22 0 6	21 0 5	20 0 4	19 0 3	18 0 2	17 0 1	16 0 0
MHDF 0x031C p93	R W R	Messag 31 0 15 0	e Handler 30 0 14 0	Constrair 29 0 13 0	Its Flags 28 0 12 0	27 0 11 0	26 0 10 0	25 0 9 0	24 0 8 WAHP	23 0 7 0	22 0 6 0	21 0 5 TBFB	20 0 4 TBFA	19 0 3 FNFB	18 0 2 FNFA	17 0 1 SNUB	16 0 0 SNUA
<u>МНDF</u> 0x031С p93	R W R W	Messag 31 0 15 0	e Handler 30 0 14 0	Constrain 29 0 13 0	Its Flags 28 0 12 0	27 0 11 0	26 0 10 0	25 0 9 0	24 0 8 WAHP	23 0 7 0	22 0 6 0	21 0 5 TBFB	20 0 4 TBFA	19 0 3 FNFB	18 0 2 FNFA	17 0 1 SNUB	16 0 0 SNUA
MHDF 0x031C p93 TXRQ1	R W R W	Messag 31 0 15 0 Transm	e Handler 30 0 14 0 ission Reg	Constrain 29 0 13 0 uest 1	Its Flags 28 0 12 0 0	27 0 11 0	26 0 10 0	25 0 9 0	24 0 8 WAHP	23 0 7 0	22 0 6 0	21 0 5 TBFB	20 0 4 TBFA	19 0 3 FNFB	18 0 2 FNFA	17 0 1 SNUB	16 0 0 SNUA
MHDF 0x031C p93 TXRQ1 0x0320	R W R W	Messag 31 0 15 0 Transm 31 TVP21	e Handler 30 0 14 0 ission Req 30 TXP 20	Constrain 29 0 13 0 uest 1 29 TXP20	115 Flags 28 0 12 0 28 28 TXP28	27 0 11 0 27 TXP27	26 0 10 0 26 TXP26	25 0 9 0 25 TXP25	24 0 8 WAHP 24	23 0 7 0 23 TXP23	22 0 6 0 22 22	21 0 5 TBFB 21	20 0 4 TBFA 20 TXP20	19 0 3 FNFB 19 TYP 10	18 0 2 FNFA 18 TYP 18	17 0 1 SNUB 17 TYP17	16 0 0 SNUA 16 TXP16
MHDF 0x031C p93 TXRQ1 0x0320	R W R W	Messag 31 0 15 0 Transm 31 TXR31	e Handler 30 0 14 0 ission Req 30 TXR30	Constrair 29 0 13 0 (uest 1 29 TXR29	sts Flags 28 0 0 12 0 0 28 Z8 7XR28	27 0 11 0 27 TXR27	26 0 10 0 26 TXR26	25 0 9 0 25 TXR25	24 0 8 WAHP 24 TXR24	23 0 7 0 23 TXR23	22 0 6 0 22 TXR22	21 0 5 TBFB 21 TXR21	20 0 4 TBFA 20 TXR20	19 0 3 FNFB 19 TXR19	18 0 2 FNFA 18 TXR18	17 0 1 SNUB 17 TXR17	16 0 SNUA 16 TXR16
MHDF 0x031C p93 TXRQ1 0x0320	R W R W R R W	Messag 31 0 15 0 Transm 31 TXR31	e Handler 30 0 14 0 ission Req 30 TXR30 14	Constrair 29 0 13 0 uest 1 29 TXR29	tts Flags 28 0 12 0 28 TXR28 12	27 0 11 0 27 TXR27	26 0 10 0 26 TXR26	25 0 9 0 25 TXR25	24 0 8 WAHP 24 TXR24	23 0 7 0 23 TXR23 7	22 0 6 0 22 TXR22	21 0 5 TBFB 21 TXR21	20 0 4 TBFA 20 TXR20	19 0 3 FNFB 19 TXR19	18 0 2 FNFA 18 TXR18	17 0 1 SNUB 17 TXR17	16 0 SNUA 16 TXR16
MHDF 0x031C p93 TXRQ1 0x0320 p95	R W W R W	Messag 31 0 15 0 Transm 31 TXR31 15	e Handler 30 0 14 0 ission Reg 30 TXR30 14 TXR14	Constrair 29 0 13 0 uest 1 29 TXR29 13 TXP13	tts Flags 28 0 12 0 28 TXR28 12 12 TXP12	27 0 11 0 27 TXR27 11 11	26 0 10 0 26 TXR26 10 TXR10	25 0 9 0 25 TXR25 9 TXR9	24 0 8 WAHP 24 TXR24 8 8	23 0 7 0 23 TXR23 7 7 TXR7	22 0 6 0 22 TXR22 6 TXR6	21 0 5 TBFB 21 TXR21 5 5 TXR5	20 0 4 TBFA 20 TXR20 4 TXR4	19 0 3 FNFB 19 TXR19 3 TXP3	18 0 2 FNFA 18 TXR18 2 TXR2	17 0 1 SNUB 17 TXR17 1 1 TXR1	16 0 SNUA 16 TXR16 0 TXR0
MHDF 0x031C p93 TXRQ1 0x0320 p95	R W W R W R W	Messag 31 0 15 0 Transm 31 TXR31 15 TXR15	e Handler 30 0 14 0 ission Req 30 TXR30 14 TXR14	Constrair 29 0 13 0 uest 1 29 TXR29 13 TXR13	tts Flags 28 0 12 0 28 TXR28 12 TXR12	27 0 11 0 27 TXR27 11 TXR11	26 0 10 0 26 TXR26 10 TXR10	25 0 9 0 25 TXR25 9 TXR9	24 0 8 WAHP 24 TXR24 8 TXR8	23 0 7 0 23 TXR23 7 TXR7	22 0 6 0 22 TXR22 6 TXR6	21 0 5 TBFB 21 TXR21 5 TXR5	20 0 4 TBFA 20 TXR20 4 TXR4	19 0 3 FNFB 19 TXR19 3 TXR3	18 0 2 FNFA 18 TXR18 2 TXR2	17 0 1 SNUB 17 TXR17 1 TXR1	16 0 SNUA 16 TXR16 0 TXR0
MHDF 0x031C p93 TXRQ1 0x0320 p95 TXRQ2	R W W R W R W	Messag 31 0 15 0 Transm 31 TXR31 15 TXR15 Transm	e Handler 30 0 14 0 ission Req 30 TXR30 14 TXR14 ission Req	Constrair 29 0 13 0 (uest 1 29 TXR29 13 TXR13 uuest 2	tts Flags 28 0 12 0 28 TXR28 12 TXR28 12 TXR12	27 0 11 0 27 TXR27 11 TXR11	26 0 10 0 26 TXR26 10 TXR10	25 0 9 0 25 TXR25 9 TXR9	24 0 8 WAHP 24 TXR24 8 TXR24	23 0 7 0 23 7 7 7 7 7 7 7 7 7 7 7	22 0 6 0 22 TXR22 6 TXR6	21 0 5 TBFB 21 TXR21 5 TXR5	20 0 4 TBFA 20 TXR20 4 TXR4	19 0 3 FNFB 19 TXR19 3 TXR3	18 0 2 FNFA 18 TXR18 2 TXR2	17 0 1 SNUB 17 TXR17 1 TXR17	16 0 SNUA 16 TXR16 0 TXR0
MHDF 0x031C p93 TXRQ1 0x0320 p95 TXRQ2 0x0324	R W R W R W W	Messag 31 0 15 0 Transm 31 TXR31 15 TXR15 Transm 31	e Handler 30 0 14 0 ission Req 30 TXR30 14 TXR14 ission Req 30	Constrair 29 0 13 0 uest 1 29 TXR29 13 TXR13 uest 2 29	tts Flags 28 0 12 0 28 TXR28 12 TXR12 28	27 0 11 0 27 TXR27 11 TXR11 27	26 0 10 0 26 TXR26 10 TXR10 26	25 0 9 0 25 TXR25 9 TXR9 25	24 0 8 WAHP 24 TXR24 8 TXR8 24	23 0 7 0 23 TXR23 7 TXR7 23	22 0 6 0 22 TXR22 6 TXR6 22	21 0 5 TBFB 21 TXR21 5 TXR5 21	20 0 4 TBFA 20 TXR20 4 TXR4 20	19 0 3 FNFB 19 TXR19 3 TXR3 19	18 0 2 FNFA 18 TXR18 2 TXR2 18	17 0 1 SNUB 17 TXR17 1 TXR17 1 TXR1 1 7	16 0 SNUA 16 TXR16 0 TXR0 16
MHDF 0x031C p93 TXRQ1 0x0320 p95 TXRQ2 0x0324	R W W R W R W R R R	Messag 31 0 15 0 Transm 31 TXR31 15 TXR15 Transm 31 TXR63	e Handler 30 0 14 0 ission Req 30 TXR30 14 TXR14 ission Req 30 TXR14	Constrair 29 0 13 0 uest 1 29 TXR29 13 TXR13 uest 2 29 TXR61	tts Flags 28 0 12 0 28 TXR28 12 TXR12 28 TXR12 28 TXR60	27 0 11 0 27 TXR27 11 TXR11 27 TXR59	26 0 10 0 26 TXR26 10 TXR10 26 TXR58	25 0 9 0 25 TXR25 9 TXR9 25 TXR9 25 TXR57	24 0 8 WAHP 24 TXR24 8 TXR8 24 TXR56	23 0 7 0 23 TXR23 7 TXR7 23 TXR55	22 0 6 0 22 TXR22 6 TXR6 22 TXR54	21 0 5 TBFB 21 TXR21 5 TXR5 21 TXR53	20 0 4 TBFA 20 TXR20 4 TXR4 20 TXR4 20 TXR52	19 0 3 FNFB 19 TXR19 3 TXR3 19 TXR51	18 0 2 FNFA 18 TXR18 2 TXR2 18 TXR2 18 TXR50	17 0 1 SNUB 17 TXR17 1 TXR17 1 TXR1 1 TXR1	16 0 SNUA 16 TXR16 0 TXR0 16 TXR48
MHDF 0x031C p93 TXRQ1 0x0320 p95 TXRQ2 0x0324	R W W R W R W W	Messag 31 0 15 0 Transm 31 TXR31 15 TXR15 Transm 31 TXR63	e Handler 30 0 14 0 ission Req 30 TXR30 14 TXR14 ission Req 30 TXR42	Constrain 29 0 13 0 uest 1 29 TXR29 13 TXR13 uest 2 29 TXR61	tts Flags 28 0 12 0 28 TXR28 12 TXR12 28 TXR12 28 TXR60	27 0 11 0 27 TXR27 11 TXR11 27 TXR11 27 TXR59	26 0 10 0 26 TXR26 10 TXR10 26 TXR10 26 TXR58	25 0 9 0 25 TXR25 9 TXR9 25 TXR9 25 TXR57	24 0 8 WAHP 24 TXR24 8 TXR8 24 TXR8	23 0 7 0 23 TXR23 7 TXR7 23 TXR7 23 TXR55	22 0 6 0 7 22 TXR22 6 TXR6 22 7 XR54	21 0 5 TBFB 21 TXR21 5 TXR5 21 TXR53	20 0 4 TBFA 20 TXR20 4 TXR4 20 TXR4 20 TXR52	19 0 3 FNFB 19 TXR19 3 TXR3 19 TXR3 19 TXR51	18 0 2 FNFA 18 TXR18 2 TXR2 18 TXR2 18 TXR50	17 0 1 SNUB 17 TXR17 1 TXR17 1 TXR1 1 TXR1 17 TXR49	16 0 SNUA 16 TXR16 0 TXR0 16 TXR0 16 TXR48
MHDF 0x031C p93 TXRQ1 0x0320 p95 TXRQ2 0x0324	R W W R W R W R W	Messag 31 0 15 0 Transm 31 TXR31 15 TXR15 Transm 31 TXR63 15	e Handler 30 0 14 0 ission Req 30 TXR30 14 TXR14 ission Req 30 TXR42 14	Constrair 29 0 13 0 uest 1 29 TXR29 13 TXR13 29 TXR13 29 TXR61 13	tts Flags 28 0 12 0 28 TXR28 12 TXR28 12 TXR12 28 TXR12 28 TXR60 12	27 0 11 0 27 TXR27 11 TXR11 27 TXR59 11	26 0 10 0 26 TXR26 10 TXR10 26 TXR58 10	25 0 9 0 25 TXR25 9 TXR9 25 TXR9 25 TXR57 9 9	24 0 8 WAHP 24 TXR24 8 TXR24 24 TXR8 24 TXR56 8	23 0 7 0 23 TXR23 7 TXR723 7 TXR77 23 TXR55 7	22 0 6 0 22 TXR22 6 TXR6 22 TXR6 22 TXR54 6	21 0 5 TBFB 21 TXR21 5 TXR21 5 TXR5 21 TXR53 5	20 0 4 TBFA 20 TXR20 4 TXR4 20 TXR4 20 TXR52 4	19 0 3 FNFB 19 TXR19 3 TXR3 19 TXR3 19 TXR51 3	18 0 2 FNFA 18 TXR18 2 TXR2 18 TXR2 18 TXR50 2	17 0 1 SNUB 17 TXR17 1 TXR17 1 TXR1 1 TXR1 17 TXR49 1	16 0 SNUA 16 TXR16 0 TXR0 16 TXR0 16 TXR48 0
MHDF 0x031C p93 TXRQ1 0x0320 p95 TXRQ2 0x0324 p95	R W W R W W R W R R W R	Messag 31 0 15 0 Transm 31 TXR31 15 TXR15 Transm 31 TXR63 15 TXR63	e Handler 30 0 14 0 ission Req 30 TXR30 14 TXR14 ission Req 30 TXR62 14	Constrair 29 0 13 0 13 0 13 TXR29 13 TXR29 13 TXR13 29 TXR61 13 TXR45	tts Flags 28 0 12 0 28 TXR28 12 TXR12 28 TXR12 28 TXR60 12 TXR44	27 0 11 0 27 TXR27 11 TXR11 27 TXR59 27 TXR59 11 11 TXR43	26 0 10 0 26 TXR26 10 TXR10 26 TXR58 10 TXR42	25 0 9 0 25 TXR25 9 TXR9 25 TXR9 25 TXR57 9 TXR41	24 0 8 WAHP 24 TXR24 8 TXR8 24 TXR8 24 TXR56 8 8 TXR40	23 0 7 0 23 TXR23 7 TXR72 23 TXR75 23 TXR55 7 7 TXR39	22 0 6 0 22 TXR22 6 TXR6 22 TXR54 6 TXR54 6 TXR38	21 0 5 TBFB 21 TXR21 5 TXR21 5 TXR5 21 TXR53 5 5 TXR37	20 0 4 TBFA 20 TXR20 4 TXR4 20 TXR4 20 TXR52 4 TXR36	19 0 3 FNFB 19 TXR19 3 TXR3 19 TXR51 19 TXR51 3 3 TXR35	18 0 2 FNFA 18 TXR18 2 TXR2 18 TXR2 18 TXR50 2 TXR34	17 0 1 SNUB 17 TXR17 1 TXR17 1 TXR19 1 TXR49 1 TXR49	16 0 SNUA 16 TXR16 0 TXR0 16 TXR48 0 TXR48

MB91460X	Series
----------	--------

TXRQ3		Transm	ission Req	uest 3													
0x0328		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	TXR95	TXR94	TXR93	TXR92	TXR91	TXR90	TXR89	TXR88	TXR87	TXR86	TXR85	TXR84	TXR83	TXR82	TXR81	TXR80
	W																
p95		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	TXR79	TXR78	TXR77	TXR76	TXR75	TXR74	TXR73	TXR72	TXR71	TXR70	TXR69	TXR68	TXR67	TXR66	TXR65	TXR64
	W																
TXRQ4		Transm	ission Req	uest 4													
0x032C		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	TXR127	TXR126	TXR125	TXR124	TXR123	TXR122	TXR121	TXR120	TXR119	TXR118	TXR117	TXR116	TXR115	TXR114	TXR113	TXR112
	W																
p95		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	TXR111	TXR110	TXR109	TXR108	TXR107	TXR106	TXR105	TXR104	TXR103	TXR102	TXR101	TXR100	TXR99	TXR98	TXR97	TXR96
	W																
NDAT1		New Da	ita 1														
0x0330		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	ND31	ND30	ND29	ND28	ND27	ND26	ND25	ND24	ND23	ND22	ND21	ND20	ND19	ND18	ND17	ND16
	W																
p96		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	ND15	ND14	ND13	ND12	ND11	ND10	ND9	ND8	ND7	ND6	ND5	ND4	ND3	ND2	ND1	ND0
	W																
NDAT2		New Da	ita 2														
0x0334		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	ND63	ND62	ND61	ND60	ND59	ND58	ND57	ND56	ND55	ND54	ND53	ND52	ND51	ND50	ND49	ND48
	W																
p96		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	ND47	ND46	ND45	ND44	ND43	ND42	ND41	ND40	ND39	ND38	ND37	ND36	ND35	ND34	ND33	ND32
	W																
NDAT3		New Da	ita 3														
0x0338		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	ND95	ND94	ND93	ND92	ND91	ND90	ND89	ND88	ND87	ND86	ND85	ND84	ND83	ND82	ND81	ND80
	W																
p96		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	ND79	ND78	ND77	ND76	ND75	ND74	ND73	ND72	ND71	ND70	ND69	ND68	ND67	ND66	ND65	ND64
	W																
NDAT4		New Da	ita 4														
0x033C		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	ND127	ND126	ND125	ND124	ND123	ND122	ND121	ND120	ND119	ND118	ND117	ND116	ND115	ND114	ND113	ND112
	W																
p96		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	ND111	ND110	ND109	ND108	ND107	ND106	ND105	ND104	ND103	ND102	ND101	ND100	ND99	ND98	ND97	ND96
	337																

MBSC1		Messag	e Buffer S	tatus Chai	nged 1												
0x0340		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	MBC31	MBC30	MBC29	MBC28	MBC27	MBC26	MBC25	MBC24	MBC23	MBC22	MBC21	MBC20	MBC19	MBC18	MBC17	MBC16
	W																
p97		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	MBC15	MBC14	MBC13	MBC12	MBC11	MBC10	MBC9	MBC8	MBC7	MBC6	MBC5	MBC4	MBC3	MBC2	MBC1	MBC0
	W																
MBSC2		Messag	e Buffer S	tatus Chai	nged 2												
0x0344		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	MBC63	MBC62	MBC61	MBC60	MBC59	MBC58	MBC57	MBC56	MBC55	MBC54	MBC53	MBC52	MBC51	MBC50	MBC49	MBC48
	W																
p97		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	MBC47	MBC46	MBC45	MBC44	MBC43	MBC42	MBC41	MBC40	MBC39	MBC38	MBC37	MBC36	MBC35	MBC34	MBC33	MBC32
	W																
MBSC3		Messag	e Buffer S	tatus Chai	nged 3												
0x0348		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	MBC95	MBC94	MBC93	MBC92	MBC91	MBC90	MBC89	MBC88	MBC87	MBC86	MBC85	MBC84	MBC83	MBC82	MBC81	MBC80
	W																
p97		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	MBC79	MBC78	MBC77	MBC76	MBC75	MBC74	MBC73	MBC72	MBC71	MBC70	MBC69	MBC68	MBC67	MBC66	MBC65	MBC64
	W																
MBSC4		Messag	e Buffer S	tatus Chai	nged 4												
MBSC4 0x034C		Messag 31	e Buffer So 30	tatus Chai 29	nged 4 28	27	26	25	24	23	22	21	20	19	18	17	16
MBSC4 0x034C	R	Messag 31 MBC127	e Buffer So 30 MBC126	tatus Char 29 MBC125	nged 4 28 MBC124	27 MBC123	26 MBC122	25 MBC121	24 MBC120	23 MBC119	22 MBC118	21 MBC117	20 MBC116	19 MBC115	18 MBC114	17 MBC113	16 MBC112
MBSC4 0x034C	R W	Messag 31 MBC127	e Buffer So 30 MBC126	tatus Char 29 MBC125	nged 4 28 MBC124	27 MBC123	26 MBC122	25 MBC121	24 MBC120	23 MBC119	22 MBC118	21 MBC117	20 MBC116	19 MBC115	18 MBC114	17 MBC113	16 MBC112
MBSC4 0x034C p97	R W	Messag 31 MBC127 15	e Buffer S 30 MBC126 14	tatus Char 29 MBC125 13	nged 4 28 MBC124 12	27 MBC123 11	26 MBC122 10	25 MBC121 9	24 MBC120 8	23 MBC119 7	22 MBC118 6	21 MBC117 5	20 MBC116 4	19 MBC115 3	18 MBC114 2	17 MBC113 1	16 MBC112 0
MBSC4 0x034C p97	R W R	Messag 31 MBC127 15 MBC111	e Buffer S 30 MBC126 14 MBC110	29 MBC125 13 MBC109	nged 4 28 MBC124 12 MBC108	27 MBC123 11 MBC107	26 MBC122 10 MBC106	25 MBC121 9 MBC105	24 MBC120 8 MBC104	23 MBC119 7 MBC103	22 MBC118 6 MBC102	21 MBC117 5 MBC101	20 MBC116 4 MBC100	19 MBC115 3 MBC99	18 MBC114 2 MBC98	17 MBC113 1 MBC97	16 MBC112 0 MBC96
MBSC4 0x034C p97	R W R W	Messag 31 MBC127 15 MBC111	e Buffer S 30 MBC126 14 MBC110	29 MBC125 13 MBC109	nged 4 28 MBC124 12 MBC108	27 MBC123 11 MBC107	26 MBC122 10 MBC106	25 MBC121 9 MBC105	24 MBC120 8 MBC104	23 MBC119 7 MBC103	22 MBC118 6 MBC102	21 MBC117 5 MBC101	20 MBC116 4 MBC100	19 MBC115 3 MBC99	18 MBC114 2 MBC98	17 MBC113 1 MBC97	16 MBC112 0 MBC96
MBSC4 0x034C p97 CREL 0.0220	R W R W	Messag 31 MBC127 15 MBC111 Core R	e Buffer S 30 MBC126 14 MBC110 elease Reg	tatus Char 29 MBC125 13 MBC109 ister	nged 4 28 MBC124 12 MBC108	27 MBC123 11 MBC107	26 MBC122 10 MBC106	25 MBC121 9 MBC105	24 MBC120 8 MBC104	23 MBC119 7 MBC103	22 MBC118 6 MBC102	21 MBC117 5 MBC101	20 MBC116 4 MBC100	19 MBC115 3 MBC99	18 MBC114 2 MBC98	17 MBC113 1 MBC97	16 MBC112 0 MBC96
MBSC4 0x034C p97 CREL 0x03F0	R W R W	Messag 31 MBC127 15 MBC111 Core Ro 31	e Buffer Si 30 MBC126 14 MBC110 elease Reg 30	tatus Char 29 MBC125 13 MBC109 ister 29	nged 4 28 MBC124 12 MBC108 28 28 DEL0	27 MBC123 11 MBC107 27 27	26 MBC122 10 MBC106 26	25 MBC121 9 MBC105 25	24 MBC120 8 MBC104 24	23 MBC119 7 MBC103 23	22 MBC118 6 MBC102 22 22	21 MBC117 5 MBC101 21	20 MBC116 4 MBC100 20	19 MBC115 3 MBC99 19	18 MBC114 2 MBC98 18	17 MBC113 1 MBC97 17	16 MBC112 0 MBC96 16
MBSC4 0x034C p97 CREL 0x03F0	R W R W	Messag 31 MBC127 15 MBC111 Core R 31 REL3	e Buffer Si 30 MBC126 14 MBC110 elease Reg 30 REL2	tatus Char 29 MBC125 13 MBC109 ister 29 REL1	nged 4 28 MBC124 12 MBC108 28 REL0	27 MBC123 11 MBC107 27 STEP7	26 MBC122 10 MBC106 26 STEP6	25 MBC121 9 MBC105 25 STEP5	24 MBC120 8 MBC104 24 STEP4	23 MBC119 7 MBC103 23 STEP3	22 MBC118 6 MBC102 22 STEP2	21 MBC117 5 MBC101 21 STEP1	20 MBC116 4 MBC100 20 STEP0	19 MBC115 3 MBC99 19 YEAR3	18 MBC114 2 MBC98 18 YEAR2	17 MBC113 1 MBC97 17 YEAR1	16 MBC112 0 MBC96
MBSC4 0x034C p97 CREL 0x03F0	R W R W R W	Messag 31 MBC127 15 MBC111 Core Rd 31 REL3	e Buffer Si 30 MBC126 14 MBC110 clease Reg 30 REL2	tatus Char 29 MBC125 13 MBC109 ister 29 REL1	nged 4 28 MBC124 12 MBC108 28 REL0 12	27 MBC123 11 MBC107 27 STEP7	26 MBC122 10 MBC106 26 STEP6	25 MBC121 9 MBC105 25 STEP5	24 MBC120 8 MBC104 24 STEP4	23 MBC119 7 MBC103 23 STEP3	22 MBC118 6 MBC102 22 STEP2	21 MBC117 5 MBC101 21 STEP1	20 MBC116 4 MBC100 20 STEP0	19 MBC115 3 MBC99 19 YEAR3	18 MBC114 2 MBC98 18 YEAR2	17 MBC113 1 MBC97 17 YEAR1	16 MBC112 0 MBC96
MBSC4 0x034C p97 CREL 0x03F0 p98	R W W R W	Messag 31 MBC127 15 MBC111 Core R 31 REL3 15 MON7	e Buffer Si 30 MBC126 14 MBC110 clease Reg 30 REL2 14	tatus Char 29 MBC125 13 MBC109 ister 29 REL1 13 MON5	nged 4 28 MBC124 12 MBC108 28 REL0 12 MONIA	27 MBC123 11 MBC107 27 STEP7 11 11 MON2	26 MBC122 10 MBC106 26 STEP6 10 MON2	25 MBC121 9 MBC105 25 STEP5 9 9 MONI	24 MBC120 8 MBC104 24 STEP4 8 8 MONIO	23 MBC119 7 MBC103 23 STEP3 7 7	22 MBC118 6 MBC102 22 STEP2 6 6	21 MBC117 5 MBC101 21 STEP1 5 5	20 MBC116 4 MBC100 20 STEP0 4 4	19 MBC115 3 MBC99 19 YEAR3 3 3	18 MBC114 2 MBC98 18 YEAR2 2 2 DAV2	17 MBC113 1 MBC97 17 YEAR1 1 1 DAY1	16 MBC112 0 MBC96 16 YEAR0 0 0
MBSC4 0x034C p97 CREL 0x03F0 p98	R W W R W R W	Messag 31 MBC127 15 MBC111 Core R 31 REL3 15 MON7	e Buffer S 30 MBC126 14 MBC110 elease Reg 30 REL2 14 MON6	tatus Char 29 MBC125 13 MBC109 ister 29 REL1 13 MON5	nged 4 28 MBC124 12 MBC108 28 REL0 12 MON4	27 MBC123 11 MBC107 27 STEP7 11 MON3	26 MBC122 10 MBC106 26 STEP6 10 MON2	25 MBC121 9 MBC105 25 STEP5 9 MON1	24 MBC120 8 MBC104 24 STEP4 8 MON0	23 MBC119 7 MBC103 23 STEP3 7 DAY7	22 MBC118 6 MBC102 22 STEP2 6 DAY6	21 MBC117 5 MBC101 21 STEP1 5 DAY5	20 MBC116 4 MBC100 20 STEP0 4 DAY4	19 MBC115 3 MBC99 19 YEAR3 3 DAY3	18 MBC114 2 MBC98 18 YEAR2 2 DAY2	17 MBC113 1 MBC97 17 YEAR1 YEAR1 1 DAY1	16 MBC112 0 MBC96 16 YEAR0 VEAR0 0 DAY0
MBSC4 0x034C p97 CREL 0x03F0 p98	R W W R W R W	Messag 31 MBC127 15 MBC111 Core R 31 REL3 15 MON7 Endian	e Buffer Si 30 MBC126 14 MBC110 elease Reg 30 REL2 14 MON6 Register	tatus Char 29 MBC125 13 MBC109 ister 29 REL1 13 MON5	nged 4 28 MBC124 12 MBC108 28 REL0 12 MON4	27 MBC123 11 MBC107 27 STEP7 11 MON3	26 MBC122 10 MBC106 26 STEP6 10 MON2	25 MBC121 9 MBC105 25 STEP5 9 MON1	24 MBC120 8 MBC104 24 STEP4 8 MON0	23 MBC119 7 MBC103 23 STEP3 7 DAY7	22 MBC118 6 MBC102 22 STEP2 6 DAY6	21 MBC117 5 MBC101 21 STEP1 5 DAY5	20 MBC116 4 MBC100 20 STEP0 4 DAY4	19 MBC115 3 MBC99 19 YEAR3 3 DAY3	18 MBC114 2 MBC98 18 YEAR2 2 DAY2	17 MBC113 1 MBC97 17 YEAR1 1 DAY1	16 MBC112 0 MBC96
MBSC4 0x034C p97 CREL 0x03F0 p98 ENDN 0x03F4	R W W R W R W	Messag 31 MBC127 15 MBC111 Core Rd 31 REL3 15 MON7 Endian 31	e Buffer Si 30 MBC126 14 MBC110 celease Reg 30 REL2 14 MON6 Register 30	tatus Char 29 MBC125 13 MBC109 ister 29 REL1 13 MON5 29	nged 4 28 MBC124 12 MBC108 28 REL0 12 MON4 28	27 MBC123 11 MBC107 27 STEP7 11 MON3 27	26 MBC122 10 MBC106 26 STEP6 10 MON2 26	25 MBC121 9 MBC105 25 STEP5 9 MON1 25	24 MBC120 8 MBC104 24 STEP4 8 MON0 24	23 MBC119 7 MBC103 23 STEP3 7 DAY7 23	22 MBC118 6 MBC102 22 STEP2 6 DAY6 22	21 MBC117 5 MBC101 21 STEP1 5 DAY5 21	20 MBC116 4 MBC100 20 STEP0 4 DAY4 20	19 MBC115 3 MBC99 19 YEAR3 3 DAY3 19	18 MBC114 2 MBC98 18 YEAR2 2 DAY2 18	17 MBC113 1 MBC97 17 YEAR1 1 DAY1 DAY1	16 MBC112 0 MBC96 7 16 YEAR0 0 DAY0 DAY0
MBSC4 0x034C p97 CREL 0x03F0 p98 ENDN 0x03F4	R W W R W R W R R	Messag 31 MBC127 15 MBC111 Core R 31 REL3 15 MON7 Endian 31 ETV31	e Buffer Si 30 MBC126 14 MBC110 clease Reg 30 REL2 14 MON6 Register 30 ETV30	tatus Char 29 MBC125 13 MBC109 ister 29 REL1 13 MON5 29 ETV29	nged 4 28 MBC124 12 MBC108 28 REL0 12 MON4 28 ETV28	27 MBC123 11 MBC107 27 STEP7 11 MON3 27 27 ETV27	26 MBC122 10 MBC106 26 STEP6 10 MON2 26 ETV26	25 MBC121 9 MBC105 25 STEP5 9 MON1 25 STEP5 25 ETV25	24 MBC120 8 MBC104 24 STEP4 8 MON0 24 24 ETV24	23 MBC119 7 MBC103 23 STEP3 7 DAY7 23 23 ETV23	22 MBC118 6 MBC102 22 STEP2 6 DAY6 22 ETV22	21 MBC117 5 MBC101 21 STEP1 5 DAY5 21 21 ETV21	20 MBC116 4 MBC100 20 STEP0 4 DAY4 20 20 ETV20	19 MBC115 3 MBC99 19 YEAR3 3 DAY3 19 ETV19	18 MBC114 2 MBC98 18 YEAR2 2 DAY2 2 DAY2 18 ETV18	17 MBC113 1 MBC97 17 YEAR1 1 DAY1 JAY1 17 CTV17	16 MBC112 0 MBC96 7 16 YEAR0 0 DAY0 DAY0 16 ETV16
MBSC4 0x034C p97 CREL 0x03F0 p98 ENDN 0x03F4	R W W R W R W R W	Messag 31 MBC127 15 MBC111 Core R 31 REL3 15 MON7 Endian 31 ETV31	e Buffer Si 30 MBC126 14 MBC110 elease Reg 30 REL2 14 MON6 Register 30 ETV30	tatus Chai 29 MBC125 13 MBC109 ister 29 REL1 13 MON5 29 29 ETV29	nged 4 28 MBC124 12 MBC108 28 REL0 12 MON4 28 ETV28	27 MBC123 11 MBC107 27 STEP7 11 MON3 27 27 27 ETV27	26 MBC122 10 MBC106 26 STEP6 10 MON2 26 ETV26	25 MBC121 9 MBC105 25 STEP5 9 MON1 25 ETV25	24 MBC120 8 MBC104 24 STEP4 8 MON0 24 ETV24	23 MBC119 7 MBC103 23 STEP3 7 DAY7 23 23 ETV23	22 MBC118 6 MBC102 22 STEP2 6 DAY6 22 22 ETV22	21 MBC117 5 MBC101 21 STEP1 5 DAY5 21 21 ETV21	20 MBC116 4 MBC100 20 STEP0 4 DAY4 DAY4 20 ETV20	19 MBC115 3 MBC99 19 YEAR3 3 DAY3 DAY3 19 ETV19	18 MBC114 2 MBC98 18 YEAR2 2 DAY2 DAY2 18 ETV18	17 MBC113 1 MBC97 17 YEAR1 7 YEAR1 0 AY1 0 AY1 17 T7 T7 T7	16 MBC112 0 MBC96 16 YEAR0 7 UAY0 DAY0 DAY0 16 ETV16
MBSC4 0x034C p97 CREL 0x03F0 p98 ENDN 0x03F4	R W W R W W R W W	Messag 31 MBC127 15 MBC111 Core R 31 REL3 15 MON7 Endian 31 ETV31 15	e Buffer Si 30 MBC126 14 MBC110 elease Reg 30 REL2 14 MON6 Register 30 ETV30 LTV30	tatus Chai 29 MBC125 13 MBC109 ister 29 REL1 13 MON5 29 ETV29 ETV29 13	nged 4 28 MBC124 12 MBC108 28 REL0 12 MON4 28 ETV28 ETV28 12	27 MBC123 11 MBC107 27 STEP7 11 MON3 27 ETV27 ETV27 11	26 MBC122 10 MBC106 26 STEP6 10 MON2 26 ETV26 ETV26 10	25 MBC121 9 MBC105 25 STEP5 9 MON1 25 ETV25 ETV25 9	24 MBC120 8 MBC104 24 STEP4 8 MON0 24 ETV24 8	23 MBC119 7 MBC103 23 STEP3 7 DAY7 23 ETV23 7	22 MBC118 6 MBC102 22 STEP2 6 DAY6 22 ETV22 6	21 MBC117 5 MBC101 21 21 STEP1 5 DAY5 21 ETV21 5	20 MBC116 4 MBC100 20 STEP0 4 DAY4 20 ETV20 ETV20 4	19 MBC115 3 MBC99 19 YEAR3 3 DAY3 DAY3 19 ETV19 ETV19 3	18 MBC114 2 MBC98 18 YEAR2 2 DAY2 DAY2 18 ETV18 ETV18 2	17 MBC113 1 MBC97 17 YEAR1 1 DAY1 17 DAY1 17 ETV17 ETV17	16 MBC112 0 MBC96 16 YEAR0 0 DAY0 0 DAY0 16 ETV16 ETV16
MBSC4 0x034C p97 CREL 0x03F0 p98 ENDN 0x03F4 p98	R W R W R W R R W R R	Messag 31 MBC127 15 MBC111 Core R 31 REL3 15 MON7 Endian 31 ETV31 15 ETV15	e Buffer Si 30 MBC126 14 MBC110 elease Reg 30 REL2 14 MON6 Register 30 ETV30 ETV30 14 ETV14	tatus Chai 29 MBC125 13 MBC109 ister 29 REL1 13 MON5 29 ETV29 ETV29 13 ETV13	nged 4 28 MBC124 12 MBC108 28 REL0 12 MON4 28 ETV28 12 ETV12	27 MBC123 11 MBC107 27 STEP7 11 MON3 27 ETV27 ETV27 11 ETV11	26 MBC122 10 MBC106 26 STEP6 10 MON2 26 ETV26 ETV26 10 ETV10	25 MBC121 9 MBC105 25 STEP5 9 MON1 25 ETV25 9 ETV25	24 MBC120 8 MBC104 24 STEP4 8 MON0 24 ETV24 8 ETV24	23 MBC119 7 MBC103 23 23 STEP3 7 DAY7 23 ETV23 7 ETV23	22 MBC118 6 MBC102 22 STEP2 6 DAY6 22 ETV22 6 ETV22 6 ETV6	21 MBC117 5 MBC101 21 21 STEP1 5 DAY5 21 ETV21 5 5 ETV5	20 MBC116 4 MBC100 20 STEP0 4 DAY4 20 ETV20 4 ETV20	19 MBC115 3 MBC99 19 YEAR3 3 DAY3 DAY3 19 ETV19 3 ETV19	18 MBC114 2 MBC98 18 YEAR2 2 DAY2 DAY2 18 ETV18 2 ETV18	17 MBC113 1 MBC97 17 YEAR1 17 DAY1 DAY1 DAY1 17 ETV17 1	16 MBC112 0 MBC96

WRDSn		Write D	ata Sectio	on [164]													
0x0400 to 0x04FC)	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R W	MD31	MD30	MD29	MD28	MD27	MD26	MD25	MD24	MD23	MD22	MD21	MD20	MD19	MD18	MD17	MD16
p99		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R W	MD15	MD14	MD13	MD12	MD11	MD10	MD9	MD8	MD7	MD6	MD5	MD4	MD3	MD2	MD1	MD0
WRHS1		Write H	leader Sec	tion 1					1	1	1	1		1			
0x0500		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R W	0	0	MBI	TXM	PPIT	CFG	СНВ	СНА	0	CYC6	CYC5	CYC4	CYC3	CYC2	CYC1	CYC0
p100		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0		FIDA	FIDO	EID7	EID (EVD 5		FIDA	FIDA	EID 1	FIDA
	W						FID10	FID9	FID8	FID7	FID6	FID5	FID4	FID3	FID2	FIDI	FID0
WRHS2		Write H	leader Sec	ction 2													
0x0504		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	0	0	0	PLC6	PLC5	PLC4	PLC3	PLC2	PLC1	PL C0
	W										1200	TLUS	The	TLUS	1102	The	TLeo
p101		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	CRC10	CRC9	CRC8	CRC7	CRC6	CRC5	CRC4	CRC3	CRC2	CRC1	CRC0
	W																
WRHS3		Write H	leader Sec	ction 3	•		• /						• •	10	10		
0x0508		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ĸ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
p101	vv	15	14	13	12	11	10	0	8	7	6	5	4	3	2	1	0
pior	R	0	0	0	0	0	10	,	8	/	0	5	4	5	2	1	0
	W	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	DP10*	DP9*	DP8*	DP7*	DP6*	DP5*	DP4*	DP3*	DP2*	DP1*	DP0*
IBCM		Input B	uffer Con	mand Ma	sk				1	1	1	1		1			
0x0510		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	0	0	0	0	0	0	0	STXRS	LDSS	LHSS
	W																
p102		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	0	0	0	0	0	0	0	0	STYRH	I DSH	тнен
	W														517101	LDSII	LIISH
IBCR		Input B	uffer Con	imand Re	quest												
0x0514		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	IBSYS	0	0	0	0	0	0	0	0	IBRS6	IBRS5	IBRS4	IBRS3	IBRS2	IBRS1	IBRS0
	W																
p103		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R W	IBSYH	0	0	0	0	0	0	0	0	IBRH6	IBRH5	IBRH4	IBRH3	IBRH2	IBRH1	IBRH0

MB91460X Series

RDDSn		Read D	ata Section	n [164]													
0x0600 to 0x06FC)	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	MD31	MD30	MD29	MD28	MD27	MD26	MD25	MD24	MD23	MD22	MD21	MD20	MD19	MD18	MD17	MD16
	W																
p104		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	MD15	MD14	MD13	MD12	MD11	MD10	MD9	MD8	MD7	MD6	MD5	MD4	MD3	MD2	MD1	MD0
	W																
RDHS1		Read H	eader Sec	tion 1													
0x0700		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	MBI	TXM	PPIT	CFG	CHB	CHA	0	CYC6	CYC5	CYC4	CYC3	CYC2	CYC1	CYC0
	W																
p105		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	FID10	FID9	FID8	FID7	FID6	FID5	FID4	FID3	FID2	FID1	FID0
	W																
RDHS2		Read H	eader Sect	tion 2													
0x0704		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	PLR6	PLR5	PLR4	PLR3	PLR2	PLR1	PLR0	0	PLC6	PLC5	PLC4	PLC3	PLC2	PLC1	PLC0
	W																
p106		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	0	0	0	0	0	CRC10	CRC9	CRC8	CRC7	CRC6	CRC5	CRC4	CRC3	CRC2	CRC1	CRC0
	W																
RDHS3		Read H	eader Sect	tion 3													
RDHS3 0x0708		Read H	eader Sect	t ion 3 29	28	27	26	25	24	23	22	21	20	19	18	17	16
RDHS3 0x0708	R	Read H 31 0	eader Sect	tion 3 29 RES	28 PPI	27 NFI	26 SYN	25 SFI	24 RCI	23 0	22 0	21 RCC5	20 RCC4	19 RCC3	18 RCC2	17 RCC1	16 RCC0
RDHS3 0x0708	R W	Read H 31 0	ader Sect 30 0	tion 3 29 RES	28 PPI	27 NFI	26 SYN	25 SFI	24 RCI	23 0	22 0	21 RCC5	20 RCC4	19 RCC3	18 RCC2	17 RCC1	16 RCC0
RDHS3 0x0708 p107	R W	Read H 31 0 15	eader Sect 30 0 14	tion 3 29 RES 13	28 PPI 12	27 NFI 11	26 SYN 10	25 SFI 9	24 RCI 8	23 0 7	22 0 6	21 RCC5 5	20 RCC4 4	19 RCC3 3	18 RCC2 2	17 RCC1 1	16 RCC0 0
RDHS3 0x0708 p107	R W R	Read H 31 0 15 0	30 0 14 0	tion 3 29 RES 13 0	28 PPI 12 0	27 NFI 11 0	26 SYN 10 DP10	25 SFI 9 DP9	24 RCI 8 DP8	23 0 7 DP7	22 0 6 DP6	21 RCC5 5 DP5	20 RCC4 4 DP4	19 RCC3 3 DP3	18 RCC2 2 DP2	17 RCC1 1 DP1	16 RCC0 0 DP0
RDHS3 0x0708 p107	R W R W	Read H 31 0 15 0	eader Sect 30 0 14 0	tion 3 29 RES 13 0	28 PPI 12 0	27 NFI 11 0	26 SYN 10 DP10	25 SFI 9 DP9	24 RCI 8 DP8	23 0 7 DP7	22 0 6 DP6	21 RCC5 5 DP5	20 RCC4 4 DP4	19 RCC3 3 DP3	18 RCC2 2 DP2	17 RCC1 1 DP1	16 RCC0 0 DP0
RDHS3 0x0708 p107 MBS 0x070C	R W R W	Read H 31 0 15 0 Messag 31	eader Sect 30 0 14 0 e Buffer S 30	tion 3 29 RES 13 0 tatus	28 PPI 12 0	27 NFI 11 0	26 SYN 10 DP10	25 SFI 9 DP9	24 RCI 8 DP8	23 0 7 DP7	22 0 6 DP6	21 RCC5 5 DP5	20 RCC4 4 DP4	19 RCC3 3 DP3	18 RCC2 2 DP2	17 RCC1 1 DP1	16 RCC0 0 DP0
RDHS3 0x0708 p107 MBS 0x070C	R W R W	Read H 31 0 15 0 Messag 31	eader Sect 30 0 14 0 e Buffer S 30	tion 3 29 RES 13 0 tatus 29 RESS	28 PPI 12 0 28 PPIS	27 NFI 11 0 27 NFIS	26 SYN 10 DP10 26 SYNS	25 SFI 9 DP9 25 SEIS	24 RCI 8 DP8 24 RCIS	23 0 7 DP7 23 0	22 0 6 DP6 22 0	21 RCC5 5 DP5 21 CCS5	20 RCC4 4 DP4 20 CCS4	19 RCC3 3 DP3 19	18 RCC2 2 DP2 18	17 RCC1 1 DP1 17 17	16 RCC0 0 DP0 16
RDHS3 0x0708 p107 MBS 0x070C	R W R W	Read H 31 0 15 0 Messag 31 0	eader Sect 30 0 14 0 e Buffer S 30 0	tion 3 29 RES 13 0 tatus 29 RESS	28 PPI 12 0 28 PPIS	27 NFI 11 0 27 NFIS	26 SYN 10 DP10 26 SYNS	25 SFI 9 DP9 25 SFIS	24 RCI 8 DP8 24 RCIS	23 0 7 DP7 23 0	22 0 6 DP6 22 0	21 RCC5 5 DP5 21 CCS5	20 RCC4 4 DP4 20 CCS4	19 RCC3 3 DP3 19 CCS3	18 RCC2 2 DP2 18 CCS2	17 RCC1 1 DP1 17 CCS1	16 RCC0 0 DP0 16 CCS0
RDHS3 0x0708 p107 MBS 0x070C	R W W R W	Read H 31 0 15 0 Messag 31 0 15 15 15 15 15 15 15 15 15 15	eader Sect 30 0 14 0 e Buffer S 30 0	tion 3 29 RES 13 0 tatus 29 RESS 13	28 PPI 12 0 28 PPIS	27 NFI 11 0 27 NFIS	26 SYN 10 DP10 26 SYNS 10	25 SFI 9 DP9 25 SFIS 9	24 RCI 8 DP8 24 RCIS 8	23 0 7 DP7 23 0 7	22 0 6 DP6 22 0	21 RCC5 5 DP5 21 CCS5 5	20 RCC4 4 DP4 20 CCS4 4	19 RCC3 3 DP3 19 CCS3 3	18 RCC2 2 DP2 18 CCS2 2	17 RCC1 1 DP1 17 CCS1	16 RCC0 0 DP0 16 CCS0 0
RDHS3 0x0708 p107 MBS 0x070C p108	R W W R W R R	Read H 31 0 15 0 Messag 31 0 15 0 15 0 15 0 15 0 15 0 15	eader Sect 30 0 14 0 e Buffer S 30 0 14 FTA	tion 3 29 RES 13 0 tatus 29 RESS 13 0	28 PPI 12 0 28 PPIS 12 12 MLST	27 NFI 11 0 27 NFIS 11 ESB	26 SYN 10 DP10 26 SYNS 10 ESA	25 SFI 9 DP9 25 SFIS 9 TCIB	24 RCI 8 DP8 24 RCIS 8 8	23 0 7 DP7 23 0 7 SVOB	22 0 6 DP6 22 0 6 SVOA	21 RCC5 5 DP5 21 CCS5 5 CEOB	20 RCC4 4 DP4 20 CCS4 4 CEQA	19 RCC3 3 DP3 19 CCS3 3 SEQB	18 RCC2 2 DP2 18 CCS2 2 2 SEQA	17 RCC1 1 DP1 17 CCS1 17 CCS1 1 VFRB	16 RCC0 0 DP0 16 CCS0 0 VFRA
RDHS3 0x0708 p107 MBS 0x070C p108	R W W R W R W	Read H 31 0 15 0 Messag 31 0 15 FTB	eader Sect 30 0 14 0 e Buffer S 30 0 0 14 FTA	tion 3 29 RES 13 0 tatus 29 RESS 13 0	28 PPI 12 0 28 PPIS 12 NLST	27 NFI 11 0 27 NFIS 11 ESB	26 SYN 10 DP10 26 SYNS 10 ESA	25 SFI 9 DP9 25 SFIS 9 TCIB	24 RCI 8 DP8 24 RCIS 8 TCIA	23 0 7 DP7 23 0 7 SVOB	22 0 6 DP6 22 0 6 SVOA	21 RCC5 5 DP5 21 CCS5 5 CEOB	20 RCC4 4 DP4 20 CCS4 4 CEOA	19 RCC3 3 DP3 19 CCS3 3 SEOB	18 RCC2 2 DP2 18 CCS2 2 SEOA	17 RCC1 1 DP1 17 CCS1 17 CCS1 1 VFRB	16 RCC0 0 DP0 16 CCS0 0 VFRA
RDHS3 0x0708 p107 MBS 0x070C p108 OBCM	R W W R W R W	Read H 31 0 15 0 Messag 31 0 15 FTB Output	eader Sect 30 0 14 0 e Buffer S 30 0 0 14 FTA Buffer Co	tion 3 29 RES 13 0 tatus 29 RESS 13 0	28 PPI 12 0 28 PPIS 12 MLST 1ask	27 NFI 11 0 27 NFIS 11 ESB	26 SYN 10 DP10 26 SYNS 10 ESA	25 SFI 9 DP9 25 SFIS 9 TCIB	24 RCI 8 DP8 24 RCIS 8 8 TCIA	23 0 7 DP7 23 0 7 SVOB	22 0 6 DP6 22 0 6 SVOA	21 RCC5 5 DP5 21 CCS5 5 CEOB	20 RCC4 4 DP4 20 CCS4 4 CEOA	19 RCC3 3 DP3 19 CCS3 3 SEOB	18 RCC2 2 DP2 18 CCS2 2 SEOA	17 RCC1 1 DP1 17 CCS1 1 VFRB	16 RCC0 0 DP0 16 CCS0 0 VFRA
RDHS3 0x0708 p107 MBS 0x070C p108 OBCM 0x0710	R W W R W R W	Read H 31 0 15 0 Messag 31 0 15 FTB Output 31	eader Sect 30 0 14 0 e Buffer S 30 0 14 FTA Buffer Co 30	tion 3 29 RES 13 0 tatus 29 RESS 29 RESS 13 0 command M 29	28 PPI 12 0 28 PPIS 28 PIS 12 MLST 12 MLST 138k 28	27 NFI 11 0 27 NFIS 27 11 ESB 27	26 SYN 10 DP10 26 SYNS 10 ESA 26	25 SFI 9 DP9 25 SFIS 9 TCIB 25	24 RCI 8 DP8 24 RCIS 8 TCIA 8 TCIA 24	23 0 7 DP7 23 0 7 SVOB 23 23	22 0 6 DP6 22 0 6 SVOA 22	21 RCC5 5 DP5 21 CCS5 5 CEOB 21 21	20 RCC4 4 DP4 20 CCS4 4 CEOA 4 CEOA 20	19 RCC3 3 DP3 19 CCS3 7 SEOB 3 SEOB	18 RCC2 2 DP2 18 CCS2 2 SEOA 2 SEOA 18	17 RCC1 1 DP1 17 CCS1 1 VFRB 1 VFRB	16 RCC0 0 DP0 16 CCS0 0 VFRA 16
RDHS3 0x0708 p107 MBS 0x070C p108 OBCM 0x0710	R W W R W R W R R R	Read H 31 0 15 0 Messag 31 0 15 FTB Output 31 0	eader Sect 30 0 14 0 e Buffer S 30 0 14 FTA Buffer Co 30 0	tion 3 29 RES 13 0 tatus 29 RESS 13 0 mmand M 29 0	28 PPI 12 0 28 PPIS 28 PPIS 12 MLST 12 MLST 12sk 28 0	27 NFI 11 0 27 NFIS 27 11 ESB 27 0	26 SYN 10 DP10 26 SYNS 10 ESA 26 0	25 SFI 9 DP9 25 SFIS 9 TCIB 25 0	24 RCI 8 DP8 24 RCIS 8 TCIA 24 24 0	23 0 7 DP7 23 0 7 SVOB 23 0 23 0	22 0 6 DP6 22 0 6 SVOA 22 0 22 0	21 RCC5 5 DP5 21 CCS5 5 CEOB 21 0	20 RCC4 4 DP4 20 CCS4 20 CCS4 4 CEOA 20 0	19 RCC3 3 DP3 19 CCS3 3 SEOB 3 SEOB 19 0	18 RCC2 2 DP2 18 CCS2 2 SEOA 2 SEOA 18 0	17 RCC1 1 DP1 1 17 CCS1 1 VFRB 1 VFRB 17 RDSH	16 RCC0 0 DP0 16 CCS0 0 VFRA 0 VFRA 16 RHSH
RDHS3 0x0708 p107 MBS 0x070C p108 OBCM 0x0710	R W W R W W R W W	Read H 31 0 15 0 Messag 31 0 15 FTB Output 31 0	eader Sect 30 0 14 0 e Buffer S 30 0 14 FTA Buffer Co 30 0	tion 3 29 RES 13 0 tatus 29 RESS 13 0 mmand M 29 0	28 PPI 12 0 28 PPIS 12 MLST 1ask 28 0	27 NFI 11 0 27 NFIS 11 ESB 27 0	26 SYN 10 DP10 26 SYNS 10 ESA 26 0	25 SFI 9 DP9 25 SFIS 9 TCIB 25 0	24 RCI 8 DP8 24 RCIS 8 TCIA 24 24 0	23 0 7 DP7 23 0 7 SVOB 23 0	22 0 6 DP6 22 0 6 SVOA 22 22 0	21 RCC5 5 DP5 21 CCS5 5 CEOB 21 0	20 RCC4 4 DP4 20 CCS4 20 CCS4 4 CEOA 20 0	19 RCC3 3 DP3 19 CCS3 3 SEOB 19 19 0	18 RCC2 2 DP2 18 CCS2 2 SEOA 2 SEOA 18 0	17 RCC1 1 DP1 17 CCS1 17 CCS1 1 VFRB 1 VFRB 17 RDSH	16 RCC0 0 DP0 16 CCS0 0 VFRA 0 VFRA 16 RHSH
RDHS3 0x0708 p107 MBS 0x070C p108 OBCM 0x0710	R W W R W W R W W	Read H 31 0 15 0 Messag 31 0 15 FTB Output 31 0 15	eader Sect 30 0 14 0 e Buffer S 30 0 14 FTA Buffer Co 30 0 14 14	tion 3 29 RES 13 0 tatus 29 RESS 13 0 mmand M 29 0 0	28 PPI 12 0 28 PPIS 28 PPIS 12 MLST 12 MLST 12 8 0 0 12	27 NFI 11 0 27 NFIS 27 11 ESB 27 0 27	26 SYN 10 DP10 26 SYNS 10 ESA 26 0	25 SFI 9 DP9 25 SFIS 9 TCIB 25 0 25 0	24 RCI 8 DP8 24 RCIS 8 TCIA 24 0 24 0 8 8	23 0 7 DP7 23 0 7 SVOB 23 0 23 0 7	22 0 6 DP6 22 0 6 SVOA 22 0 22 0 6	21 RCC5 5 DP5 21 CCS5 5 CEOB 21 0 21 0	20 RCC4 4 DP4 20 CCS4 4 CEOA 20 0 0	19 RCC3 3 DP3 19 CCS3 3 SEOB 19 0 19 0	18 RCC2 2 DP2 18 CCS2 2 SEOA 2 SEOA 18 0	17 RCC1 1 DP1 7 7 CCS1 1 CCS1 1 VFRB 7 7 RDSH 1 RDSH	16 RCC0 0 DP0 16 CCS0 0 VFRA 0 VFRA 16 RHSH 16 RHSH 0
RDHS3 0x0708 p107 MBS 0x070C p108 OBCM 0x0710 p111	R W R W R W R R W R R	Read H 31 0 15 0 Messag 31 0 15 FTB Output 31 0 15 FTB 0 15 0 15 7 15 31 0 15	eader Sect 30 0 14 0 e Buffer S 30 0 14 FTA Buffer Co 30 0 14	tion 3 29 RES 13 0 tatus 29 RESS 13 0 mmand M 29 0 13	28 PPI 12 0 28 PPIS 12 MLST 12 MLST 1ask 28 0 12	27 NFI 11 0 27 NFIS 27 11 ESB 27 0 11	26 SYN 10 DP10 26 SYNS 10 ESA 26 0 10	25 SF1 9 DP9 25 SFIS 9 TCIB 25 0 9 9 7 CIB	24 RCI 8 DP8 24 RCIS 8 TCIA 24 0 24 0 8 8	23 0 7 DP7 23 0 7 SVOB 23 0 23 0 7	22 0 6 DP6 22 0 6 SVOA 22 0 22 0 6 5 VOA	21 RCC5 5 DP5 21 CCS5 5 CEOB 21 0 21 0 5 5	20 RCC4 4 DP4 20 CCS4 4 CEOA 20 CEOA 20 0 0	19 RCC3 3 DP3 19 CCS3 3 SEOB 3 SEOB 19 0 0 3	18 RCC2 2 DP2 18 CCS2 2 SEOA 2 SEOA 18 0 18 0 2	17 RCC1 1 DP1 7 17 CCS1 1 VFRB 1 VFRB 1 7 RDSH 1 1 RDSH	16 RCC0 0 DP0 16 CCS0 0 VFRA 0 VFRA 16 RHSH 0 0 RHSH

OBCR		Output	Buffer Co	ommand R	equest												
0x0714		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	0	0	0	0	0	0	0	0	0	OBRH6	OBRH5	OBRH4	OBRH3	OBRH2	OBRH1	OBRH0
	W																
p112		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	OBSYS	0	0	0	0	0	DEO	VIEW		ODDSC	ODDS5	ODDC4	ODDG2	ODDC2	ODDG1	ODDSA
	W							REQ	VIEW		OBK50	OBKS5	OBK54	OBK55	OBK52	OBKSI	OBK50

20.2. Assignment of FlexRay Configuration Parameters

Parameter	Bit(field)	Page
pKeySlotusedForStartup	SUCC1.TXST	55
pKeySlotUsedForSync	SUCC1.TXSY	55
gColdStartAttempts	SUCC1.CSA[4:0]	55
pAllowPassiveToActive	SUCC1.PTA[4:0]	55
pWakeupChannel	SUCC1.WUCS	55
pSingleSlotEnabled	SUCC1.TSM	55
pAllowHaltDueToClock	SUCC1.HCSE	55
pChannels	SUCC1.CCHA SUCC1.CCHB	55
pdListenTimeOut	SUCC2.LT[20:0]	59
gListenNoise	SUCC2.LTN[3:0]	59
gMaxWithoutClockCorrectionPassive	SUCC3.WCP[3:0]	60
gMaxWithoutClockCorrectionFatal	SUCC3.WCF[3:0]	60
gNetworkManagementVectorLength	NEMC.NML[3:0]	61
gdTSSTransmitter	PRTC1.TSST[3:0]	62
gdCASRxLowMax	PRTC1.CASM[6:0]	62
gdSampleClockPeriod	PRTC1.BRP[1:0]	62
pSamplesPerMicrotick	PRTC1.BRP[1:0]	62
gdWakeupSymbolRxWindow	PRTC1.RXW[8:0]	62
pWakeupPattern	PRTC1.RWP[5:0]	62
gdWakeupSymbolRxIdle	PRTC2.RXI[5:0]	63
gdWakeupSymbolRxLow	PRTC2.RXL[5:0]	63
gdWakeupSymbolTxIdle	PRTC2.TXI[7:0]	63
gdWakeupSymbolTxLow	PRTC2.TXL[5:0]	63
gPayloadLengthStatic	MHDC.SFDL[6:0]	64
pLatestTx	MHDC.SLT[12:0]	64
pMicroPerCycle	GTUC1.UT[19:0]	65
gMacroPerCycle	GTUC2.MPC[13:0]	65
gSyncNodeMax	GTUC2.SNM[3:0]	65
pMicroInitialOffset[A]	GTUC3.UIOA[7:0]	66
pMicroInitialOffset[B]	GTUC3.UIOB[7:0]	66
pMacroInitialOffset[A]	GTUC3.MIOA[6:0]	66
pMacroInitialOffset[B]	GTUC3.MIOB[6:0]	66

Parameter	Bit(field)	Page
gdNIT	GTUC4.NIT[13:0]	67
gOffsetCorrectionStart	GTUC4.OCS[13.0]	67
pDelayCompensation[A]	GTUC5.DCA[7:0]	68
pDelayCompensation[B]	GTUC5.DCB[7:0]	68
pClusterDriftDamping	GTUC5.CDD[4:0]	68
pDecodingCorrection	GTUC5.DEC[7:0]	68
pdAcceptedStartupRange	GTUC6.ASR[10:0]	68
pdMaxDrift	GTUC6.MOD[10:0]	68
gdStaticSlot	GTUC7.SSL[9:0]	69
gNumberOfStaticSlots	GTUC7.NSS[9:0]	69
gdMinislot	GTUC8.MSL[5:0]	69
gNumberOfMinislots	GTUC8.NMS[12:0]	69
gdActionPointOffset	GTUC9.APO[5:0]	70
gdMinislotActionPoint	GTUC9.MAPO[4:0]	70
gdDynamicSlotIdlePhase	GTUC9.DSI[1:0]	70
pOffsetCorrectionOut	GTUC10.MOC[13:0]	70
pRateCorrectionOut	GTUC10.MRC[10:0]	70
pExternOffsetCorrection	GTUC11.EOC[2:0]	71
pExternRateCorrection	GTUC11.ERC[2:0]	71

21. Ordering Information

Part number	Package	Remarks
MB91F465XAPMC-GE1	100-pin plastic QFP (FPT-100P-M20)	Lead-free package

22. Package Dimension

23. Revision History

Version	Date	Remark
2.0	2008-10-15	Initial version
2.1		 Pinout: Increased the size for better readability Notes on PS register: Updated for better readability Embedded Program/Data Memory: Added note about flash memory operation mode switching Flash Security: Corrected FSV2 table header added Notes About Flash Memory CRC Calculation DC Characteristics: Corrected pin name of Analog input leakage current into ANn and added footnote A/D converter characteristics added Offset between input channels corrected "linearity error" into "nonlinearity error"

24. Main Changes

Spansion Publication Number: DS07-16611

Page	Section	Change Results
Rev. 1.0		
84	Electrical Characteristics	Changed the table in "4. A/D converter characteristics". (LSB \rightarrow V AVRL + 2.5 \rightarrow AVRL + 2.5 LSB AVRL + 0.5 \rightarrow AVRL + 0.5 LSB AVRL - 1.5 \rightarrow AVRL - 1.5 LSB) (LSB \rightarrow V AVRH + 0.5 \rightarrow AVRH + 0.5 LSB AVRH - 1.5 \rightarrow AVRH - 1.5 LSB AVRH - 3.5 \rightarrow AVRH - 3.5 LSB)
92		Changed the figure in "6.3. LIN-USART Timings at VDD5 = 3.0 to 5.5 V". $ (V_{OH} \rightarrow V_{IH} \\ V_{OL} \rightarrow V_{IL}) $
115	Programmer's Model	Changed "2. Customer Registers". (CIF0 = 0xD000, CIF1 = 0xD004, CIF2 = 0xD008 und CIF3 = $0xD00C$ \rightarrow CIF0 = 0xD000, CIF1 = 0xD004, CIF2 = 0xD008 and CIF3 = $0xD00C$)
Rev. 2.0		
239	Ordering Information	Changed part number
-	-	Company name and layout design change

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB91460X Series FR60 32-bit Microcontrollers Document Number: 002-04611				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	—	AKIH	09/26/2014	Migrated to Cypress and assigned document number 002-04611. No change to document contents or format.
*A	5206445	AKIH	04/07/2016	Updated to Cypress format.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2009-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under these claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware product. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 32-bit Microcontrollers - MCU category:

Click to view products by Cypress manufacturer:

Other Similar products are found below :

MB91F575BHSPMC-GSE1 MB91F594BSPMC-GSE1 PIC32MX120F032B-50I/ML MB91F464AAPMC-GSE2 MB91F577BHSPMC-GSE1 MB91F577BHSPMC1-GSE1 MB91F528USCPMC-GSE2 MB91F248PFV-GE1 MB91F594BPMC-GSE1 MB91243PFV-GS-136E1 MB91F577BHSPMC1-GSE1 PIC32MM0032GPL020-E/ML PIC32MM0016GPL028-E/SS PIC32MM0016GPL028-E/ML PIC32MM0032GPL028-E/ML PIC32MM0032GPL028-E/M6 MB91F526KSEPMC-GSE1 FT902L-T R5F564MLCDFB#31 R5F564MLCDFC#31 R5F523E5ADFL#30 R5F524TAADFF#31 MCF51AC256ACPUE PIC32MX150F128D-I/ML PIC32MX230F064D-I/PT PIC32MM0064GPL028-I/ML PIC32MM0064GPL028-I/SP PIC32MM0064GPL028-I/SO PIC32MX120F032D-I/TL PIC32MX130F064D-I/ML PIC32MZ2064DAB169-I/HF PIC32MZ2064DAB288-I/4J ATUC256L4U-AUT R5F56318CDBG#U0 PIC32MX150F128C-I/TL PIC32MX130F064C-ITL PIC32MX154F128D-I/PT PIC32MX154F128B-V/SO AT32UC3L0128-AUT PIC32MX254F128B-I/SO PIC32MX230F128H-I/MR PIC32MX150F256H-I/MR PIC32MX150F128D-50I/TL PIC32MZ1064DAB288-I/4J PIC32MX21064DAB169-I/HF ATUC64D4-Z1UT AT32UC3A3128S-CTUT ATUC64L3U-Z3UT MEC1428-SZ-C1 TMS320F28052FPNQ