

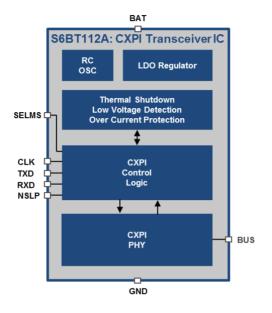
S6BT112A01/S6BT112A02

ASSP CXPI Transceiver IC for Automotive Network

The S6BT112A01 and S66BT112A02 are integrated transceiver ICs for automotive communication network with Clock Extension Peripheral Interface (CXPI). It has a flexible bit rate ranging from 2.4 Kbps to 20 Kbps and is JASO CXPI compliant. This CXPI transceiver IC connects the CXPI data link controller and the CXPI Bus line, and enables direct connection to the vehicle battery with a high surge protection. Additionally, these devices have an optional Spread Spectrum Clock Generator (SSCG) function.

During Sleep mode, S6BT112A01 and S6BT112A02 reduce power consumption. The Cypress CXPI transceiver IC supports master node and slave node as selected SELMS pins.

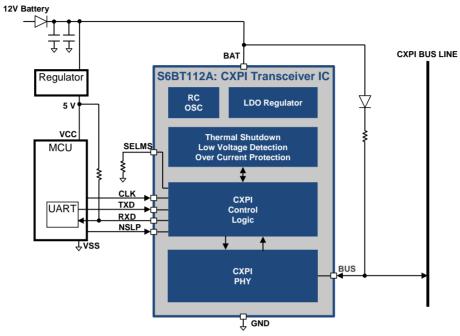
Features


- Compliant with the JASO CXPI (JASO D 015-3-15) standard
- Compliant with the SAE CXPI (J3076_201510) standard
- ■Supports 2.4 Kbps to 20 Kbps bitrate
- ■Waveshaping for low Electromagnetic Interference (EMI)
- ■Operating voltage range: 5.3 V to 18 V
- Direct battery operation with protection against load dump, jump start, and transients
- ■BUS short to V_{BAT} overcurrent protection.
- Loss of ground protection; BUS pin leakage is lower than ±1 mA.
- Easy selection of master node or slave node.

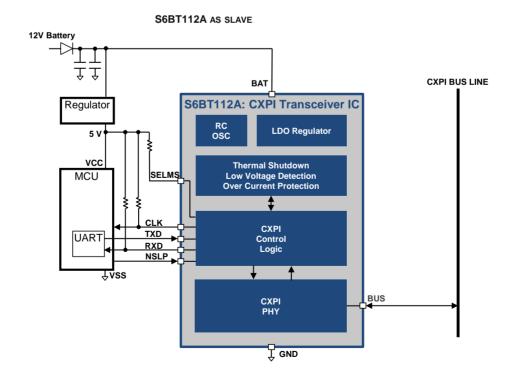
- ■Overtemperature protection
- ■Low-voltage detection.
- ■Supports Sleep and Wakeup modes
- ■Sleep mode current: 6 µA (typical at Slave)
- ■Halogen-free 8-pin SOIC package
- ESD protection HBM (1.5 kΩ, 100 pF) ±8 kV (BUS pin, BAT pin)
- ■Voltage tolerance ±40 V (BUS pin)
- S6BT112A01: With SSCG. S6BT112A02: Without SSCG.

198 Champion Court

S6BT112A Block Diagram

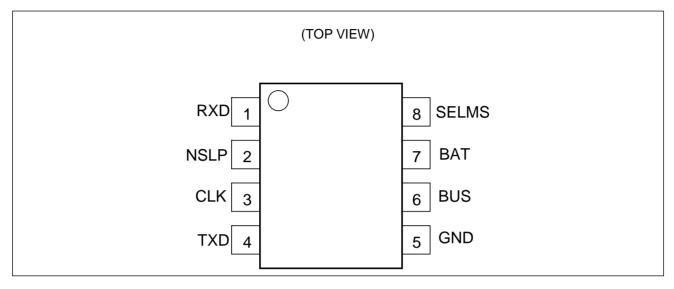

Table of Contents

Features	1
S6BT112A Block Diagram	2
1. Applications	4
2. Pin Assignment	5
3. Pin Descriptions	6
4. Block Diagram	7
5. Function Description	8
5.1 Operation Modes	8
5.2 Master Node	9
5.2.1 Normal Mode	q
5.2.2 Sleep Mode	
5.2.3 Standby Mode	
5.2.4 Power-on Sequence	
5.3 Slave Node	
5.3.1 Normal Mode	12
5.3.2 Sleep Mode	13
5.3.3 Standby Mode	15
5.3.4 Power-on Sequence	15
5.4 Common Functions	16
5.4.1 Overtemperature Protection	16
5.4.2 WP_ThermalShutdown	16
5.4.3 Low-voltage Reset	17
5.4.4 Overcurrent Protection	
5.4.5 Secondary Clock Master	18
5.4.6 Arbitration	20
5.4.7 TXD Toggle	21
6. Absolute Maximum Ratings	23
7. Recommended Operating Conditions	24
8. Electrical Characteristics	25
9. Ordering Information	36
10. Package Dimensions	36
Document History	37
Sales, Solutions, and Legal Information	38



1. Applications

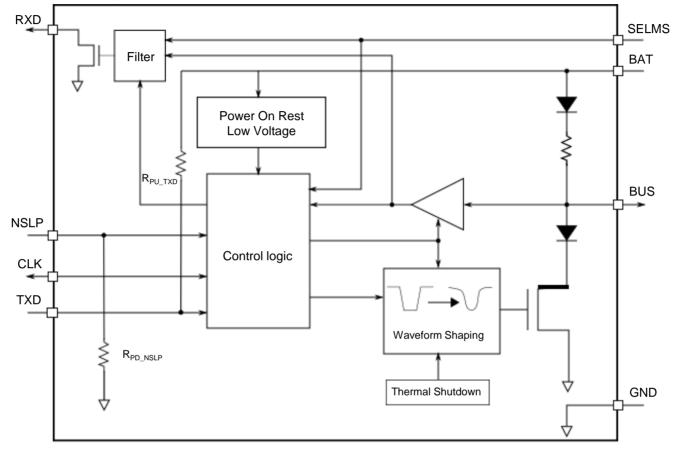
The following figures illustrate the typical applications of S6BT112A01 or S6BT112A02.



2. Pin Assignment

Figure 2-1 Pin Assignment

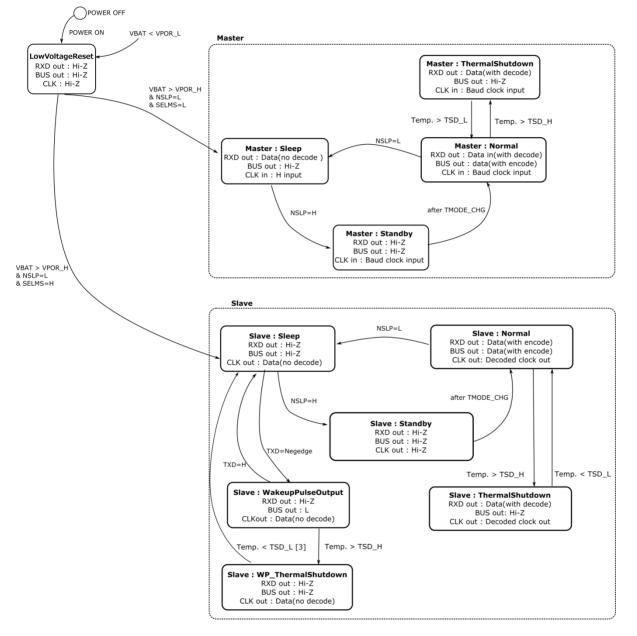
3. Pin Descriptions


Table 3-1 Pin Descriptions

Pin Number	Symbol	Direction	Description	
1	RXD	Output	Receive data output (open-drain).	
			Requires external pull-up resistor. (refer to Table 7-1)	
			Sleep control input.	
2	NSLP	Input	Low: Sleep mode or Standby mode	
2	NOLF	mput	High: Normal mode.	
			Refer to section 5.2.2 or section 5.3.2	
			When the SELMS pin is Low, the CLK pin is the Baud rate clock input.	
			Input clock signal with baud rate frequency.	
		I/O	(When the input clock frequency is 20 kHz, the bit rate is 20 Kbps)	
3	CLK		When the SELMS pin is High, the CLK pin is Baud rate clock output.	
3			Outputs clock signal with baud rate frequency.	
			(When the output clock frequency is 20 kHz , the bit rate is 20 Kbps)	
			Open drain output.	
			Requires external pull-up resistor. (refer to Table 7-1)	
4	TXD	Input	Transmit data input	
5	GND	-	Ground	
6	BUS	I/O	CXPI BUS line Input/Output	
7	BAT	-	Battery (voltage source) supply.	
			Master / slave node select input.	
8	SELMS	Input	Low: Master	
			High: Slave	

4. Block Diagram

Figure 4-1 Block Diagram



5. Function Description

5.1 Operation Modes

Figure 5-1 State Transition Diagram

Notes

- [1] : "Hi-z" means high-impedance.
- [2] : Switching of the master / slave during operation is prohibited. Refer to section 5.4.5.
- [3] : The operation mode, after the transceiver powers on, has to start from sleep mode.
- [4] : If TXD is Low when releasing the thermal shutdown, TXD has to toggle "High" before valid. TXD is a Low signal input. For details, refer to section 5.4.7.

5.2 Master Node

There is only one node in a system, which functions as a schedule manager and a primary clock master.

The transceiver works in Master mode when low-level is applied on SELMS.

- The baud rate clock is applied on the CLK pin in the Master state.
- The transceiver is usually used as the "Master" or "Slave", except for the "Secondary Clock master function".
- The SELMS input should not be changed in normal mode.
- The SELMS input should not be changed during wakeup pulse transmission in Sleep mode.
- The CLK pin inputs for the baud rate clock in Master state.

Table 5-1 SELMS Pin State for Master

Pin	Input Signal	Master/Slave
SELMS	Low	Master

Figure 5-2 CLK Input -> BUS signal (Master)

NSLP H	-
TXD H	-
CLK(in)	-
BUS	-

5.2.1 Normal Mode

The Normal mode denotes the state to which communication is possible. The master node transmits the clock to the CXPI BUS, which means that the clock is master. During the Normal mode, the transmitted signal is encoded and the received signal is decoded. When the transmitting node transmits data to the CXPI BUS, it transmits to the TXD pin after converting the data to UART format by 1 byte. The data is transmitted to the CXPI BUS as LSB first.

When the receiving node receives data from the CXPI BUS, it receives from the RXD pin in the UART format by 1 byte. The UART format is listed in Table 5-2. Refer to the JASO CXPI (JASO D 015-3:2015) standard for details of the operation.

Table 5-2 UART Format

5.2.2 Sleep Mode

The Sleep mode denotes a power-saving state during which each node stops transmitting and receiving data. All nodes transition to Sleep mode immediately after power-on. The nodes also transition to Sleep mode after the Sleep processing is executed from the Normal mode and transition from Standby mode or Normal mode due to CXPI BUS error.

When each node receives the Wakeup factor during the Sleep mode, it transitions to the Standby mode. The Wakeup factor (for example, detecting that the ignition has been turned on) of each node is different from each application (for example, detecting that the ignition has been turned on) and the external factor that receives the Wakeup pulse from the CXPI BUS. During the Sleep mode, the reception signal is received without decoding. The MCU can detect a wakeup pulse width monitor using the RXD signal.

The sleep mode is initiated by a falling edge on the NSLP pin while TXD is already set High. The CXPI BUS transmit path is immediately disabled when the NSLP pin goes Low. All wake-up events must be maintained for a specific period (refer to the T_{MODE_CHG} parameter in Table 8-7).

Table 5-3 Transition from Normal to Sleep mode

Pin	Pin State	Description
TXD	High	No data transmitting
CLK	High	No clock receiving
NSLP	High to Low	-
RXD	High impedance	High level with external pull-up resistor.
BUS	High impedance	High level with external pull-up resistor.
SELMS	Low	-

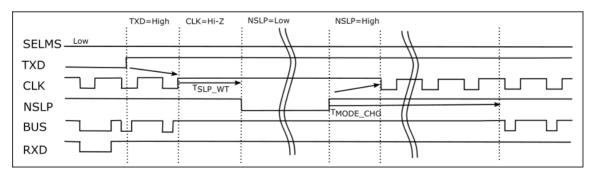

Note: The "Pin State" indicates before the falling edge in the NSLP pin

Table 5-4 Transition from Sleep to Normal mode

Pin	Pin State	Description
TXD	High	No data transmitting
CLK	High	No clock receiving
NSLP	Low to High	-
RXD	High impedance	High level with external pull-up resistor.
BUS	High impedance	High level with external pull-up resistor.
SELMS	Low	-

Note: The "Pin State" indicates the state before the rising edge in the NSLP pin

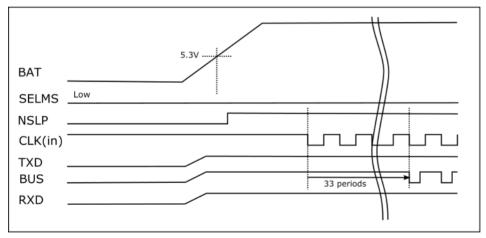
Figure 5-3 Transition Sequence Between Sleep and Normal Mode

Note:

[1] "Hi-Z" means high-impedance.

Table 5-5 Bitrate of 20 Kbps (50 µs/Bit)

UART Receive Data	Number of Bits of L Level	Wakeup Pulse Width
FCH	3-bit	150 µs
F8H	4-bit	200 µs
F0H	5-bit	250 µs
E0H	6-bit	300 µs
СОН	7-bit	350 µs
80H	8-bit	400 µs
00H	9-bit	450 µs


5.2.3 Standby Mode

The Standby mode denotes the prepared state to the Normal mode after releasing the Sleep mode. During the CLK state (in slave node), the RXD pin and the BUS pin are in a high-impedance state. After T_{MODE_CHG} , the state changes to the Normal mode.

5.2.4 Power-on Sequence

The power-on sequence occurs at power-up while setting up Sleep mode. When V_{BAT} is above 5.3 V, the NSLP pin should be in a High state. After transition to the normal mode, activate the BUS pin after a clock input of 33 periods.

Figure 5-4 Power-on Sequence of Master Node

5.3 Slave Node

All the nodes, except the master node, are connected with the system. The transceiver works as Slave when High level is applied on SELMS. The CLK pin outputs the baud rate clock during the Slave state.

The transceiver is usually used as the "Master" or "Slave", except for the "Secondary Clock master function".

Table 5-6 SELMS Pin State for Slave

Pin	Input Signal	Master/Slave		
SELMS	High	Slave		

The SELMS input should not be changed during the Normal mode or during wakeup pulse transmission in the Sleep mode. The CLK pin outputs the baud rate clock in Slave node.

Figure 5-5 CLK Pin Clock Output (Slave)

SELMS	High
NSLP BUS	High ——

5.3.1 Normal Mode

The Normal mode can perform data transmit and receive. During the Normal mode, the signal that is transmitted is encoded and the signal that is received is decoded. When the transmitting node transmits data to the CXPI BUS, it transmits to the TXD pin after converting the data to UART format by 1 byte. The data is transmitted to the CXPI BUS by LSB first. When the receiving node receives data from the CXPI BUS, it revises from the RXD pin in the UART format by 1 byte. The UART format is shown in Table 5-7. Refer to the JASO CXPI (JASO D 015-3:2015) standard for details of the operation.

Table 5-7 UART Format

Start bit	bit 0 (LSB)	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6	bit 7(MSB)	Stop bit
-----------	-------------	-------	-------	-------	-------	-------	-------	------------	----------

5.3.2 Sleep Mode

The Sleep mode denotes a state of power saving during which each node stops transmit and receive of data. All nodes transition to the Sleep mode immediately after power-on. They also transition to the Sleep mode after the sleep processing is executed from the Normal mode and transition from the Standby mode or the Normal mode due to CXPI BUS error.

During the Sleep mode, when each node receives the Wakeup factor, it transitions to the Standby mode. The Wakeup factor is different from each application and is composed of the internal factor (for example, detecting that the ignition has been turned on) and the external factor that receives the Wakeup pulse from the CXPI BUS.

During the Sleep mode, the reception signal is received without decoding. The sleep mode is initiated by a falling edge on the NSLP pin while the TXD pin is already set High. The CXPI BUS transmit path is immediately disabled when the NSLP pin goes Low.

All wake-up events must be maintained for a specific period (refer to T_{MODE_CHG} in Table 8-7).

Figure 5-6 Transition Sequence Between Sleep and Normal Mode

	NSLP=Low	NSLP=High
SELMS High		
TXD High		
ськ тот страни	× //	
NSLP	<u> </u>	
BUS		
RXD	1)	<u> </u>

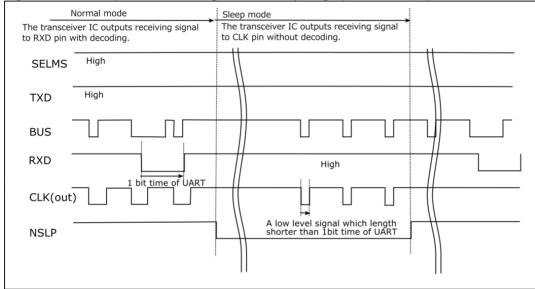
Table 5-8 Transition from Normal to Sleep mode

Pin	Pin State	Description
TXD	High	No data transmitting
CLK	High impedance	High level with external pull-up resistor.
NSLP	High to Low	-
RXD	High impedance	High level with external pull-up resistor.
BUS	High impedance	High level with external pull-up resistor.
SELMS	High	-

Note: The "Pin State" indicates the state before the falling edge of the NSLP pin.

Table 5-9 Transition from Sleep to Normal mode

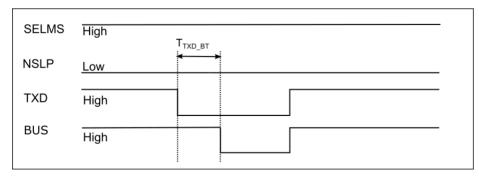
Pin	Pin State	Description
TXD	High	No data transmitting
CLK	High impedance	High level with external pull-up resistor.
NSLP	Low to High	-
RXD	High impedance	High level with external pull-up resistor.
BUS	High impedance	High level with external pull-up resistor.
SELMS	High	-


Note: The "Pin State" indicates the state before the rising edge of the NSLP pin.

Receiver function in Sleep mode

During the Sleep mode, the received signal will be output from the CLK pin without decoding a received signal. The RXD pin outputs at High level. When the Master node transmits the encoded PWM clock signal to the CXPI BUS during a wake-up sequence, Slave MCUs receive shorter low-level width signals than the UART communication period and possibly get errors. This is because the Slave node is received without decoding. To avoid these errors, S6BT112A01 or S6BT112A02 CXPI transceiver IC outputs receive signals on the CLK pin in the Sleep mode.

MCU can detect a wake-up pulse width to monitor the CLK signal. (Figure 5-7)

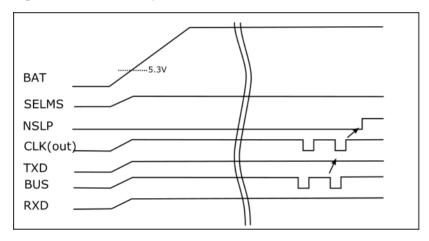

Figure 5-7 CLK Output of Receive Signal, RXD stays High (for Slave node)

■Wakeup function

The WakeupPulseOutput state transmits out the wakeup pulse in the Slave node. When the slave device returns from the Sleep mode, it must transmit a wake-up pulse. As the NSLP pin is in a Low state, the TXD pin transmits a Low state. The TXD signal is transmitted to the BUS pin without encode. The TXD pin outputs the signal width, which is a value obtained by subtracting the T_{TXD_BT}:

Signal width = TXD signal ("L") – TTXD_BT("L")

Figure 5-8 Wake-Up Pulse Transmission



5.3.3 Standby Mode

This is the standby state during the Normal mode after releasing the Sleep mode. During this state, CLK (in slave node), the RXD pin, and the BUS pin enter the high-impedance state. After " T_{MODE_CHG} ," this state changes to the Normal mode.

5.3.4 Power-on Sequence

This sequence occurs at power-up, while setting up the Sleep mode. When V_{BAT} is above 5.3 V, the NSLP pin should be in a High state.

Figure 5-9 Power-on Sequence of Slave Node

5.4 Common Functions

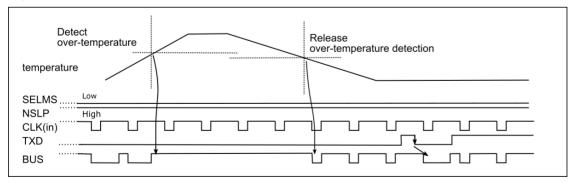
5.4.1 Overtemperature Protection

The overtemperature protection (OTP) monitors the die temperature. If the junction temperature exceeds the shutdown junction temperature, $T_{SD_{-}H}$, the thermal protection circuit disables the output driver.

The driver is enabled again when the junction temperature falls below T_{SD_L} and theTXD pin is toggled. (see Table 5-10)

5.4.2 WP_ThermalShutdown

The WP_ThermalShutdown state detects the "shutdown temperature" during the WakeupPulseOutput mode. The overtemperature protection is inactive during the Sleep mode.


Table 5-10 Input Signal Change after Recover	ry from thermal shutdown
--	--------------------------

Master/Slave	Pin	Toggle of Input Signal
Master	TXD	Required
Slave	TXD	Required

Table 5-11 State Under Thermal Shutdown

Master/Slave	Pin	Description
	TXD	Normal function
	NSLP	High: Normal mode / Low: Sleep mode (Thermal protection inactive)
Master	CLK(input)	Normal function
	RXD	Normal function
	BUS	High impedance
	TXD	Normal function
	NSLP	High: Normal mode / Low: Sleep mode (Thermal protection inactive)
Slave	CLK	Normal function
	RXD	Normal function
	BUS	High impedance

Figure 5-10 Sequence of Thermal Shutdown

5.4.3 Low-voltage Reset

The low-voltage reset state detects the low voltage of the BAT pin. This device has an integrated power-on reset and low-voltage detection at the supply BAT.

If the supply voltage, V_{BAT}, is dropping below the power-on reset level (that is, V_{BAT}<V_{POR_L}), then change the LowPowerReset mode. In the LowPowerReset mode, the output stage is disabled and communication to the CXPI BUS is not possible.

If the power supply reaches a higher level than the low-voltage reset level, V_{BAT}> V_{POR_H}, then change the Standby mode (the NSLP pin is High) or Sleep mode (the NSLP pin is Low).

After releasing LowPowerRest mode, enable the Power-up sequence.

Table 5-12 Input Signal Change after Recovery from Low Voltage Reset

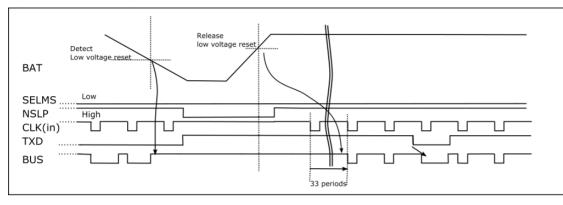

Master/Slave	Pin	Toggle of Input Signal
Master	TXD	Required
Slave	TXD	Required

Table 5-13 State Under Low voltage Reset

Master/Slave	Pin	Description	
	SELMS	Reset	
	TXD	Reset	
Master	NSLP	Reset	
Master	CLK	Reset(High impedance)	
	RXD	High impedance	
	BUS	High impedance	
	SELMS	Reset	
Slave	TXD	Reset	
	NSLP	Reset	
	CLK	Reset(High impedance)	
	RXD	High impedance	
	BUS	High impedance	

Figure 5-11 Low-Voltage Detection

After releasing the low-voltage reset mode, the logical value high is output to the BUS pin after a clock input of 33 periods. The TXD data is valid from the falling edge on the TXD pin.

5.4.4 Overcurrent Protection

The current in the transmitter output stage is limited to protect the transmitter against short-circuit to BAT or GND pins.

Master/Slave	Pin	Description
	TXD	Normal function
	NSLP	Normal function
Master	CLK	Normal function
	RXD	Normal function
	BUS	Output current limited by IBUS_LIM
	TXD	Normal function
	NSLP	Normal function
Slave	CLK	Normal function
	RXD	Normal function
	BUS	Output current limited by IBUS_LIM

Table 5-14 Overcurrent Protection

5.4.5 Secondary Clock Master

The node that detects the wakeup event transmits the wakeup pulse on to the CXPI BUS. If the primary clock master cannot transmit the clock to the CXPI BUS due to failure, the wakeup pulse is retransmitted. If the clock is not transmitted to the CXPI BUS, each node detects the CXPI BUS error.

The secondary clock master may transmit the clock to the CXPI BUS instead of the primary clock master if it detects that the clock does not exist, and confirms that the clock does not exist on the CXPI BUS for the period during which it transitions from the Sleep mode

Operation sequence from master to slave

The TXD input pin is set High and the CLK pin is high-impedance. A Low setting on the NSLP pin initiates a transition to the Sleep mode. After the RXD pin is confirmed to High state, the SELMS pin goes to High state. Table 5-15 shows the pin states just before the SELMS pin input signal change.

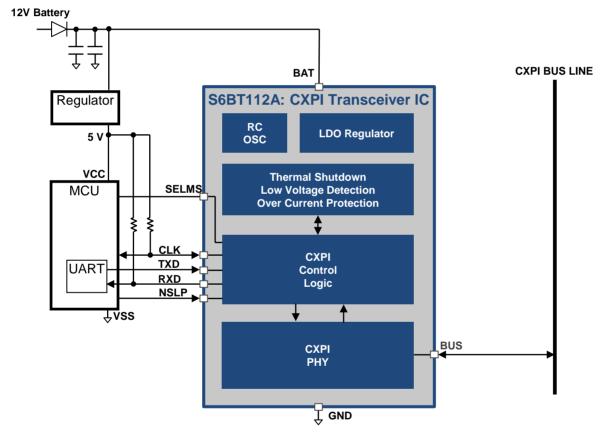


Table 5-15 Pin State Table (from Master to Slave)

Pin	Pin State	Description
TXD	High	No data transmitting
CLK	High impedance	High level with external pull-up resistor.
NSLP	Low	Sleep mode
SELMS	Low to High	-
RXD	High	No data receiving
BUS	High	No wakeup signal receiving preferred

Figure 5-12 Application example Secondary Clock Master

S6BT112A AS SLAVE (SECONDARY CLOCK MASTER)

Figure 5-13 Transition Sequence from Master to Slave

SELMS	TXD=High	CLK=Hi-Z	NSLP=Low	Slave
тхр			/	
СГК		T _{SLP_WT}		
NSLP			L/	
BUS	Ļ		\mathbf{X}	
RXD			RXD=High	<u></u>

Operation sequence from slave to master

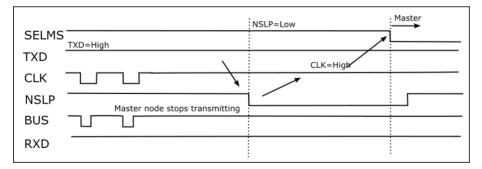

The TXD pin inputs high and the slave node transitions to the Sleep mode after the CLK pin was confirmed to High, and the SELMS pin goes to Low.

Table 5-16 Pin State Table (from Slave to Master)

Pin	Pin State	Description
TXD	High	No data transmitting
CLK	High impedance	No wakeup signal receiving
NSLP	Low	Sleep mode
SELMS	High to Low	-
RXD	High	-
BUS	High	No wakeup signal receiving preferred

Note: The pin states just before the SELMS input signal change.

Figure 5-14 Transition Sequence from Slave to Master

5.4.6 Arbitration

Transceivers arbitrate bit-by-bit. Arbitration in bytes is done in the MCU.

In the Normal mode, each node always compares the received bit from the CXPI BUS with the transmitted bit to the CXPI BUS. When the value of the bit is corresponding, the node may continuously transmit to the CXPI BUS. When the value of the bit is not corresponding, the loss of arbitration is detected, and the transmission of the bit after that shall discontinue. If the transmitting node detects the arbitration loss, it behaves as the receiving node. The data of each bit transmitted on the CXPI BUS performs arbitration from the start by the bit. Moreover, arbitration is targeted at the entire field of the frame. When two or more nodes begin transmitting at the same time, by arbitration only the node that transmits the highest priority frame can complete the transmission.

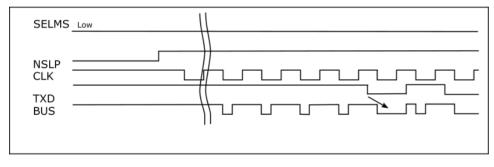
The MCU compares between the transmitted data (TXD) and received data (RXD). If the data difference is detected, MCU has to stop data transmission until finding IFS.

5.4.7 TXD Toggle

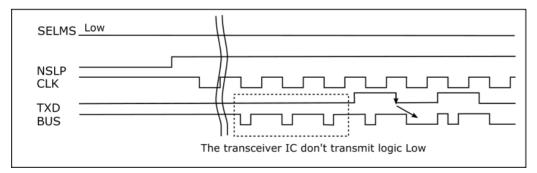
If the TXD pin is short to ground or open, the BUS pin output is not fixed Low (logic value). Therefore, it does not interfere with the communication of the other device.

An initial TXD dominant check prevents the bus line being driven to a permanent dominant state (blocking all network communications) if the TXD pin is forced permanently Low by a hardware and/or software application failure. The TXD input level is checked after a transition to the Normal mode.

If the TXD pin is Low, the transmit path remains disabled and is only enabled when the TXD pin goes High.


A TXD toggle is required in the following cases.

- Data transmission after recovery from low-voltage reset.
- Data transmission after recovery from thermal shutdown.
- □ First TXD data transmission in the Normal mode.
- □ First wake-up pulse transmission in sleep mode.


Short-circuit from the TXD pin to ground.(failure detect)

In the event of a short-circuit to ground or an open-wire on the TXD pin, the BUS pin output remains High (logical value '1') by this toggle function. In this case, by comparing the sent data to the TXD pin and received data from the RXD pin of the transceiver IC, the MCU can detect the permanent Low on the TXD pin by the data difference. In this case too, the receiver is active.

Figure 5-15 Normal Transmission Sequence of Master

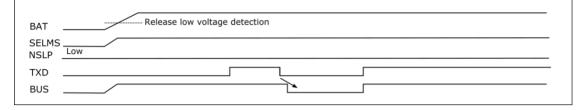


Figure 5-16 TXD Toggle of Master after Transition to Normal mode

Figure 5-17 Slave TXD Toggle after Recovery from Low voltage State

6. Absolute Maximum Ratings

Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.

Deveryor	Cumhal	Conditions	Rat	ting	Unit
Parameters	Symbol	Conditions	Min	Max	Unit
Power supply voltage	Vbat	BAT pin	-0.3	40	V
	VNSLP	NSLP pin	-0.3	6.9	V
	VSELMS	SELMS pin	-0.3	18	V
Input voltage	Vclk	CLK pin	-0.3	6.9	V
	V _{TXD}	TXD pin	-0.3	6.9	V
	Vrxd	RXD pin	-0.3	6.9	V
Output voltage	Vclk	CLK pin	-0.3	6.9	V
BUS pin voltage	VBUS	BUS pin	-40	40	V
BUS pin ESD	N	DUO air	-8	8	kV
(1.5 kΩ, 100 pF)	Vesdbus	BUS pin	0	0	
BAT pin ESD	Vesdbat	BAT pin	-8	8	kV
(1.5 kΩ, 100 pF)	VESUBAI				
		NSLP pin			
ESD		SELMS pin			
	Vesd	CLK pin	-2	2	kV
(1.5 kΩ, 100 pF)		TXD pin			
		RXD pin			
Storage temperature	T _{STG}	-	-55	150	°C
Maximum	Тјмах	-	-40	150	°C
junction temperature	I JMAX	-	_		-

7. Recommended Operating Conditions

Table 7-1 Recommended condition

Parameters	Symbol Conditions				Unit	
Falameters	Symbol	Conditions	Min	Тур	Max	Unit
Power supply voltage	VBAT	BAT pin [1]	5.3	-	18	V
Operating ambient temperature	T _A	-	-40	+25	+125	°C
BUS pin pull-up resistance	Rmaster	BUS pin (Master node : SELMS=0V)	900	1000	1100	Ω
RXD pin pull-up resistance	R _{RXD}	RXD pin	2.4	10	-	kΩ
CLK pin pull-up resistance	R _{CLK}	CLK pin (SELMS=5V)	2.4	10	-	kΩ

Note

[1]: (18 V < V_{BAT} \leq 27 V) less than 2 minutes.

WARNING:

- 1. The recommended operating conditions are requiredir to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.
- 2. Any use of semiconductor devices will be under their recommended operating condition.
- 3. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.
- 4. No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

8. Electrical Characteristics

Table 8-1 DC Characteristics

 V_{BAT} = 5.3 V~27 V^[1], T_A = -40~125 °C; All voltages are referenced to Pin 8 (GND); Positive currents flow into the IC; unless otherwise specified.

Parameters	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit
			Normal mode TXD=5 V CLK=20 kHz, Duty 50%	-	1.4	2.9	mA
			Normal mode TXD=0 V CLK=20 kHz, Duty 50%	-	2.0	4.0	mA
			Sleep mode $V_{BAT} = 12 V$ TXD=5 V SELMS=5 V BUS= V_{BAT} $T_A=25 °C$	-	6	-	μΑ
Power supply current	Ibat	BAT	Sleep mode $V_{BAT} = 12 V$ TXD=5 V SELMS=0 V BUS= V_{BAT} $T_A=25 °C$	-	16	-	μΑ
			Sleep mode V _{BAT} =12 V TXD=5 V SELMS=5 V BUS= V _{BAT}	-	-	50	μΑ
			Sleep mode V _{BAT} =12 V TXD=5 V SELMS=0 V BUS= V _{BAT}	-	-	60	μΑ
BUS pin pull-up resistance	RBUSpu	BUS	-	20	30	47	kΩ
BUS short circuit current	IBUS_LIM	BUS	V _{BUS} =18 V	40	-	200	mA

Parameters	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit
BUS input leak current (HIGH)	BUS_PAS_rec	BUS	BUS=18 V V _{BAT} =5.3 V TXD=5 V T _A =25 °C	-	-	20	μΑ
BUS input leak current (LOW)	IBUS_PAS_dom	BUS	BUS=0 V V _{BAT} =12 V TXD=5 V	-1	-	-	mA
loss of ground BUS leak current	Ibus_no_gnd	BUS	V _{BAT} =GND=18 V BUS=0 V	-1	-	1	mA
loss of battery BUS leak current	I _{BUS_NO_BAT}	BUS	V _{BAT} =0 V BUS=18 V T _A =25 °C	-	-	30	μΑ
BUS drop voltage	VBUSDR	BUS	V _{BAT} =13.5 V IBUSsource=-100 μA	2.4	-	5.7	V
BUS low level output	V_{O_dom}	BUS	TXD=0 V V _{BAT} =7 V BUS pull-up resistance= 500Ω	-	-	1.4	V
voltage	Vo_dom	BUS	TXD=0 V V _{BAT} =18 V BUS pull-up resistance= 500Ω	-	-	2	V
Receiver low level threshold voltage	VBUSdom	BUS	Vват =12V, Та=25 °С	-	-	0.423 Vbat	V
Receiver high level threshold voltage	V _{BUSrec}	BUS	VBAT =12V, TA=25 °C	0.556 V _{BAT}	-	-	V
Receiver hysteresis voltage	V _{HYS}	BUS	V _{BAT} =12V, T _A =25°C	-	-	0.133 V _{BAT}	V
Low level power-on reset threshold voltage	V _{POR_L}	BAT	-	3.1	3.8	4.7	V
High level power-on reset threshold voltage	Vpor_h	BAT	-	3.3	4.1	4.9	V
power-on reset hysteresis voltage	VPOR_HYS	BAT	-	0.2	0.3	0.5	V
Temperature shutdown threshold	T _{SD_H}	-	[2]	156	165	174	°C
Temperature shutdown release threshold	T _{SD_L}	-	[2]	151	159	168	°C

Notes

[1]: (18 V < $V_{BAT} \le 27$ V) less than 2 minutes.

[2]: Guaranteed by design

Table 8-2 DC Characteristics CLK Pin

(If SELMS = 5 V, this pin operates as Open Drain Output Pin. If SELMS = 0 V, this pin operates as an input pin)

 V_{BAT} = 5.3 V \sim 27 V^[1], T_A = -40 \sim 125 °C; all voltages are referenced to Pin 8 (GND). **P**ositive current flow into the IC; unless otherwise specified.

Parameters	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit
High level input voltage	Vih_clk	CLK	SELMS = 0 V	2	-	6	V
Low level input voltage	Vil_clk	CLK	SELMS = 0 V	-0.3	-	0.8	V
Hysteresis range of input voltage	Vhys_clk	CLK	SELMS = 0 V	0.03	-	0.5	V
Low level output voltage	Vol clk	CLK	I _{CLK} = 2.2 mA	-	-	0.6	V
Low level output voltage			SELMS = 5 V				
Low level current	Iol_clk	CLK	SELMS = 5 V	1.3	3	-	mA
High level leak current	Iilh_clk	CLK	SELMS = 5 V	-3	-	3	μA
Low level leak current	lill_clk	CLK	SELMS = 5 V	-3	-	3	μA

Note

[1]: (18 V < $V_{BAT} \le 27$ V) less than 2 minutes.

Table 8-3 DC Characteristics NSLP Pin

 $V_{BAT} = 5.3 \text{ V} \sim 27 \text{ V}^{[1]}$, $T_A = -40 \sim 125 \text{ °C}$; all voltages are referenced to Pin 8 (GND). Positive current flow into the IC; unless otherwise specified.

Parameters	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit
High level input voltage	$V_{\text{IH_NSLP}}$	NSLP	-	2	-	6	V
Low level input voltage	VIL_NSLP	NSLP	-	-0.3	-	0.8	V
Hysteresis range of input voltage	V _{HYS_NSLP}	NSLP	-	0.03	-	0.5	V
Internal pull-down resistance	Rpd_nslp	NSLP	NSLP = 5 V	100	250	650	kΩ
Low level leak current	IILL_NSLP	NSLP	NSLP = 0 V	-3	-	3	μA

Note

[1]: (18 V < V_{BAT} \leq 27 V) less than 2 minutes

Table 8-4 TXD Pin

 V_{BAT} = 5.3 V~27 V^[1], T_A = -40~125 °C; all voltages are referenced to Pin 8 (GND). Positive current flow into the IC; unless otherwise specified.

Parameters	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit
High level input voltage	V _{IH_TXD}	TXD	-	2	-	6	V
Low level input voltage	VIL_TXD	TXD	-	-0.3	-	0.8	V
Hysteresis range of input voltage	Vhys_txd	TXD	-	0.03	-	0.5	V
Internal pull-up resistance	Rpu_txd	TXD	TXD = 0 V	50	125	325	kΩ
High level leak current	Iilh_txd	TXD	TXD = 5 V	-3	-	3	μA

Note

[1]: (18V < $V_{BAT} \le 27V$) less than 2 minutes

Table 8-5 SELMS Pin

 $V_{BAT} = 5.3 \text{ V} \sim 27 \text{ V}^{[1]}$, $T_A = -40 \sim 125 \text{ °C}$; all voltages are referenced to Pin 8 (GND). Positive current flow into the IC; unless otherwise specified.

Parameters	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit
High level input voltage	VIH_SELMS	SELMS	-	2	-	6	V
Low level input voltage	VIL_SELMS	SELMS	-	-0.3	-	0.8	V
Hysteresis range of input voltage	VHYS_SELMS	SELMS	-	0.03	-	0.5	V
Internal pull-up resistance	Rpu_selms	SELMS	SELMS = 0 V	200	500	1300	kΩ
High level leak current	IILH_SELMS	SELMS	SELMS = 5 V	-3	-	3	μA

Note

[1]: (18 V < $V_{BAT} \le 27$ V) less than 2 minutes.

Table 8-6 RXD Pin (Open Drain Output)

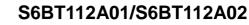
 $V_{BAT} = 5.3 \text{ V} \sim 27 \text{ V}^{[1]}$, $T_A = -40 \sim 125 \text{ °C}$; all voltages are referenced to Pin 8 (GND). Positive current flow into the IC; unless otherwise specified.

Parameters	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit
Low level output voltage	Vol_rxd	RXD	$I_{RXD} = 2.2 \text{ mA}$	-	-	0.6	V
Low level current	IOL_RXD	RXD	RXD = 0.4 V	1.3	3	-	mA
High level leak current	Iolh_rxd	RXD	RXD = 5 V	-3	-	3	μA
Low level leak current	Ioll_rxd	RXD	RXD = 0 V	-3	-	3	μA

Note

[1]: (18 V < V_{BAT} \leq 27 V) less than 2 minutes.

Table 8-7 AC Characteristics


 V_{BAT} = 5.3 V~27 V^[1], T_A = -40~125 °C BUS Load 1 k Ω /1 nF; unless otherwise specified.

Parameters	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit
Bitrate	T _{BUAD}	BUS	$V_{TH}(bus)^{[3]} = 0.5 V_{BAT}$	2.4	-	20	kbps
Mode transition time (Sleep to Normal or Normal to Sleep.)	Tmode_chg	NSLP	V _{TH} (5v) ^[4] = 50%	-	-	1	ms
NSLP wait time	T _{SLP_WT}	CLK NSLP	V _{TH} (5 V) ^[4] = 50%	100	-	-	μs
Minimum sleep time	T _{SLP_MN}	NSLP	-	1	-	-	ms
Driver boot time under sleep mode. ^[2]	T _{txd_bt}	TXD	NLSP = 0 V SELMS = 5 V V _{TH} (5v) ^[4] =50% V _{TH} (bus) ^[3] =0.3V _{BAT}	-	-	195	μs
CLK transmission delay time	T _{CLK_PD}	CLK	NLSP = 5 V SELMS = 0 V CLK=input clock TXD=5 V $V_{TH}(5v)^{[4]}=50\%$ $V_{TH}(bus)^{[3]}=0.3V_{BAT}$	-	-	0.9	Tbit ^[5]

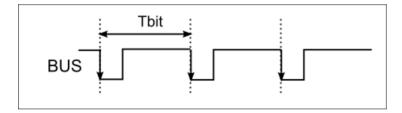
Parameters	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit
Time of Low level of logic value '1'	T _{tx_1_lo_rec}	BUS	NLSP = 5 V SELMS = 0 V CLK=input clock TXD=5 V VTH(bus) ^[3] = 0.7V _{BAT}	-	-	0.39Tbit +6т	-
Time of Low level of logic value '1'	Ttx_1_lo_dom	BUS	NLSP = 5 V SELMS = 0 V CLK=input clock TXD=5 V VTH(bus) ^[3] = 0.3 V _{BAT}	0.11	-	-	Tbit
Time of Low level of logic value '0'	T _{tx_0_lo_rec}	BUS	NLSP = 5 V TXD = 0 V V _{TH} (bus) ^[3] = 0.7 V _{BAT}	T _{tx_1_lo_rec} +0.06Tbit	-	-	-
Time of Low level of logic value '0'	Ttx_0_lo_dom	BUS	NLSP = 5 V TXD=0 V V _{TH} (bus) ^[3] = 0.3 V _{BAT}	T _{tx_1_lo_dom} +0.06Tbit	-	-	-
High level time at receiving node.	T _{tx_0_hi}	BUS	NLSP = 5 V TXD = 0 V $V_{TH}(bus)^{[3]} = 0.556$ V_{BAT}	0.06	-	-	Tbit
Receiver delay time	T _{RXD_PD}	RXD	NSLP = 5 V V _{TH} (bus) ^[3] = VBUSdom	-	-	2.4	Tbit
Delay time of transmission if logic value '0'.	T _{TXD_PD}	TXD	NSLP = 5 V V _{TH} (bus) ^[3] =0.3 V _{BAT}	-	-	3.3	Tbit
Input clock duty	Ticlk_dy	CLK	SELMS = 0 V VTH(5 V) ^[4] = 50%	30	-	70	%
Output clock duty ^[6]	T _{oclk_dy}	CLK	SELMS = 5 V Vтн(5 V) ^[4] = 50%	14	-	50	%
Wakeup pulse filter constant(Master)	T _{rx_wakeup_master}	BUS	NSLP = 0 V SELMS = 0 V V _{TH} (bus) ^[3] =42.3%	30	-	150	μs

Parameters	Symbol	Pin Name	Conditions	Min	Тур	Мах	Unit
Wakeup pulse filter constant(Slave)	Trx_wakeup_slave	BUS	NSLP = 0 V SELMS = 5 V V _{TH} (bus) ^[3] = 42.3%	0.5	-	5	μs
Time of bus slope from minimum	Ttx_1_dom_m	BUS	NSLP = 5 V SELMS = 0 V $V_{BAT} = 7V$ VTH(bus) ^[3] = 0.3 V _{BAT}	-	-	0.16	Tbit
Recessive level of logical value '0'.	V_rec_0	BUS	NSLP = 5 V	0.93	-	-	V_rec_1

Notes

[1]: (18 V < V_{BAT} \leq 27 V) less than 2 minutes RXD pin load: 20 pF

[2]: CXPI BUS load (Figure 8-11) : 10 nF/500 Ω


[3]: V_{TH}(bus) : threshold of BUS pin

[4]: $V_{TH}(5v)$: threshold of NSLP,CLK,TXD,SELMS,RXD pins.

[5]: Tbit stands for 1bit time.(Figure 8-1)

[6]: logic '0/1' threshold clock

Figure 8-1 Definition of Tbit

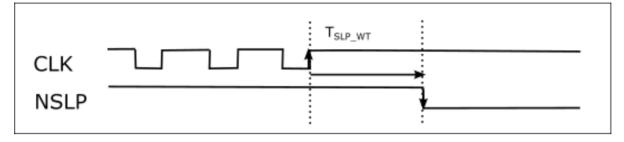
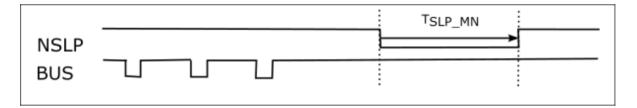
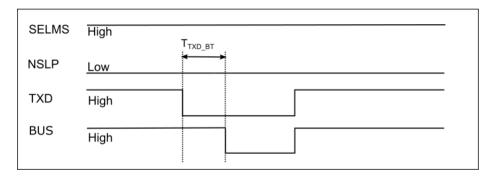


Figure 8-2 Mode Transition Time


NSLP	
BUS	High level
RXD	 High level


Figure 8-3 NSLP Wait Time

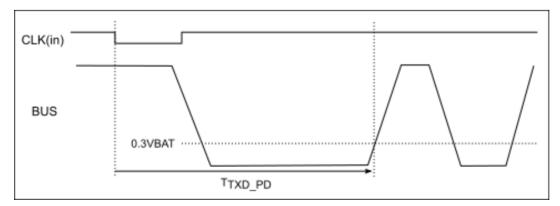

Figure 8-4 Minimum Sleep Time

Figure 8-5 Driver boot Time Under Sleep Mode

Figure 8-6 CLK Transmission Delay Time

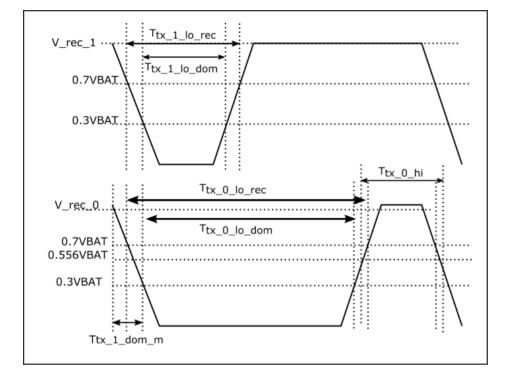


Figure 8-7 Logic low and high CXPI BUS Waveform

Figure 8-8 Receiver Delay Time

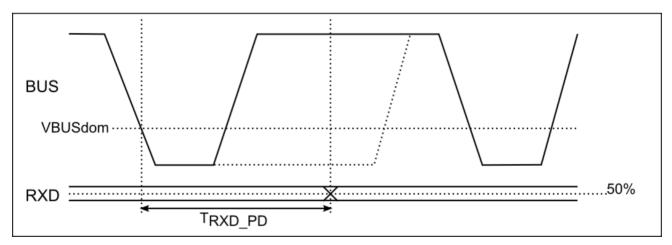
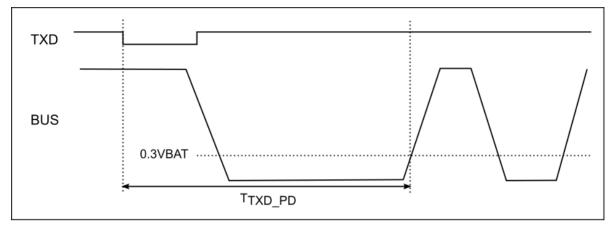
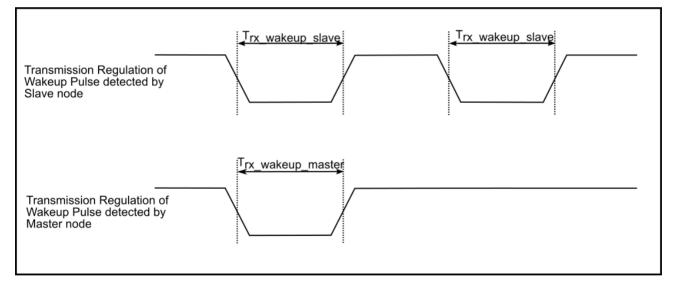




Figure 8-9 Logic low Transmission Delay Time

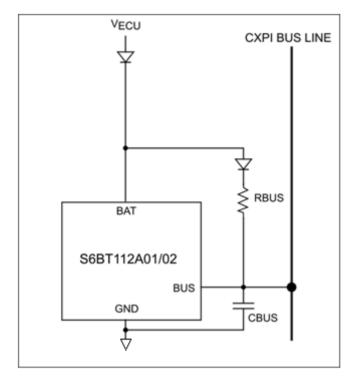
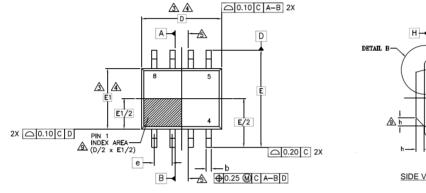
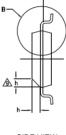


Figure 8-10 Wakeup Pulse Waveform

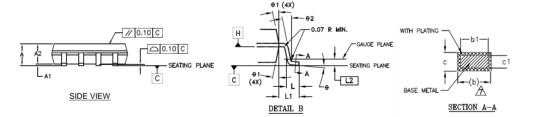
Figure 8-11 CXPI BUS Load Connection



9. Ordering Information


Part Number	Package
S6BT112A01SSBB002	8-pin 150-mil SOIC Tape and Reel (SOA008)
S6BT112A02SSBB002	8-pin 150-mil SOIC Tape and Reel (SOA008)

10. Package Dimensions


Package Type	Package Code
SOP 8	SOA 008

TOP VIEW

SIDE VIEW

PACKAGE	SOA 008(MM)		SOA 008(INCHES)	
JEDEC	MS-012(F)AA		MS-012(F)AA	
SYMBOL	MIN MAX		MIN	MAX
A	-	1.75	-	0.069
A1	0.10	0.25	0.004	0.010
A2	1.32	-	0.052	-
b	0.31	0.51	0.012	0.020
b1	0.28	0.48	0.011	0.019
с	0.17	0.25	0.007	0.010
c1	0.17	0.23	0.007	0.009
D	4.90 BSC		0.193 BSC	
E	6.00 BSC		0.236 BSC	
E1	3.90 BSC		0.153 BSC	
e	1.27 BSC		0.050 BSC	
L	0.40	0.89	0.016	0.035
L1	1.04 REF		0.041 REF	
L2	0.25 BSC		0.010 BSC	
N	8		8	
h	0.25	0.50	0.10	0.196
0-	0°	8°	0°	8°
0 -1	5°	15°	5°	15°
0-2	0° REF		0° REF	

- 1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES ARE FOR REFERENCE ONLY).
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.
- INTERLEAD FLASH OR PROTEUSION SHALL NOT EXCEED 0.25 mm PER SIDE D AND E1 DIMENSIONS ARE DETERMINED AT DATUM H. THE FACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. DIMENSIONS D AND E1 ARE DETERMINED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, THE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY. DATUMS A AND B TO BE DETERMINED AT DATUM H.
- "N" IS THE MAXIMUM NUMBER OF TERMINAL POSITIONS FOR THE SPECIFIED PACKAGE LENGTH.
- 6. ∕A ∕® TN' IS THE MAXIMUM NUMBER OF TERMINAL POSITIONS FOR THE SPECIFIED PACKAGE LENGTH.
 ATHE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 TO 0.25 mm FROM THE LEAD TIP.
 DIMENSION 'b' DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWER LEAMBAR PROTRUSION SHALL BE 0.10 mm TOTAL
 IN EXCESS OF THE 'b' DIMENSION AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE
 LOWER RADIUS OF THE LEAD FOOT.
 MIST BE LOCATED WITHIN THE INDEX AREA INDICATED.
 LEAD COPLANARITY SHALL BE WITHIN 0.10 mm AS MEASURED FROM THE SEATING PLANE.

F16-038.3 *I

Document History

Document Title: S6BT112A01/S6BT112A02 ASSP CXPI Transceiver IC for Automotive Network

Document Number: 002-10203

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	5046456	AKFU	12/11/2015	Initial release New Spec.
*A	5208207	AKFU	04/06/2016	Revised the sentence style of the cover page Changed all section 5 for easy to understand. Changed figure of application. Changed Figure 4-1 and Figure 5-1. Removed "Driver recovery time when over-temperature detection is released."
*В	5528948	AKFU	11/24/2016	Changed figure of application. Changed Figure 4-1 Block Diagram Changed Figure 5-12 Application example Secondary clock master Added the conditions of V _{BUSdom} /V _{BUSrec} / V _{HYS} /T _{tx_1_dom_m} . Removed the prameter of Receiver center level voltage (V _{BUS_CNT}). Changed Figure 8-11 CXPI BUS Load Connection Changed Ordering Information. Changed Package Dimensions.
*C	5547736	AKFU	12/09/2016	Updated Introduction. Updated Note [3] (Page 8). Updated 5.2 Master Node. Updated 5.2.2 Sleep Mode.
*D	5757034	AKFU	06/20/2017	Changed figure of 1. Applications Changed Figure 5-12 Application example Secondary Clock Master

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners

© Cypress Semiconductor Corporation, 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware product. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Interface - Specialised category:

Click to view products by Cypress manufacturer:

Other Similar products are found below :

CY7C910-51LMB MEC1632-AUE RKSAS4 HMC677G32 LPC47N207-JV FTP-637DSL633R SM712GX04LF04-BA MCW1001A-I/SS HOA6241-001 SC74HC4066ADTR2G NCN5120MNTWG NCN5150DR2G NCN8025MTTBG C100N50Z4A DG407AK/883B SRT2-ATT01 TDA8035HN/C1/S1J LTC1694CS5#TRMPBF DS90UB947TRGCRQ1 SP510ECF-L NCS2300MUTAG ADG1404YCPZ-REEL HMC677LP5E HMC677LP5ETR LTC1756EGN#PBF LTC1955EUH#PBF LT3669EUFD-2#PBF LTC6820HMS#3ZZTRPBF MXL1543BCAI MAX3170CAI+ XL1192D KTU1109EFAA-TR CH368L CH7307C-DEF LTC1694-1IS5#TRMPBF LTC1694CS5#TRPBF LTC1694IS5#TRM LTS 25-NP 73S8024RN-20IMF 73S8024RN-IL/F DS2413P+ DS2413P+T&R DS28E17Q+ DS8113-RNG+ MAX13036ATI+ MAX13174ECAG+ MAX216CWN+ MAX3172CAI+ AS8222-HSSM MAX6618AUB+