

uPOL MODULE

600mA, High Efficiency uPOL Module

MUN3C1XR6-SB Series

FEATURES:

- High Density Power Module
- 600mA Output Current
- Input Voltage Range from 2.7V to 5.5V
- Fixed Output Voltage
- 100% Maximum Duty Cycle with Low Dropout
- Enable Function
- Automatic Power Saving/PWM Mode
- Protections (UVLO, OCP: Non-latching)
- Internal Soft Start
- Compact Size: 2.5mm*2.0mm*1.1mm
- Pb-free for RoHS compliant
- MSL 2, 260C Reflow

APPLICATIONS:

- Single Li-Ion Battery-Powered Equipment
- LDOs Replacement
- Cell phone / PDAs / Palmtops

GENERAL DESCRIPTION:

The MUN3C1XR6-SB power module series is non-isolated dc-dc converters that can deliver up to 600mA of output current. The PWM switching regulator, high frequency power inductor are integrated in one hybrid package. It needs input and output capacitor only and no additional feedback circuit.

The MUN3C1XR6-SB power module series has automatic operation with PWM mode and power saving mode according to loading. Other features include remote enable function, internal soft-start, non-latching over current protection, and input under voltage locked-out capability.

The low profile and compact size package (2.5mm \times 2.0mm \times 1.1mm) is suitable for automated assembly by standard surface mount equipment. The MUN3C1XR6-SB power module is Pb-free and RoHS compliance.

TYPICAL APPLICATION CIRCUIT & PACKAGE:

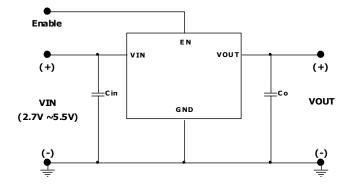


FIGURE 1 TYPICAL APPLICATION CIRCUIT

FIGURE 2 HIGH DENSITY LOW PROFILE uPOL MODULE

ORDERING INFORMATION:

CAUTION: These devices have limited built-in ESD protection. The leads should be shorted together or the devices placed in conductive foam during the storage or handling to prevent electrostatic damage to internal circuit.

PART NUMBER	OUTPUT VOLTAGE	MARKING (Code: X)	ORDERING	QUANTITY
MHUN3C1BR6-SB	1.2V	В	MUN3C1BR6-SB	2000
MHUN3C1DR6-SB	1.35V	D	MUN3C1DR6-SB	2000
MHUN3C1ER6-SB	1.5V	E	MUN3C1ER6-SB	2000
MHUN3C1HR6-SB	1.8V	н	MUN3C1HR6-SB	2000

ELECTRICAL SPECIFICATIONS:

CAUTION: Do not operate at or near absolute maximum rating listed for extended periods of time. This stress may adversely impact product reliability and result in failures outside of warranty.

Parameter	Description	Min.	Тур.	Max.	Unit		
 Absolute Maxim 	Absolute Maximum Ratings						
VIN to GND		-	-	+6.0	V		
VOUT to GND		-	-	+6.0	V		
EN to GND		-	-	VIN+0.3	V		
Тс	Case Temperature of Inductor	-	-	+110	°C		
Tj	Junction Temperature	-40	-	+150	°C		
Tstg	Storage Temperature	-40	-	+125	°C		
	Human Body Model (HBM)	-	-	2k	V		
ESD Rating	Machine Model (MM)	-	-	200	V		
	Charge Device Model (CDM)	-	-	1k	V		
Recommendation	 Recommendation Operating Ratings 						
VIN	Input Supply Voltage	+2.7	-	+5.5	V		
Та	Ambient Temperature	-40	-	+85	°C		
 Thermal Inform 	 Thermal Information 						
Rth(j _{choke} -a)	Thermal resistance from junction to ambient. (Note 1)	-	55	-	°C/W		

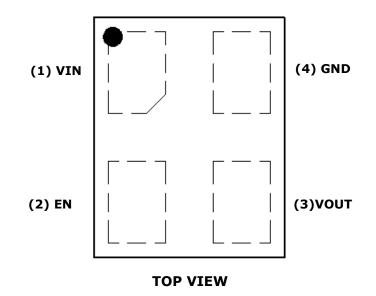
NOTES:

1. Rth(j_{choke}-a) is measured with the component mounted on an effective thermal conductivity test board on 0 LFM condition. The test board size is 30mm×30mm×1.6mm with 2 layers. The test condition is compliant with JEDEC EIJ/JESD 51 Standards.

ELECTRICAL SPECIFICATIONS: (Cont.)

Conditions: T_A = 25 °C, Vin = 3.3V, Cin = 4.7uF/6.3V/0603, Cout = 10uF/6.3V/0402 unless otherwise specified.

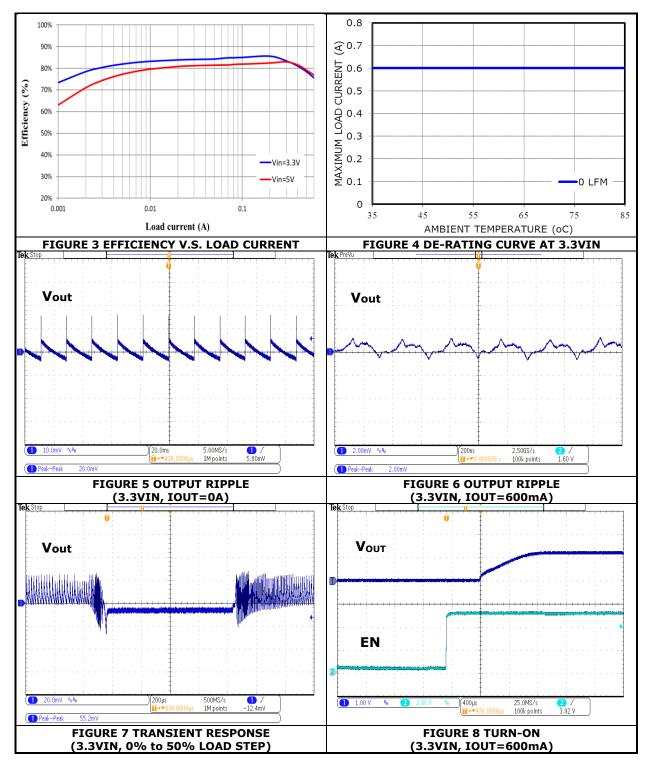
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
 Input Characteristics 						
$\mathbf{I}_{SD(IN)}$	Input shutdown current	Vin = 3.3V, Vin connected EN by 100K ohm EN = GND	-	-	-	uA
		Vout=1.2 V	-	0.1	-	
		Vout=1.35 V	I	0.1	-	
		Vout=1.5 V	I	0.1	-	
		Vout=1.8 V	-	0.1	-	
		Vin = 3.3V, Iout = 0A EN = VIN	-	-	-	uA
	Input supply bias current	Vout=1.2 V	-	50	-	
$I_{Q(IN)}$		Vout=1.35 V	-	56	-	
		Vout=1.5 V	-	60	-	
		Vout=1.8 V	-	70	-	
		Vin = 3.3V, EN = VIN Iout = 5mA	-	-	-	mA
		Vout=1.2 V	I	2.2	-	
		Vout=1.35 V	I	2.5	-	
		Vout=1.5 V	-	2.7	-	
I _{S(IN)}	Input supply current	Vout=1.8 V	-	3.2	-	
		Vin = 3.3V, EN = VIN Iout = 600mA	-	-	-	mA
		Vout=1.2 V	-	285	-	
		Vout=1.35 V	-	310	-	
		Vout=1.5 V	-	340	-	
		Vout=1.8 V	-	400	-	


ELECTRICAL SPECIFICATIONS: (Cont.)

Conditions: T_A = 25 °C, Vin = 3.3V, Cin = 4.7uF/6.3V/0603, Cout = 10uF/6.3V/0603 unless otherwise specified.

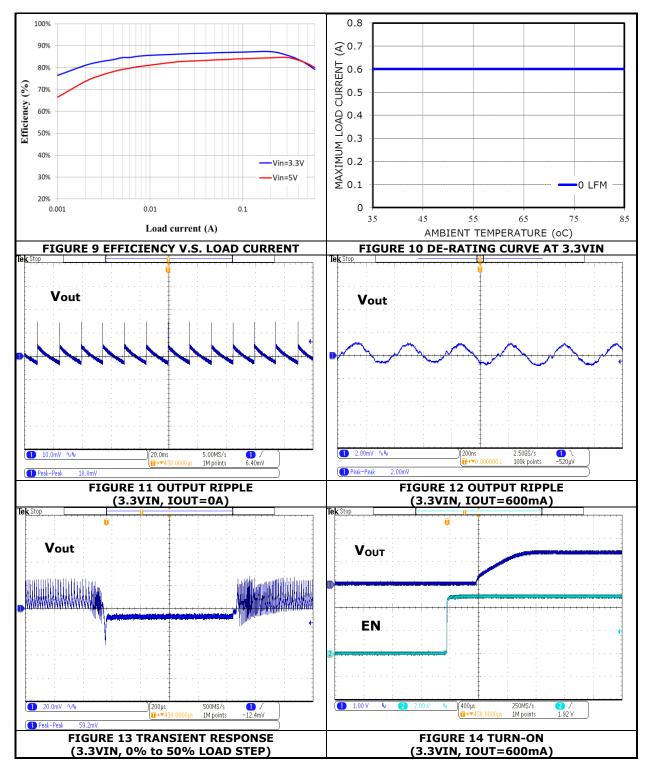
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
 Outp 	Output Characteristics					
I _{OUT(DC)}	Output continuous current range	Vin=3.3V	0	-	600	mA
Vo(set)	Ouput Voltage Set Point	Vin=3.3V	-3.0	-	+3.0	% V _{O(SET)}
ΔV_{OUT} / ΔV_{IN}	Line regulation accuracy	Vin = 3.3V to 5V Iout = 0A Iout = 600mA	-	-	1	% V _{O(SET)}
ΔV out / ΔI out	Load regulation accuracy	Iout = 0A to 600mA Vin = 3.3V,	-	1.5	-	% V _{O(SET)}
Cout(max)	Maximum capacitive load	Iout = 600mA, ESR \ge 1 m Ω	-	-	22	uF
Cont	rol Characteristic	CS				
Fosc	Oscillator frequency	PWM Operation	-	3.0	-	MHz
	Enable rising threshold voltage		1.5	-	-	V
Ven_th	Enable falling threshold voltage		-	-	0.4	V
 Fault Protection 						
V _{UVLO_TH}	Input under voltage lockout threshold	Falling	-	-	2.5	V
T _{OTP}	Over temp protection		-	160	-	°C
Ilimit_th	Current limit threshold	Peak value of inductor current,	1.3		2.5	А

PIN CONFIGURATION:

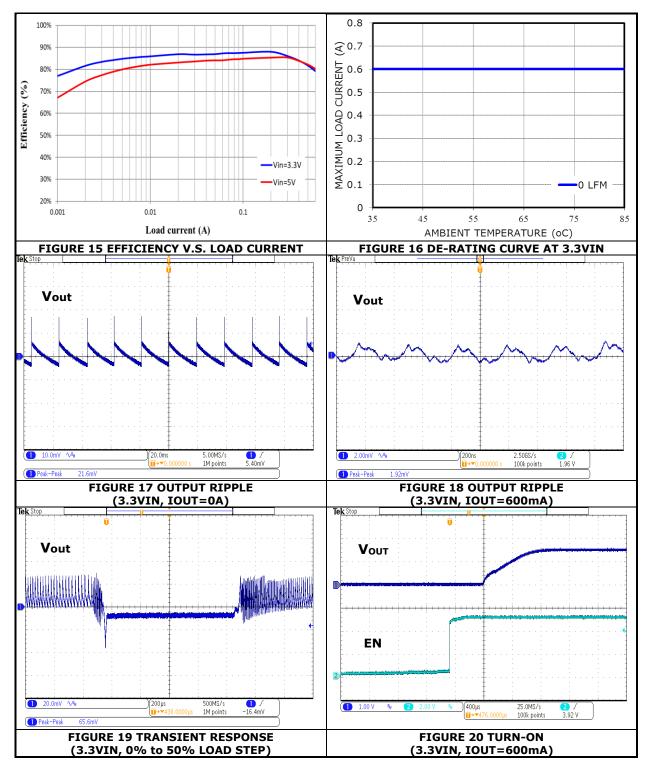

PIN DESCRIPTION:

Symbol	Pin No.	Description	
VIN	1	Power input pin. It needs to be connected to input rail with input capacitor. A 4.7uF capacitor at least for input.	
EN	2	On/Off control pin for module. EN = LOW, the module is off. EN = HIGH, the module is on.	
VOUT	3	3 Power output pin. Connect to output for the load with output capacitor. A 10uF capacitor at least for output.	
GND	4	Power ground pin for signal, input, and output return path. This pin needs to be connected to one or more ground plane directly. Connect to thermal exposed pad of GND for heat transferring.	

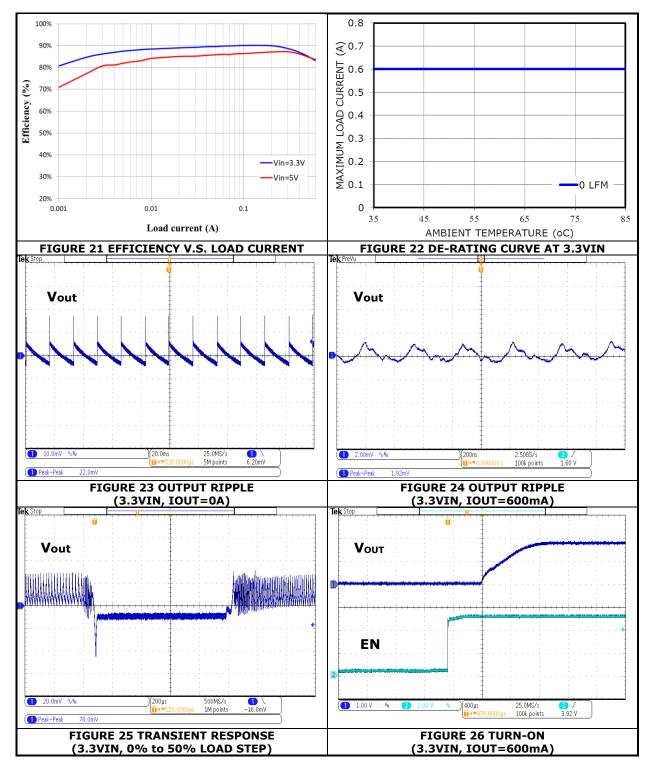
TYPICAL PERFORMANCE CHARACTERISTICS: (1.2VOUT)


Conditions: $T_A = 25 \text{ °C}$, unless otherwise specified. Test Board Information: $30 \text{ mm} \times 30 \text{ mm} \times 1.6 \text{ mm}$, 2 layers. The output ripple and transient response are measured by short loop probing and limited to 20 MegHz bandwidth. The following figures are the typical characteristic curves at 1.2Vout.

TYPICAL PERFORMANCE CHARACTERISTICS: (1.35VOUT)

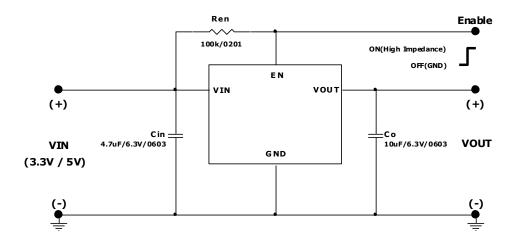

Conditions: $T_A = 25 \text{ °C}$, unless otherwise specified. Test Board Information: 30mm×30mm×1.6mm, 2 layers. The output ripple and transient response are measured by short loop probing and limited to 20MegHz bandwidth. The following figures are the typical characteristic curves at 1.35Vout.

TYPICAL PERFORMANCE CHARACTERISTICS: (1.5VOUT)


Conditions: $T_A = 25 \text{ °C}$, unless otherwise specified. Test Board Information: 30mm×30mm×1.6mm, 2 layers. The output ripple and transient response are measured by short loop probing and limited to 20MegHz bandwidth. The following figures are the typical characteristic curves at 1.5Vout.

TYPICAL PERFORMANCE CHARACTERISTICS: (1.8VOUT)

Conditions: $T_A = 25 \text{ °C}$, unless otherwise specified. Test Board Information: 30mm×30mm×1.6mm, 2 layers. The output ripple and transient response are measured by short loop probing and limited to 20MegHz bandwidth. The following figures are the typical characteristic curves at 1.8Vout.



APPLICATIONS INFORMATION:

REFERENCE CIRCUIT FOR GENERAL APPLICATION:

The Figure 27 shows the module application schematics for input voltage +5V or +3.3V and turn on by input voltage directly through enable resistor (Ren).

FIGURE 27 GENERAL APPLICATION CIRCUIT WITH TURN-ON BY INPUT VOLTAGE

SAFETY CONSIDERATIONS:

Certain applications and/or safety agencies may require fuses at the inputs of power conversion components. Fuses should also be used when there is the possibility of sustained input voltage reversal which is not current limited. For greatest safety, we recommend a fast blow fuse installed in the ungrounded input supply line. The installer must observe all relevant safety standards and regulations. For safety agency approvals, install the converter in compliance with the end-user safety standard.

INPUT FILTERING:

The module should be connected to a source supply of low AC impedance and high inductance in which line inductance can affect the module stability. An input capacitor must be placed as near as possible to the input pin of the module so to minimize input ripple voltage and ensure module stability.

OUTPUT FILTERING:

To reduce output ripple and improve the dynamic response as the step load changes, an additional capacitor at the output must be connected. Low ESR polymer and ceramic capacitors are recommended to improve the output ripple and dynamic response of the module.

APPLICATIONS INFORMATION: (Cont.)

Thermal Considerations:

All of thermal testing condition is complied with JEDEC EIJ/JESD 51 Standards. Therefore, the test board size is 30mm×30mm×1.6mm with 2 layers. The case temperature of module sensing point is shown as Figure 28. Then Rth(j_{choke}-a) is measured with the component mounted on an effective thermal conductivity test board on 0 LFM condition. The MUN3C1XR6-SB series modules are designed for using when the case temperature is below 110°C regardless the change of output current, input/output voltage or ambient temperature.

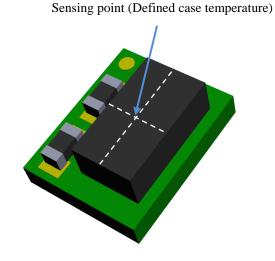
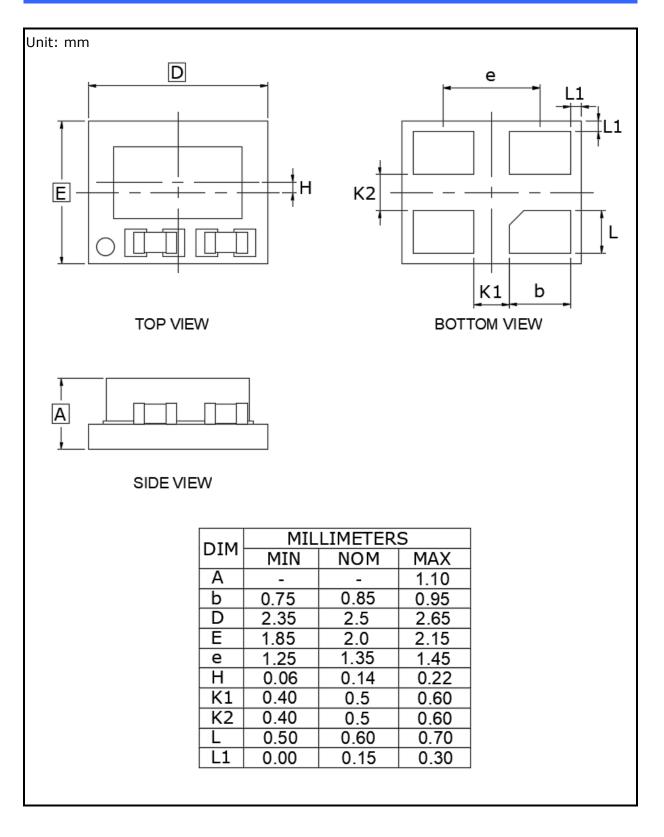
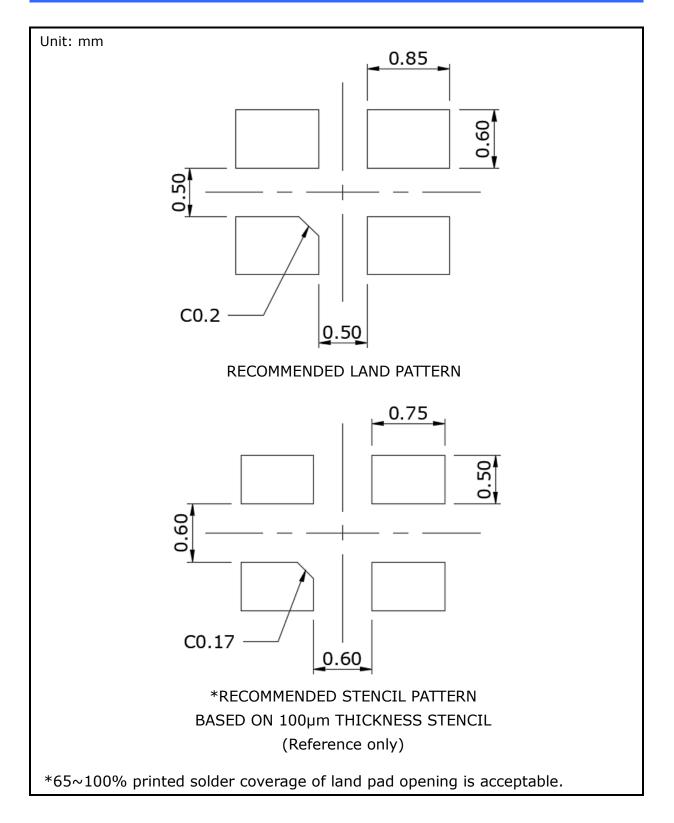
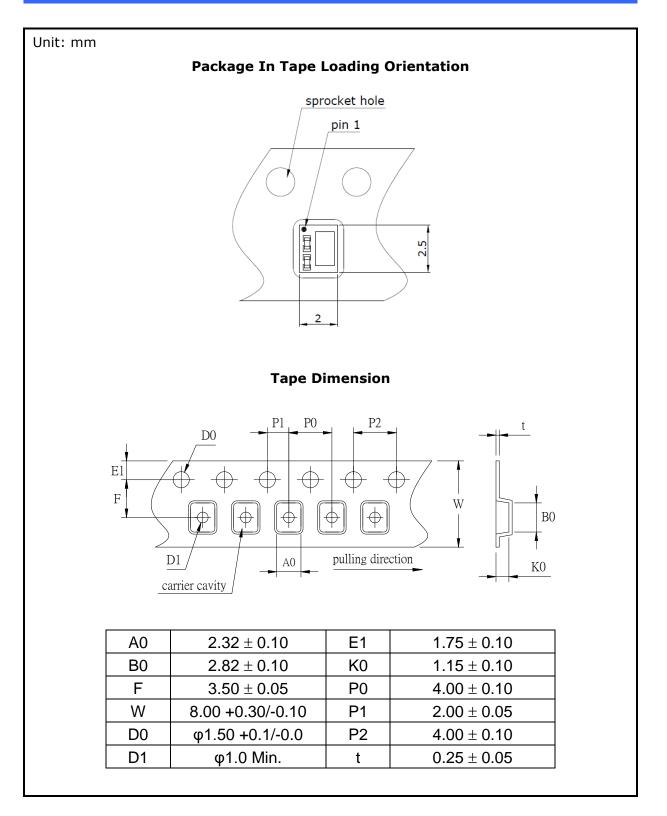



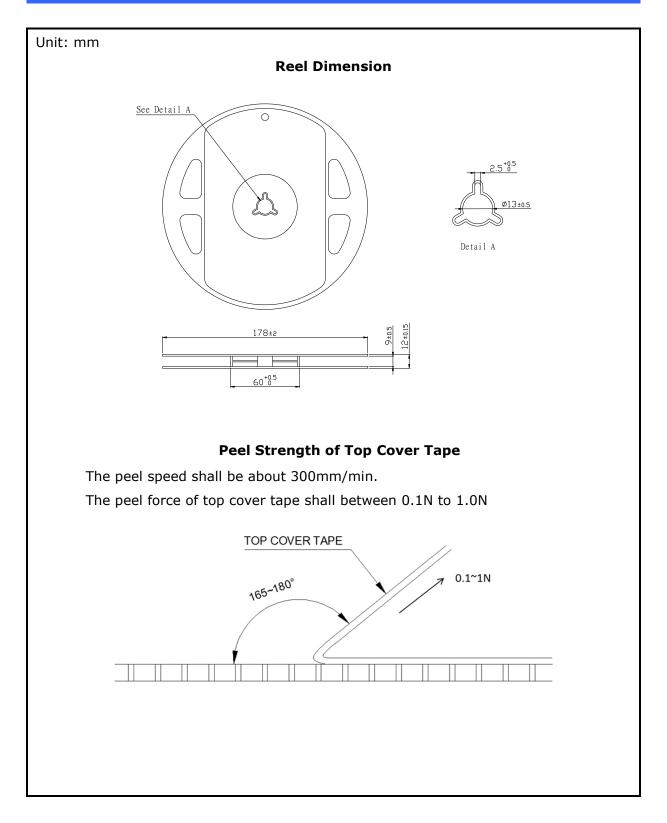
Figure 28. CASE TEMPERATURE SENSING POINT



PACKAGE OUTLINE DRAWING:



LAND PATTERN REFERENCE:



PACKING REFERENCE:

PACKING REFERENCE: (Cont.)

REVISION HISTORY:

Date	Revision	Changes		
2018.08.30	00	Initial released for preliminary datasheet.		
2018.12.05	01	Add 1.35V output voltage		
2019.07.02	02	Add thermal resistance from junction to ambient $Rth(j_{choke}-a)$		

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Non-Isolated DC/DC Converters category:

Click to view products by Delta manufacturer:

Other Similar products are found below :

 PSR152.5-7IR
 DP8160G-S1-R1
 APTH003A0X-SRZ
 SPM1004-3V3C
 1E24-P4-25PPM-SHV-5KV
 CA-17205-L4
 PROPOWER-3.3V

 PMP5818UWSR
 BMR4672010/001
 6AA24-P30-I5-M
 BM2P101X-Z
 35A24-P30
 PTV12010LAH
 PTV12020WAD
 R-78AA15-0.5SMD
 R

 78AA5.0-1.0SMD
 10C24-N250-I5
 10C24-P125
 10C24-P250-I5
 6A24-P20-I10-F-M-25PPM
 TSR 1-24150SM
 1C24-N125
 12C24-N250

 IBF05012A006V-007-R
 V7806-1500
 V7806W-500
 LGA80D-00DADJJ
 1/4C24-NP250-1
 EC5A-05S33
 YNS12S10-0G
 1A12-N4-F-C

 PTV12020LAH
 PTV05010WAH
 PTN04050CAZT
 PTN04050CAS
 PTH12020WAD
 PTH08T255WAD
 PTH12020LAS
 PTH05050YAH

 PTH05T210WAH
 PTH03050YAH
 VRAE-10E1A0G
 V7803-2000R
 ATH030A0X3-SRPHZ
 78SR-5/2-C
 AXH003A0X-SRZ
 AXH005A0XZ

 ATA016A0X3Z
 NSR020A0X43Z
 NID30S24-15
 NID30S24-15
 NID30S24-15
 NID30S24-15