Router 5000

Model

14315R-100
The Router 5000 chip is used to build high performance half-routers that increase the scalability and surviveability of LONWORKS ${ }^{\circledR}$ control networks and lower installation costs by allowing mixed physcial media to be used in a single installation.

Based on the Neuron ${ }^{\circledR} 5000$ core, the Router 5000 provides the design flexibility to interface to the external transceiver of your choice for building a LONWORKS communication channel.

FEATURES

- 3.3V operation.
- Higher Performance
- Clock rate up to 40 MHz
- Larger buffer size to allow for extended NVs and improved throughput.
- Transceiver-independent design.
- Compact $7 \mathrm{~mm} \times 7 \mathrm{~mm} 48$-pin QFN package.
- Can be connected to a transceiver running at any LonWorks ${ }^{\circledR}$ bit rate from 610 bps to 1.25 Mbps .
- Logical Isolation between two half-routers improves system reliability by isolating failures between channels.
- Transparent multi-channel and multi-media support.
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.

The Router 5000 includes the Router firmware required to implement a half-router. Its compact form factor minimizes the space required to develop a half-router. Customers can develop two half-routers to build a full router with the same or different external
transceiver types. Commonly used transceiver types include support for TP/FT-10, TP-RS485, TP/XF-78F, TP/XF-1250 channel types and the LPT-11 transceiver. These external transceivers can run at interface bit rates from 9.8 kbps to 1.25 Mbps .

The Router parameters can be stored in an external EEPROM with a maximum size of 2 KB . Customers will need to specify router parameters that are applicable for the external transceiver type used with the Router 5000. For a full router design, customers can use the same crystal and the same power supply to implement the clock and power supply needed for the two half-routers, which helps minimize the overall size needed to implement a full router.

A Router 5000 can use one of four routing algorithms: Configured router, Learning router, Bridge or Repeater. The ability to choose these options allows the customer to trade off system performance for ease of installation. Configured and Learning routers fall into a class of routers known as intelligent routers, which use routing tables to selectively forward messages based on the destination address. A Bridge
forwards all valid packets that match its domains, whereas a Repeater forwards all valid packets. Configured routers are easily installed using an installation tool that calculates network topology and layer 4 timing parameters, such as the LonMaker ${ }^{\circledR}$ Integration Tool or an installation tool based on the LNS ${ }^{\circledR}$ network operating system.

Usage

A half-router consists of the Router 5000 chip and an external transceiver along with a crystal to generate the clock and an external memory to hold the router table. Any type of external transceiver can be used with the Router 5000, such as a TP/FT-10, TP-RS485, TP/XF78, TP/XF-1250 or LPT-11 transceiver. The Router 5000 is compatible with all LonWorks transceivers, including standard transceivers for free topology, link power, twisted pair, and power line. Using multiple communications media can minimize installation costs and increase system performance by allowing easily installed media, such as power line or link power, to be combined with media such as TP/XF-1250 twisted pair. The two half-routers of a full router are logically isolated so that a failure in one half-router will not affect the other.

Figure 1: Block Diagram of a LONWORKs Router Based on the Router 5000

LonWorks application programs do not have to be modified to work with routers. Only the network configuration of a device has to be modified when a device is moved to the far side of a router. The required modifications to the network configuration can be done automatically by an installation tool.
Routers are also independent of the network variables and message tags in a system, and can forward an unlimited number of them, which saves development cost because no code development is required to use routers in a system. It also saves installation and maintenance costs because router configuration is automatically managed by network server tools based on LNS Server. Monitoring and Control Applications, such as those based on the LCA Object Server OCX, do not require modifications to work with multi-channel networks when routers are used. All network configuration is performed over the installed network, further minimizing installation and maintenance costs because routers do not have to be physically accessed to change their configuration.

Router 5000 Pin Configuration

Figure 2: Router 5000 Pinout
Router 5000 Chip Pin Assignments

Pin Name	Pin Number	Type	Description
SVC~	1	Digital I/0	Service (active low)
100	2	Digital I/O	$\begin{aligned} & \hline 100 \\ & \text { (side A to side B) } \end{aligned}$
101	3	Digital I/O	101 (side A to side B)
102	4	Digital I/O	$\begin{aligned} & \hline 102 \\ & \text { (side A to side B) } \end{aligned}$
103	5	Digital I/O	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline 103 \\ \text { (side A to side B) } \end{array}$
VDD1V8	6	Power	1.8V Power Input (from internal voltage regulator)
104	7	Digital I/O	104 (side A to side B)
VDD3V3	8	Power	3.3V Power
105	9	Digital I/0	105 (side A to side B)
106	10	Digital I/O	$\begin{aligned} & 106 \\ & \text { (side A to side B) } \end{aligned}$
107	11	Digital I/O	$\begin{aligned} & \text { I07 } \\ & \text { (side A to side B) } \end{aligned}$
108	12	Digital I/O	$\begin{aligned} & 108 \\ & \text { (side A to side B) } \end{aligned}$
109	13	Digital I/O	$\begin{array}{\|l\|} \hline 109 \\ \text { (side A to side B) } \end{array}$
1010	14	Digital I/O	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { OO10 } \\ \text { (side to side B) } \end{array} \\ \hline \end{array}$
1011	15	Digital I/O	1011 (not used for routers)
VDD1V8	16	Power	1.8V Power Input (from internal voltage regulator)
TRST~	17	Digital Input	JTAG Test Reset (active low)
VDD3V3	18	Power	3.3V Power
TCK	19	Digital Input	JTAG Test Clock

Pin Name	Pin Number	Type	Description
TMS	20	Digital Input	JTAG Test Mode Select
TDI	21	Digital Input	JTAG Test Data In
TDO	22	Digital Output	JTAG Test Data Out
XIN	23	Oscillator In	Crystal oscillator Input
XOUT	24	Oscillator Out	Crystal oscillator Output
VDDPLL	25	Power	1.8V Power Input (from internal voltage regulator)
GNDPLL	26	Power	Ground
VOUT1V8	27	Power	1.8 V Power Output (of internal voltage regulator)
RST~	28	Digital I/0	Reset (active low)
VIN3V3	29	Power	3.3 V Power Input
VDD3V3	30	Power	3.3V Power
AVDD3V3	31	Power	3.3V Power
CPO	32	Communications	CPO: Receive serial data
AGND	33	Ground	Ground
CP1	34	Communications	CP1: Transmit serial data
NC	35	N/A	Do Not Connect
GND	36	Ground	Ground
CP2	37	Communications	CP2: External transceiver enable output
CP3	38	Communications	CP3: Do Not Connect
CP4	39	Communi- cations	CP4: Collision detect input
CSO~	40	Digital I/0	SPI slave select 0 (active low)
VDD3V3	41	Power	3.3V Power
VDD3V3	42	Power	3.3V Power
SDA_CS1~	43	Digital I/O for Memory	1^{2} C: serial data (SDA) SP: slave select 1 (active low)
VDD1V8	44	Power	1.8V Power Input from internal voltage regulator)
SCL	45	Digital I/0 for Memory	$1^{2} \mathrm{C}$: serial clock
MISO	46	Digital I/0 for Memory	SPI master input, slave output (MISO)
SCK	47	Digital I/O for Memory	SPI serial clock
MOSI	48	Digital I/O for Memory	SPI master output, slave input (MOSI)
PAD	49	Ground Pad	Ground

Table 1: Router 5000 Chip Pin Description

Electrical Characteristics
Router 5000 Operating Conditions

Parameter ${ }^{1}$	Description	Minimum	Typical	Maximum
$\mathrm{V}_{\text {D } 3}$	Supply voltage	3.00 V	3.3 V	3.60 V
T_{A}	Ambient temperature	$-40^{\circ} \mathrm{C}$		$+85^{\circ} \mathrm{C}$
$\mathrm{f}_{\mathrm{XIN}}$	XIN clock frequency ${ }^{2}$		$\begin{gathered} 10.000 \\ \mathrm{MHz} \end{gathered}$	-
Tx Current	Current consumption $5-80 \mathrm{MHz}$		$\begin{gathered} \mathrm{Rx} \\ \text { current } \\ +15 \mathrm{~mA} \end{gathered}$	Rx current +15 mA
Rx Current	Current consumption		$\begin{gathered} 9 \mathrm{~mA} \\ 9 \mathrm{~mA} \\ 15 \mathrm{~mA} \\ 23 \mathrm{~mA} \\ 38 \mathrm{~mA} \end{gathered}$	15 mA 15 mA 23 mA 33 mA 52 mA

Table 2: Router 5000 Operating Conditions

Notes

1. All parameters assume nominal supply voltage $\left(V_{D D 3}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}\right)$ and operating temperature (T_{A} between $-40^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$), unless otherwise noted.
2. See Clock Requirements in the Series 5000 Chip Data Book for more detailed information about the XIN clock frequency.
3. Assumes no load on digital I/O pins, and that the I/O lines are not switching.

SPECIFICATIONS

Processor

Neuron 5000 Processor
Processor Input Clock 10 MHz

Operating Input Voltage
3.0 V DC to 3.6 V DC

RoHS-Compliant

The Router 5000 chip is compliant with the European Directive 2002/95/EC on the restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment.

EMC
Depends on network transceiver

Transmission Speed

Depends on network transceiver:
78 kbit/s for TP/FT-10 channel;
1250 kbit/s for TP/XF-1250 channel.
(See EIA-485 channel specification for transmission speed characteristics.)

Operating Temperature

-40 to $85^{\circ} \mathrm{C}$

Operating Humidity

25-90\% RH @ $50^{\circ} \mathrm{C}$, non-condensing.

Non-operating Humidity

95\% RH @ $50^{\circ} \mathrm{C}$, non-condensing.

Reflow Soldering Temperature Profile

Refer to Joint Industry Standard
document IPC/JEDEC J-STD-020D. 1
(March 2008).
Peak Reflow Soldering Temperature $260^{\circ} \mathrm{C}$
Recommended Router 5000 Chip Pad Layout

Figure 3: Router 5000 Chip Pad Layout
Router 5000 Chip IC
Mechanical Specification

* CONTROLLING DIMENSION : MM						
SYMBOL	MILLIMETER			INCH		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX
A	---	---	0.90	---	---	0.035
A1	0.00	0.01	0.05	0.00	0.0004	0.002
A2	--	0.65	0.70	---	0.026	0.028
A3	0.20 REF.			0.008 REF.		
b	0.18	0.23	0.30	0.007	0.009	0.012
D	7.00 bsc			0.276 bsc		
D1	6.75 bsc			0.266 bsc		
D2	5.20	5.40	5.60	0.205	0.213	0.220
E	7.00 bsc			0.276 bsc		
E1	6.75 bsc			0.266 bsc		
E2	5.20	5.40	5.60	0.205	0.213	0.220
L	0.30	0.40	0.50	0.012	0.016	0.020
e	0.50 bsc			0.020 bsc		
$\theta 1$	0°	---	12°	0°	---	12°
R	0.09	---	---	0.004	---	---
TOLERANCES OF FORM AND POSITION						
aaa	0.10			0.004		
bbb	0.10			0.004		
ccc	0.05			0.002		

Figure 4: Router 5000 Chip IC Mechanical Specifications

Notes

1. All dimensions are in millimeters.
2. Dimensions and tolerances conform to ASME Y14.5M.-1994.
3. Package warpage max. 0.08 mm .
4. Package corners unless otherwise specified are $R 0.175 \pm 0.025 \mathrm{~mm}$.

ORDERING INFORMATION
Router 5000 Chip 14315R-100

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Network Controller \& Processor ICs category:
Click to view products by Dialog Semiconductor manufacturer:

Other Similar products are found below :
COM2001913V-HT MIC3003GFL Z8523L10VEG NCN49597MNG BCM63168UKFEBG TMC2074-NU WAV624A1MC S LN25 WAV654A1MC S LN23 WAV614A1MC S LN24 73M2901CE-IM/F MAX2992GCB+ COM20020I-DZD-TR COM20020I-DZD

KSZ8692PBI 73M2901CE-IGV/F MPL360BT-I/Y8X COM20019I-DZD COM20020I3V-DZD-TR COM20022I-HT KSZ8695P
LAN9360A-I/CQB-100 LAN9360A-I/CQBT-100 MPL360B-I/SCB MIC3001GML-TR MIC3001GML 2751807 NCN49599MNG Si2457-
C-FT TMC2072-MT ST7590 73M2901CE-IGVR/F Z8523316ASG Z8523010PEG Z8523008PSG Z8523020VSG Z8523016VEG Z8523010VSG Z8523010VEG Z8523008VSG Z8523L16VEG Z8523016VSG Z8523008VEG Z8523L16VSG AMIS49587C5872G COM20020I-HT CY8CPLC20-28PVXI KSZ8692XPB KSZ8695X ST7580TR

