

## **User manual**

# Getting started with the DA1458x Development Kit – Pro

**UM-B-049** 

#### **Abstract**

This document describes the Bluetooth Smart Development Kit - Pro based on DA14580/581/583/585/586. It helps users to set up the hardware development environment, install required software and quickly start product development with help of example source code on SDK v5.x and SDKv6.x.



## **Contents**

| Αb  | stract |           |                                                                  | 1      |
|-----|--------|-----------|------------------------------------------------------------------|--------|
| Со  | ntents |           |                                                                  | 2      |
| Tal | bles   |           |                                                                  | 3      |
| Fig | jures  |           |                                                                  | 3      |
| 1   | Term   | s and def | finitions                                                        | 5      |
| 2   |        |           |                                                                  |        |
| 3   |        |           |                                                                  |        |
| •   | 3.1    |           | ntent                                                            |        |
|     | 3.2    |           | or DA1458x family                                                |        |
|     |        | 3.2.1     | Differences between DA14580, DA14581, DA14583, DA14585 and DA145 |        |
|     | 3.3    | Software  | Development Tools                                                |        |
|     |        | 3.3.1     | SmartSnippets Introduction                                       |        |
|     |        | 3.3.2     | Installation                                                     |        |
|     |        | 3.3.3     | Starting SmartSnippets Studio                                    | 13     |
|     | 3.4    | Setting u | p your PC                                                        | 14     |
|     |        | 3.4.1     | SmartSnippets Studio                                             | 14     |
|     |        | 3.4.2     | Tera Term                                                        | 15     |
|     |        | 3.4.3     | Software Development Kit content                                 | 16     |
|     | 3.5    | Pinning.  |                                                                  | 20     |
|     | 3.6    | DA1458    | 5 Pining                                                         | 21     |
|     | 3.7    | DA14586   | 6 Pining                                                         | 22     |
|     |        | 3.7.1     | PCB design and functionalities                                   | 23     |
|     |        | 3.7.2     | Configuring the Pro kit-board by jumper settings                 | 24     |
|     |        | 3.7.3     | Block diagram                                                    | 26     |
| 4   | Using  | the dem   | no kit                                                           | 30     |
|     | 4.1    | Run an e  | example on the DA14580/581/583                                   | 30     |
| Ар  | pendi  | x A Layo  | ut                                                               | 35     |
| Аp  | pendi  | x B Conn  | ections of J7 and J8                                             | 35     |
| αA  | pendi: | x C Sche  | matics Motherboard and Daughterboards                            | 36     |
| •   | C.1    | Peripher  | als                                                              | 36     |
|     | C.2    |           | serial                                                           |        |
|     | C.3    | Current r | measurement                                                      | 38     |
|     | C.4    | JTAG Int  | terface                                                          | 39     |
|     | C.5    | PCI-e     |                                                                  | 40     |
|     | C.6    | Power su  | upplies                                                          | 41     |
|     | C.7    | USB HU    | B Controller                                                     | 42     |
|     | C.8    | DA14580   | ) WLCSP Daughter board                                           | 43     |
|     | C.9    | DA14580   | QFN40 Daughterboard                                              | 44     |
|     | C.10   | DA14580   | QFN48 Daughterboard                                              | 45     |
|     | C.11   | DA1458    | 1 WLCSP Daughterboard                                            | 46     |
|     | C.12   | DA1458    | 1 QFN40 Daughterboard                                            | 47     |
| Us  | er mai | nual      | Revision 1.2 30-Marc                                             | h-2017 |

© 2017 Dialog Semiconductor



| C.13          | DA14583 QFN40 Daughterboard                                                                    | 48            |
|---------------|------------------------------------------------------------------------------------------------|---------------|
| C.14          | DA14585 WLCSP34 Daughterboard (321-3-x)                                                        | 49            |
| C.15          | DA14585 QFN40 Daughterboard (321-2-x)                                                          | 50            |
| C.16          | DA14586 QFN40 Daughterboard (321-2-x)                                                          | 51            |
| Appendix      | ix D Using the SmartSnippets CLI                                                               | 52            |
|               | ix E Latency Timer of FTDI cable                                                               |               |
|               | ix F RF-Testing DEVKT – Pro                                                                    |               |
|               | ix G Battery connection 'workaround'                                                           |               |
|               | ix H Power bouncing workaround                                                                 |               |
|               | -Link                                                                                          |               |
|               | n history                                                                                      |               |
| Revision      | n nistory                                                                                      | 60            |
|               |                                                                                                |               |
| <b>Tables</b> | S                                                                                              |               |
|               | Content of the DA14580/581/583 Pro Kit. Ordernumbers are made                                  |               |
|               | DA14580DA14581                                                                                 |               |
|               | DA14583                                                                                        |               |
|               | DA14585                                                                                        |               |
|               | DA14586                                                                                        |               |
|               | Installation tools and drivers                                                                 |               |
|               | SDK Examples                                                                                   |               |
|               | SPI connections                                                                                |               |
|               | ): SPI connections                                                                             |               |
|               | : Run an example on DA14580/581/583<br>E: BOM diifferences between DA14585 and DA14586 designs |               |
| Table 12.     | BOW differences between DA14365 and DA14366 designs                                            |               |
|               |                                                                                                |               |
| <b>Figure</b> | es                                                                                             |               |
|               | : Overview of all DEVKT -Pro parts                                                             |               |
|               | : SmartSnippets Studio platform                                                                |               |
|               | : Dialog for Selecting Workspace                                                               |               |
|               | SDK tools installer                                                                            |               |
|               | : DA14580 Target selection                                                                     |               |
|               | : da14585 Target selection<br>: DA14580 USB selection                                          |               |
|               | : DA14585 USB selection                                                                        |               |
|               | : QFN40 pin assignment from datasheet                                                          |               |
|               | 0: DA14585 - QFN40 pin assignment                                                              |               |
|               | 1: DA14586 - QFN40 pin assignment                                                              |               |
|               | 2: MotherBoard of Development Kit – Pro (PCB topview)                                          |               |
|               | 3: DA14580/581/583 (Fabrication default) UART boot settings (T_                                |               |
| \ _ //        |                                                                                                |               |
| •             | 4: DA14580/581 Boot from external SPI memory                                                   |               |
|               | 5: DA14583 Boot from internal SPI memory                                                       |               |
|               | 6: Layout of headers J5 and J67: UART Data Direction of Uart within J5                         |               |
|               | 8: Block diagram of total systemMemory and tools                                               |               |
|               | 9: DA14580/581/583 block diagram                                                               |               |
|               |                                                                                                | 20            |
| User mar      | nual Revision 1.2                                                                              | 30-March-2017 |



| Figure 20: | DA14585/586 block diagram                    | 29 |
|------------|----------------------------------------------|----|
| Figure 21: | Board layout                                 | 35 |
| Figure 22: | IO breakout available on QFN40 and QFN48     | 35 |
| Figure 23: | IO breakout available on QFN48               | 35 |
| Figure 24: | Peripherals schematic of Motherboard         | 36 |
| Figure 25: | SPI and serial schematic of Motherboard      | 37 |
| Figure 26: | Current measurement schematic of Motherboard | 38 |
| Figure 27: | JTAG interface schematic of Motherboard      | 39 |
| Figure 28: | PCI-e schematic of Motherboard               | 40 |
| Figure 29: | Power supplies schematics of Motherboard     | 41 |
| Figure 30: | USB HUB controller schematic of Motherboard  | 42 |
| Figure 31: | DA14580 WLCSP Daughter board                 | 43 |
|            | DA14580 QFN40 Daughterboard                  |    |
| Figure 33: | DA14580 QFN48 Daughterboard                  | 45 |
| Figure 34: | DA14581 WLCSP Daughterboard                  | 46 |
| Figure 35: | DA14581 QFN40 Daughterboard                  | 47 |
|            | DA14583 QFN40 Daughterboard                  |    |
|            | DA14585 WLCSP34 Daughterboard                |    |
|            | DA14585 QFN40 Daughterboard                  |    |
|            | DA14586 QFN40 Daughterboard                  |    |
|            | SmartSnippets HELP                           |    |
|            | Open the CLI of SmartSnippets                |    |
|            | Smart snippet CMD window                     |    |
|            | FTDI Latency Timer                           |    |
|            | Reset circuitry. R84 to be dismounted.       |    |
|            | Location of R84                              |    |
|            | PRO-Motherboard power jumper                 |    |
| Figure 47: | DA14585/6 QFN40 Daughterboard (321-10-x)     | 59 |
|            |                                              |    |



#### 1 Terms and definitions

BLE Bluetooth Low Energy

CS Chip Select
DK Development Kit

EEPROM Electrically Erasable Programmable Memory

FTDI Brand name of USB – UART interface

GPIO General Purpose Input Output
OTP One Time Programmable
PCB printed circuit board
QFN Quad-Flat No-leads

SDK Software Development Kit
SPI Serial Peripheral Interface
SRAM Static Random Access Memory

SWD Serial Wire Debug
USB Universal Serial Bus

UART Universal Asynchronous Receiver/Transceiver

WLCSP Wafer Level Chip Scale Packaging

WoW Way of Working

#### 2 References

- 1. DA14580, Datasheet, Dialog Semiconductor
- 2. DA14581, Datasheet, Dialog Semiconductor
- 3. DA14583, Datasheet, Dialog Semiconductor
- 4. DA14585, Datasheet, Dialog Semiconductor
- 5. DA14586, Datasheet, Dialog Semiconductor
- 6. DA14580\_CB PXI QFN40 layout, Dialog Semiconductor
- 7. DA14580\_CB\_PXI\_QFNP40, Dialog Semiconductor
- 8. DA14580\_CB\_PXI\_WLCSP, Dialog Semiconductor
- 9. DA14580\_CB\_PXI\_WLCSP\_layout, Dialog Semiconductor
- 10. DA14580\_MB\_VB\_layout, Dialog Semiconductor
- 11. DA14580\_CB PXI\_QFN48, Dialog Semiconductor AN-B-015, DA14580 Supply current measurement, Dialog Semiconductor
- 12. UM-B-012, DA14580 Creation of a secondary boot loader, User manual, Dialog Semiconductor
- 13. UM-B-0051, DA1458x Software Platform Reference v1.0



#### 3 Introduction

The DA1458x is a family of Bluetooth Smart SoC devices, are working at extremely low power levels while providing world-class RF performance, in a small footprint and flexible peripheral configurations for a wide range of applications. The development kit includes a set of hardware (e.g. a development board with on-board debugger), and is supported by a Software Development Kit (SDK) (i.e. development toolchain, source code examples documents and so on) along with documentation.

The mother board can be used to program all the different daughter boards (DA14580/581/583/585/586).

This document helps users to set up hardware/software development environment, by installing the required software to the developer's PC, connecting and setting up the development board to it and quickly start product development with the help of example source code.

Web content can be downloaded at: www.dialog-semiconductor.com/support.

Product information about the DA14580/581/583/585/586 can be found at: http://www.dialog-semiconductor.com/products/bluetooth-smart

Product information about the DA14580/581/583/585/586 Development Kit - Pro can be found at: http://www.dialog-semiconductor.com/products/bluetooth-smart/smartbond-development-tools/da14580-development-kit-pro



#### 3.1 Order content

In Figure 1 the kit components are shown and contains an overview the parts.

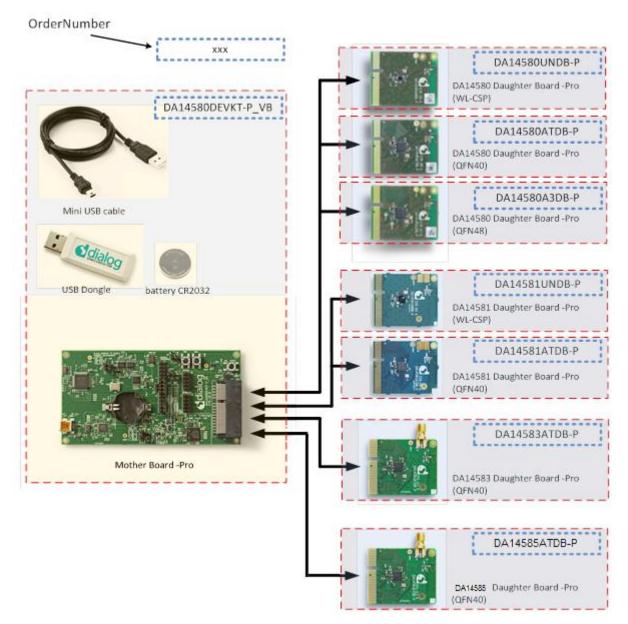



Figure 1: Overview of all DEVKT -Pro parts

Remark on Figure 1.: ordernumbers are to be added in dashedlined blocks



Table 1: Content of the DA14580/581/583 Pro Kit. Ordernumbers are made Bold

| DA14580/581/583 DEVKT – PRO:          | Included in the kit | Separate option for the 580 kit* | Separate option for the 581 kit* | Separate option for the 583 kit* |
|---------------------------------------|---------------------|----------------------------------|----------------------------------|----------------------------------|
| Battery CR2032                        | Х                   |                                  |                                  |                                  |
| Mini USB Cable                        | Х                   |                                  |                                  |                                  |
| <b>DA14580A3DB-P</b> (QFN48)          |                     | Х                                |                                  |                                  |
| <b>DA14580ATDB-P</b> (QFN40)          |                     | Х                                |                                  |                                  |
| DA14580UNDB-P (WL-CSP)                |                     | Х                                |                                  |                                  |
| DA14581UNDB-P (WL-CSP)                |                     |                                  | Х                                |                                  |
| <b>DA14581ATDB-P</b> (QFN40)          |                     |                                  | Х                                |                                  |
| <b>DA14583ATDB-P</b> (QFN40)          |                     |                                  |                                  | Х                                |
| DA14580DEVKT-P_VB (Main board)**      | Х                   |                                  |                                  |                                  |
| USB Dongle                            | Х                   |                                  |                                  |                                  |
| DA14585-00ATDEVKT-P<br>(Main board)** | Х                   |                                  |                                  |                                  |
| <b>DA14585-00VVDB-P</b> (WL-CSP)      |                     |                                  |                                  | Х                                |
| <b>DA14585-00ATDB-P</b> (QFN40)       |                     |                                  |                                  | Х                                |
| <b>DA14586-00F02ATDB-P</b> (QFN40)    |                     |                                  |                                  | Х                                |
| DA14586-00VVDB-P (WL-CSP)             |                     |                                  |                                  | Х                                |

Note 1 \* Not included in the kit, must be bought separately.

Note 2 \*\* The mainboard is compatible with all boards.

#### What is needed when ordering parts of the Pro-kit?

**First**: always needed is the **mother board**. This is part of the DA14580/581/583 Pro Kit. Also part of this Pro-kit are the battery, the USB cable and the dongle.

**Second**: what kind of daughter-board should be ordered? This depends on the choice of the microcontroller and package.

In Table 1 all the possibilities are displayed. All the possible daughter boards fit on the mother board.

#### Example: using DA14583

- Battery CR2032 + Mini USB Cable + mother board + USB Dongle
- DA14583ATDB-P (QFN40) daughter board

#### How do we order?

Use the numbers in the dashed line blocks of Figure 1 or the Bold numbers in Table 1.

#### Where to order?

The Pro-kit parts can be ordered via various distributors: http://www.dialog-semiconductor.com/contact-us/distributors-representatives



#### 3.2 Pro Kit for DA1458x family

Dialog semiconductor DA1458x BLE SoC family consists of DA14580, DA14581, DA14583, DA14585 and DA14586.

#### 3.2.1 Differences between DA14580, DA14581, DA14583, DA14585 and DA14586

The only hardware difference between the daughter boards of the DEVKT-Pro, is the design in of QFN48 (580) and the QFN40 (581, 583, 585 and 586). The silkscreen may have small textual differences.

The DA14581 uses a dedicated ROM which offers optimisations targeting A4WP and HCI.

Table 2: DA14580

| Product | Memory size                                    | General<br>Purpose<br>I/Os | Package                         | Key Features                                                      | Applications      |
|---------|------------------------------------------------|----------------------------|---------------------------------|-------------------------------------------------------------------|-------------------|
| WLCSP34 | ROM                                            | 12                         | 2.5x2.5x0.5mm,<br>pitch 0.4mm   | Bluetooth 4.0 + 4.1<br>Cortex M0 application                      | Beacon &          |
| QFN40   | 84kBytes<br>OTP<br>32kBytes<br>RAM<br>50kBytes | OTP 24 pitch 0.4mm         | processor<br>Power supply 0.9 - | Proximity<br>Health &<br>Fitness                                  |                   |
| QFN48   |                                                | 32                         | 6x6x0.9mm,<br>pitch 0.4mm       | 3.3V Single pin RF I/O Rich set of analog and digital peripherals | HID<br>Smart Home |

#### Table 3: DA14581

| Product | Memory<br>size              | General<br>Purpose<br>I/Os | Package                       | Key Features                                                                                   | Applications         |
|---------|-----------------------------|----------------------------|-------------------------------|------------------------------------------------------------------------------------------------|----------------------|
| WLCSP34 | ROM<br>84kBytes<br>OTP      | 12                         | 2.5x2.5x0.5mm,<br>pitch 0.4mm | Bluetooth 4.0 + 4.1<br>Cortex M0 application<br>processor<br>Power supply 0.9 -<br>3.3V        | Wireless<br>charging |
| QFN40   | 32kBytes<br>RAM<br>50kBytes | 24                         | 5x5x0.9mm,<br>pitch 0.4mm     | Single pin RF I/O Rich set of analog and digital peripherals 8 connections Optimized boot time | (A4WP)<br>HCI        |



Table 4: DA14583

| Product | Memory size                                           | General<br>Purpose<br>I\O's | Package                   | Key Features                                                                                                                              | Applications                                       |
|---------|-------------------------------------------------------|-----------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| QFN40   | ROM<br>84kBytes<br>OTP<br>32kBytes<br>RAM<br>50kBytes | 24                          | 5x5x0.9mm,<br>pitch 0.4mm | Bluetooth 4.0 + 4.1 Cortex M0 application processor Power supply 2.35 - 3.3V Single pin RF I/O Rich set of analog and digital peripherals | Beacon & Proximity Health & Fitness HID Smart Home |

- A4WP wireless charging features:
  - Fast boot time for Power Receiving Unit (PRU)
  - 8 connections for Power Transmitting Unit (PTU)
- HCI features:
  - o Optimized code for HCI which fits into the OTP
  - o This enables customers/modules makers to provide a pre-programmed HCI module

#### Remark: DA14583 can run in BUCK mode only!

The DA14583 is a DA14580 plus SPI Flash Memory of 1Mbit in the same package.

**Table 5: DA14585** 

| Product  | Memory size                                        | General<br>Purpose<br>I\O's | Package                              | Key Features                                                                                                                             | Applications                                                                                                                |
|----------|----------------------------------------------------|-----------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| WL-CSP34 |                                                    | 14                          | 2.40 mm x 2.66<br>mm, pitch<br>0.4mm | Complies with Bluetooth V5.0, Cortex M0 application processor Power supply                                                               | Voice-controlled remote controls  Beacons  (Multi-sensor) Wearable devices: - Fitness trackers                              |
| QFN40    | ROM<br>128kBytes<br>OTP 64 kBytes<br>RAM 96 kBytes | 25                          | 5x5x0.9mm,<br>pitch 0.4mm            | 0.9 - 3.3V with 1.8V cold boot support  Single pin RF I/O  Rich set of analog and digital peripherals  8 connections Optimized boot time | - Fillness trackers - Consumer health  Smartwatches Human interface devices: - Keyboard - Mouse  Toys,  Consumer appliances |



**Table 6: DA14586** 

| Product | Memory size                                                                    | General<br>Purpose<br>I\O's | Package                   | Key Features                                                                                                                                                                                                    | Applications                                                                                                                                                                                           |
|---------|--------------------------------------------------------------------------------|-----------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QFN40   | Flash 2Mbits<br>(256kBytes)<br>ROM 128kBytes<br>OTP 64 kBytes<br>RAM 96 kBytes | 24                          | 5x5x0.9mm,<br>pitch 0.4mm | Complies with Bluetooth V5.0, Cortex M0 application processor Power supply 0.9 - 3.3V with 1.8V cold boot support Single pin RF I/O Rich set of analog and digital peripherals Sconnections Optimized boot time | Voice-controlled remote controls  Beacons  (Multi-sensor) Wearable devices: - Fitness trackers - Consumer health  Smartwatches Human interface devices: - Keyboard - Mouse  Toys,  Consumer appliances |

The DA14586 is a DA14585 plus SPI Flash Memory of 2Mbit in the same package.



#### 3.3 Software Development Tools

#### 3.3.1 SmartSnippets Introduction



Figure 2: SmartSnippets Studio platform

Dialog SmartSnippets Studio<sup>™</sup> is a royalty-free software development platform for Smartbond<sup>™</sup> devices. It fully supports the DA1468x family of devices. SmartSnippets Studio<sup>™</sup> contains:

- SmartSnippets™ Toolbox: A tool suite covering all software developer needs, including:
  - Power profiling
  - Programming and loading of firmware into SRAM, OTP and Flash
- SmartSnippets™ IDE: Eclipse CDT based IDE pre-configured plugins allowing easy out of the box set-up of build/debug environment
- SmartSnippets™ DA1458x SDK
- SmartSnippets™ Documentation
- RF master which is an implementation of Bluetooth SIG standardized receiver and transmitter HCl commands and additional custom test HCl commands. User can access RF Master by selecting RF Master under the Layout tab of the ribbon menu, which loads RF Master with Log. Alternatively, user can select RF Master tool under Tools tab of the ribbon.

The SmartSnippets™ IDE is supported by an on-board debugger from SEGGER. This offers standard debug capabilities such as single stepping, setting breakpoints, software download and many more. For more details on the debugger capabilities, visit https://www.segger.com/.

#### 3.3.2 Installation

The description of the needed steps is presented:

- Download the SmartSnippets tools from the Dialog Support Website: https://support.dialogsemiconductor. com (registration required).
- Unzip the zip.
- Run SmartSnippets Studio installer (.msi).
  - o Install the recommended version of SEGGER J-Link GDB server.
  - Select the destination folder for the SmartSnippets Studio.
- Run the application.



#### 3.3.3 Starting SmartSnippets Studio

When SmartSnippets Studio starts for the first time, the user must configure it. The necessary configurations are the following:

• Select the workspace folder for SmartSnippets. The dialog is shown in Figure 9. It is suggested to choose the root directory of the SmartSnippets DA1468x SDK. If this is not done correctly, then the message "you have not selected the latest SDK" will be shown. The correct message should be: "You have not yet selected a SDK. Click the Browse button

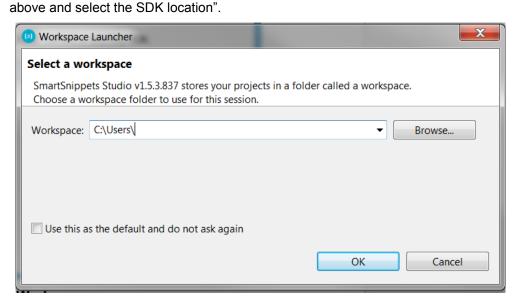



Figure 3: Dialog for Selecting Workspace

If necessary, specify how the selected workspace should be treated. (DA1468x 1.0.8 SDK or DA1458x 5.0.4 SDK)

• A set of tools required for all SDKs are getting automatically detected, such as GNU ARM GCC, SmartSnippets Toolbox, etc. If required version of software cannot be found, they will be downloaded and installed by the SDK Tools Installer (See Figure 10).

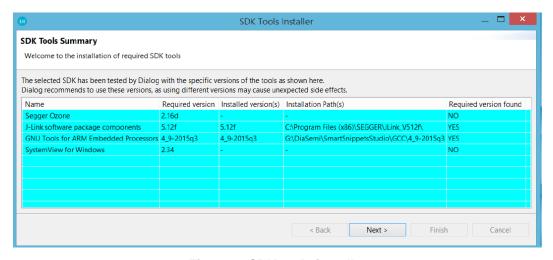
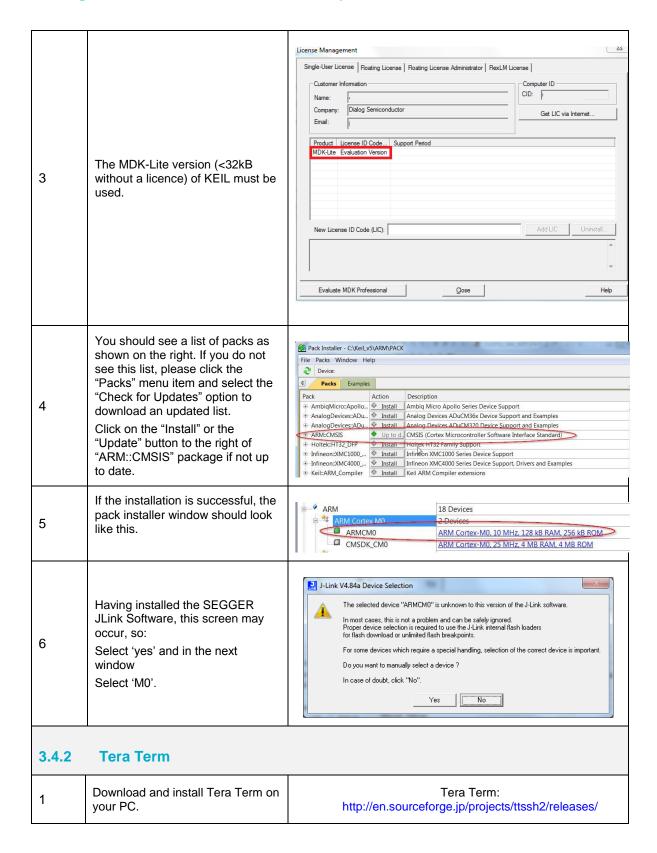



Figure 4: SDK tools installer

And now, the SmartSnippets Studio is ready for use.




Note, that Ozone and GNU tool chain are not needed for the DA1458x family.

Table 7: Installation tools and drivers

| 3.4   | Setting up your PC                                                                                                                                                                                    |                                                                                                                                                  |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1     | Register yourself on the Dialog website<br>http://support.dialog-semiconductor.com/                                                                                                                   |                                                                                                                                                  |  |  |
| 2     | Dowload the newest SDK http://support.dialog-semiconductor.com/product/da14580 http://support.dialog-semiconductor.com/product/da14585                                                                |                                                                                                                                                  |  |  |
| 3     | Download SmartSnippets Studio https://support.dialog-semiconductor.com/resource/smartsnippetsstudiov153-windows-os https://support.dialog-semiconductor.com/resource/smartsnippetsstudiov153-linux-os |                                                                                                                                                  |  |  |
| 5     | To install the Software development                                                                                                                                                                   | environment, please follow the steps as shown below.                                                                                             |  |  |
| 3.4.1 | SmartSnippets Studio                                                                                                                                                                                  |                                                                                                                                                  |  |  |
| 1     | Open SmartSnippets Studio and select: Treat as DA1458x                                                                                                                                                | Please specify how the selected workspace should be treated.  Treat as DA1468x 1.0.4 SDK  Treat as DA1458x 5.0.3 SDK  Take no action  OK  Cancel |  |  |
| 2     | Press: Keil IDE from the Tools section of thw welcome menu                                                                                                                                            | Tools  SmartSnippets Toolbox  Keil IDE                                                                                                           |  |  |







#### 3.4.3 Software Development Kit content

#### 3.4.3.1 Tools

Web-link: www.dialog-semiconductor.com/support, go to section **Products** for selecting chip (e.g DA14585) then **Software & Tools**, and finally **Tools** section.

#### **SmartSnippets**

SmartSnippets is a framework of PC based tools to control DA14580/581/583/585/586 development kit, consisting of:

- Power Profiler: Real time current consumption measurement to for the DA14580/581/583 motherboard
- OTP Programmer: Tool for OTP memory programming
- UART/JTAG booter: Tool for downloading hex files to DA14580/581/583 SRAM over UART or JTAG
- SPI & EEPROM programmer: A tool for SPI & EEPROM flash programming
- Sleep Mode Advisor: Calculation tool to determine most optimal sleep modes

#### 3.4.3.2 SDK documents

- UM-B-0051, DA1458x Software Platform Reference0\_581\_583 Software development guide
- UM-B-006, DA14580 Sleep mode configuration
- UM-B-007, DA14580 Software Patching over the Air (SPOTA)
- UM-B-008, DA14580 Production test tool
- UM-B-010, DA14580\_581\_583 Proximity application
- UM-B-011, DA14580 Memory map scatter file
- UM-B-012, DA14580 Secondary boot loader
- UM-B-013, DA14580 External Processor Interface over SPI
- UM-B-014, DA14580 Bluetooth Smart Development Kit Expert
- UM-B-015, DA14580 581 583 Software architecture
- UM-B-016, DA14580 Software Porting Guide
- UM-B-017, DA14580 GTL interface Integrated Processor Application
- UM-B-079 DA14585 & DA14586 Software Platform Reference (SDK 6.0.2)
- UM-B-080 DA14585 & DA14586 Software Developer's Guide (SDK 6.0.2)
- UM-B-082 DA14585/586 SDK5.0.4 to SDK6 Porting Guide\_1v0



#### 3.4.3.3 SDK source code examples (created with Keil IDE)

#### Web-link:

- projects. This folder holds all the necessary folders needed for DA14580/581/583/585/586 application development.
  - projects\target\_apps\ble\_examples
     The folder contains the following subfolders and in each one of them resides the respective project file. DA14585/586, only Keil\_5 is supported:

#### **Table 8: SDK Examples**

| Folder                       | Project File                  | Description                                                                                                       |
|------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------|
| prox_monitor_ext\Keil_5      | prox_monitor_ext.uvprojx      | Proximity Monitor (External processor configuration) (*see below for device selection)  USB MONITOR (**see below) |
| prox_reporter_ext\Keil_5     | prox_reporter_ext.uvprojx     | Proximity Reporter (External processor configuration) (*see below for device selection) USB MONITOR (**see below) |
| prox_reporter\Keil_5         | prox_reporter.uvprojx         | Proximity Reporter (Integrated processor configuration) (*see below for device selection)                         |
| ble_app_barebone\Keil_5      | ble_app_barebone.uvprojx      | Barebone project (Integrated processor configuration) (*see below for device selection)                           |
| ble_app_peripheral\Keil_5    | ble_app_peripheral.uvprojx    | Peripheral (Integrated processor configuration) (*see below for device selection)                                 |
| ble_app_profile\Keil_5       | ble_app_profile.uvprojx       | Profiles (Integrated processor configuration) (*see below for device selection)                                   |
| prox_reporter_ext_spi\Keil_5 | prox_reporter_ext_spi.uvprojx | Proximity Reporter (External processor) SPI version (*see below for device selection)                             |

The device can be easily selected as shown below:



Figure 5: DA14580 Target selection





Figure 6: da14585 Target selection

\*\*USB MONITOR/USB REPORTER can be easily selected as shown below.

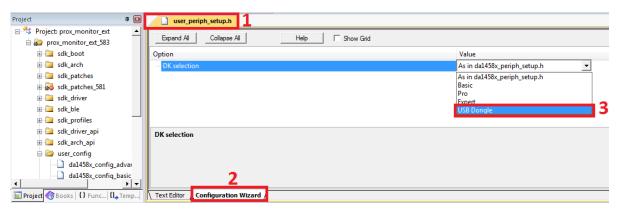



Figure 7: DA14580 USB selection

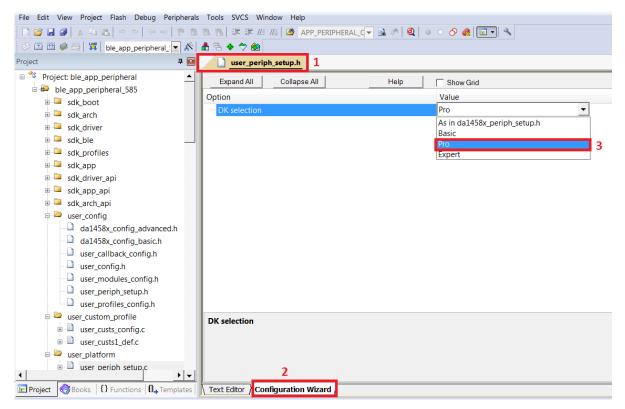



Figure 8: DA14585 USB selection



- projects\target\_apps\prod\_test: This folder includes the source code of the production test firmware. Refer to UM-B-008\_DA14580\_581\_583\_Production\_test\_tool.pdf for more information how to build and use it.
- 5.0.x: This folder holds the DA14580/581/583 PC applications:
  - projects\host\_apps\windows\proximity: This folder includes two Windows C applications,
    with each one acting as part of a proximity monitor and a proximity reporter application. They
    are placed in subfolders monitor and reporter respectively. For details, please read the
    DA14580 Proximity Application Guide.
  - binaries\host\windows\proximity: This folder includes two pre-compiled Windows
    executables which correspond to the C applications described right above and are included
    for user convenience.
  - projects\target\_apps\peripheral\_examples: This folder includes sample code of how to use the peripheral blocks of the DA14580 (e.g. UART, SPI, I2C etc.) bundled to a demo-kit. For details, please refer to [9].
- 6.0.x: This folder holds the DA14585/586 PC applications:
  - projects\host\_apps\windows\proximity: This folder includes two Windows C applications, with each one acting as part of a proximity monitor and a proximity reporter application. They are placed in subfolders monitor and reporter respectively.
  - binaries\host\windows\proximity: This folder includes two pre-compiled Windows
    executables which correspond to the C applications described right above and are included
    for user convenience.
  - projects\target\_apps\peripheral\_examples: This folder includes sample code of how to
    use the peripheral blocks of the DA14585/586 (e.g. UART, SPI, I2C etc.) bundled to a demokit

#### • utilities:

utilities\prod\_test\prod\_test\_cmds: This folder includes the source code of the production test tool. Refer to UM-B-008\_DA14580\_581\_583\_Production\_test\_tool.pdf for more information how to build and use it.



#### 3.5 Pinning

In Figure 9 the pinout of the DA14583 is shown. New, compared to the DA14580/581, are the connections to the internal SPI flash memory.

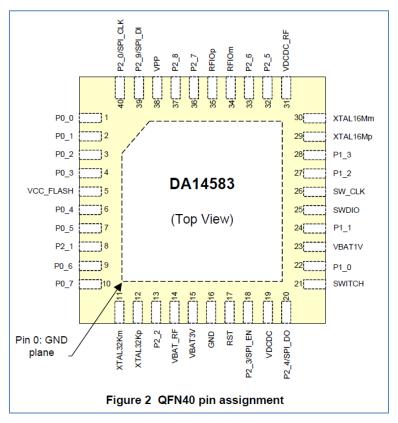



Figure 9: QFN40 pin assignment from datasheet

**Table 9: SPI connections** 

| port<br>DA14583 | function  | remark                              |
|-----------------|-----------|-------------------------------------|
| P2_0            | SPI_CLK   | SCLK (Note 1)                       |
| P2_9            | SPI_DI    | MOSI (Note 1)                       |
| P2_4            | SPI_DO    | MISO (Note 1)                       |
| P2_3            | SPI_EN    | not to be used for external SPI (!) |
|                 | VCC_FLASH | power for internal Flash Memory     |
|                 | GND       |                                     |

Note 1 shared with internal flash memory

When external SPI components are used, SPI\_EN is occupied for internal use. Another pin should be chosen for SPI\_EN of the external component.

By using a Secondary Bootloader the proper pins are programmed to load the booting software from the SPI-memory at startup.

See more info from UM-B-012 [12].



#### 3.6 DA14585 Pining

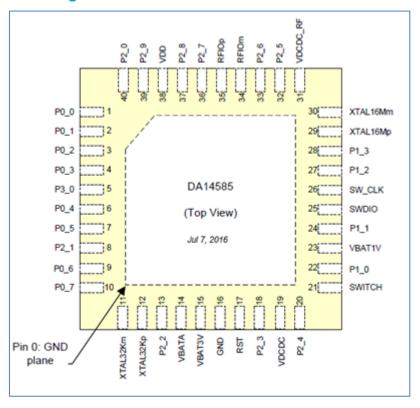



Figure 10: DA14585 - QFN40 pin assignment

DA14585 - QFN40 pins assignment differentiation:

- DA14580/1/3:Pin 38, VDD is assigned instead of VPP. DA14585/6 doesn't need an external 6.8V voltage rail for programming OTP. VDD is input and it is used for testing purposes only. In normal operation this pin must left floating.
- To DA14583/6: Pin 5, is assigned to P3\_0 instead of VCC\_ Flash for DA14583 and DA14586. On DA14585, this is a general purpose IO pin.



#### 3.7 DA14586 Pining

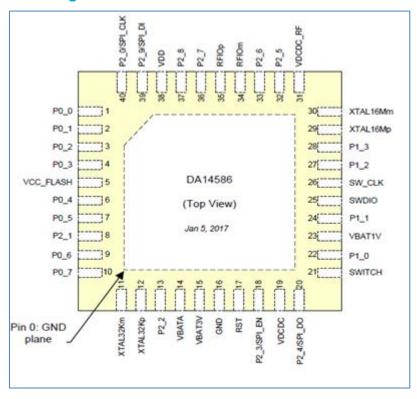



Figure 11: DA14586 - QFN40 pin assignment

DA14586 - QFN40 pins assignment differentiation:

To DA14580/1/3: Pin 38, VDD is assigned instead of VPP. DA14585/6 doesn't need an external 6.8V voltage rail for programming OTP. VDD is input and it is used for testing purposes only. In normal operation this pin must left floating.

To DA14580/1/5: Pin 5, VCC\_Flash is assigned instead of P3\_0. VCC\_ Flash is used for supplying the internal flash memory for DA14586. Same assignment is valid for DA14583.

In addition, as DA14586 incorporates a 2Mbit flash memory, four pins are multiplexed with internal flash data pins :

**Table 10: SPI connections** 

| Pin number | Port    | function  | Remark                              |
|------------|---------|-----------|-------------------------------------|
| DA14586    | DA14586 |           |                                     |
| 40         | P2_0    | SPI_CLK   | SCLK (Note 2)                       |
| 39         | P2_9    | SPI_DI    | MOSI (Note 2)                       |
| 20         | P2_4    | SPI_DO    | MISO (Note 2)                       |
| 18         | P2_3    | SPI_EN    | not to be used for external SPI (!) |
| 5          |         | VCC_FLASH | power for internal Flash Memory     |
|            |         | GND       |                                     |

Note 2: shared with internal flash memory

When external SPI components are used, SPI\_EN is occupied for internal use. Another pin should be chosen for SPI\_EN of the external component.



By using a Secondary Bootloader the proper pins are programmed to load the booting software from the SPI-memory at startup.

#### 3.7.1 PCB design and functionalities

The top-screen layer of the pro kit PCB is shown below in Figure 12.

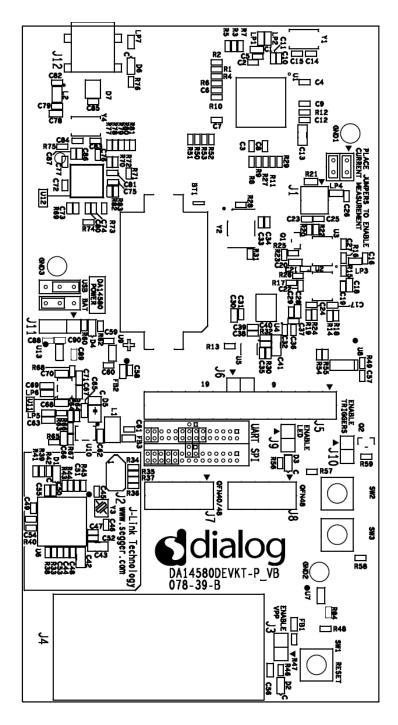



Figure 12: MotherBoard of Development Kit - Pro (PCB topview)



#### 3.7.2 Configuring the Pro kit-board by jumper settings

There are two configurations that can be switched; the default configuration that supports the boot from UART or the configuration that supports boot from an external SPI flash memory.

The jumper settings are displayed below.

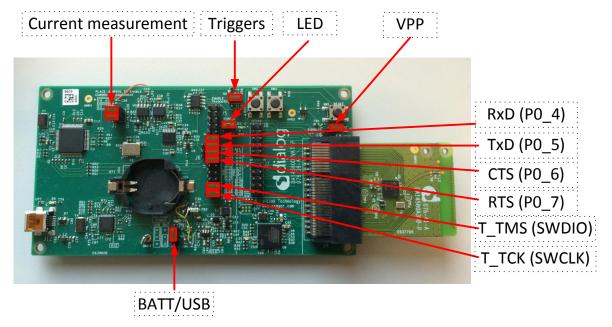



Figure 13: DA14580/581/583 (Fabrication default) UART boot settings (T\_TxD: (P0\_5) and T\_RxD: (P0\_4))

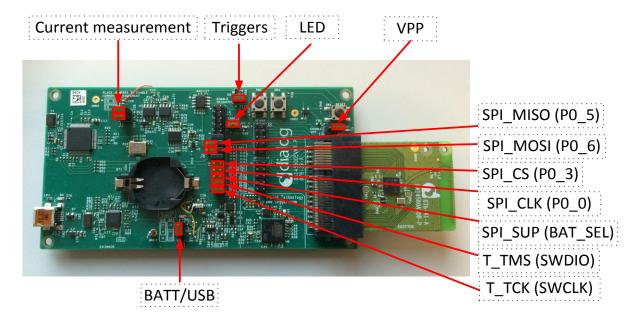



Figure 14: DA14580/581 Boot from external SPI memory

Note 3 These functionalities are shown in detail in Appendix A



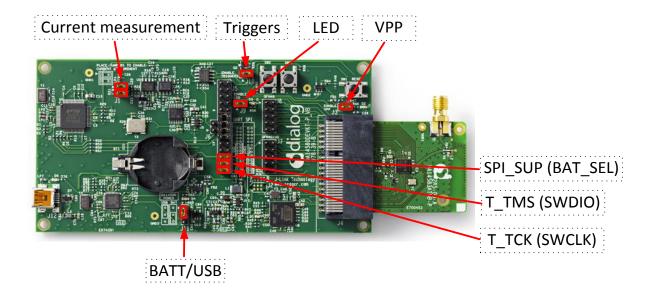



Figure 15: DA14583 Boot from internal SPI memory

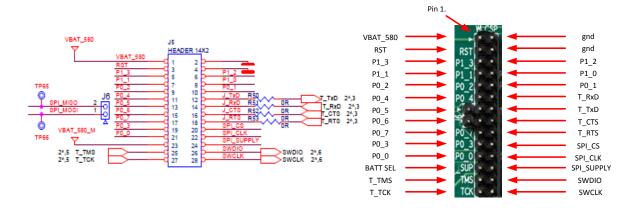



Figure 16: Layout of headers J5 and J6

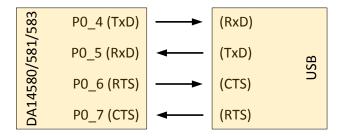



Figure 17: UART Data Direction of Uart within J5

**Example:** when jumper J5 (27-28) is placed, connection 'T\_TCK = SWCLK' is made.

In Figure 13 and Figure 14 the connections are added next to the arrows.



On this board only the buck mode is used. A choice can be made between 3V3 (via USB: J11 1-2) or Vdd (a coin cell: J11 2-3). No battery is needed when running via the USB-mini-cable.

**Remark:** For proper battery functionality a small modification should be made. For the details see the workaround in Appendix G.

#### 3.7.3 Block diagram

This is the schematic of the block diagram; all other schematics can be found in Appendix C.



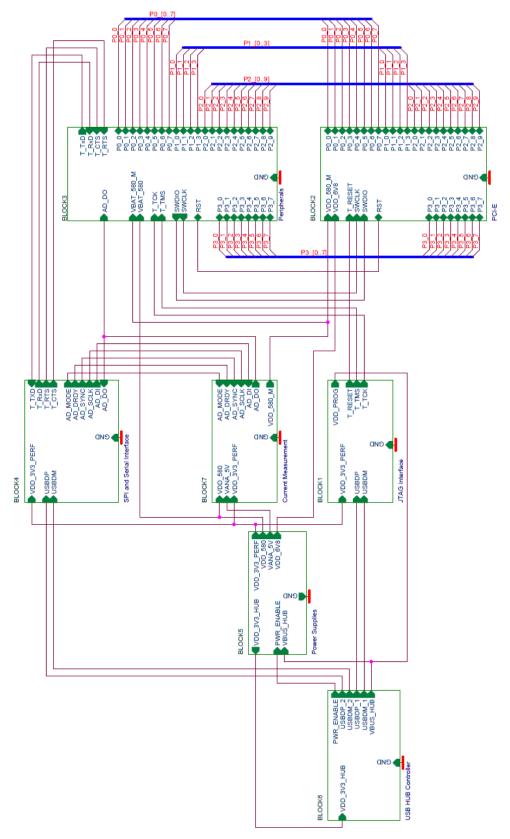



Figure 18: Block diagram of total systemMemory and tools



The DA14580/DA14581/DA14583DEVKT is equipped with: (on the chip) SRAM (50k) and OTP (32k).

Mounted on the board is external SPI flash memory (2Mbit).

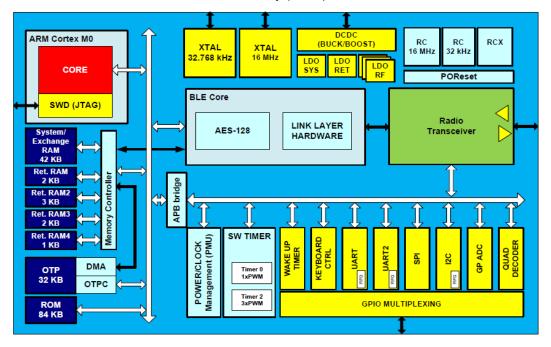



Figure 19: DA14580/581/583 block diagram

Software can be downloaded to:

- SRAM
  - o Keil IDE
  - SmartSnippets
  - o Command Line Interface (CLI)
  - o Connection Manager
- OTP
  - o SmartSnippets
  - o CLI
- SPI (flash)
  - SmartSnippets
  - o CLI

Example: loading software (hex-file) by using SmartSnippets

- PC → UART → DA14580/581/583
- PC → UART → DA14580/581/583→ SPI (flash)
- PC  $\rightarrow$  UART  $\rightarrow$  DA14580/581/583 $\rightarrow$  OTP

For the settings of the jumpers see Figure 13.

An example of the CLI is shown in Appendix D



© 2017 Dialog Semiconductor

#### Getting started with the DA1458x Development Kit - Pro

The DA14585/DA14586 is equipped with: (on the chip) SRAM (96k) and OTP (64k). Mounted on the board is external SPI flash memory (2Mbit). External Falsh is not used for DA14586.

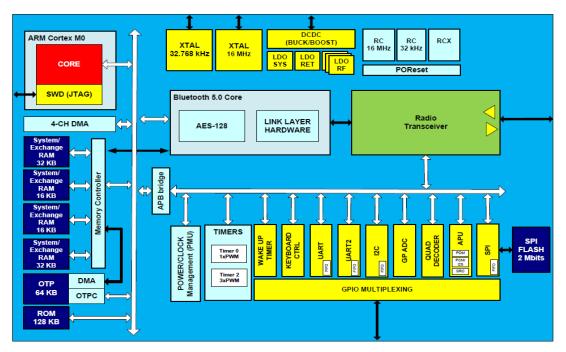



Figure 20: DA14585/586 block diagram

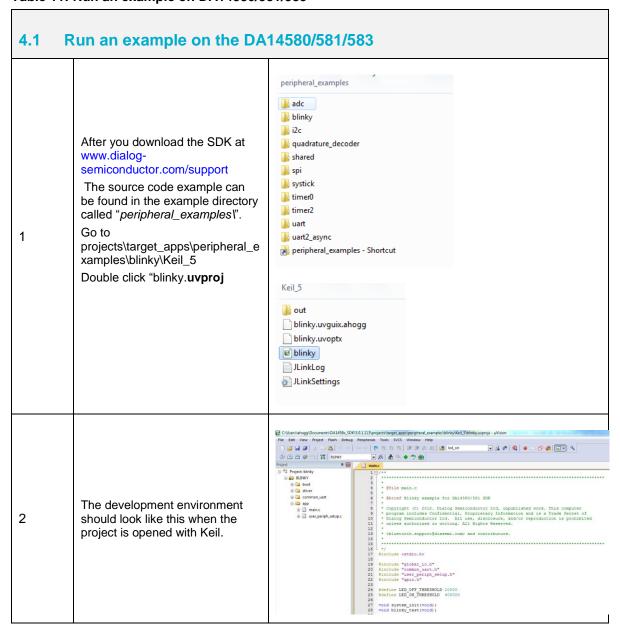
Software can be downloaded to:

- SRAM
  - o Keil IDE
  - o SmartSnippets
  - o Command Line Interface (CLI)
  - Connection Manager
- OTP
  - SmartSnippets
  - o CLI
- SPI (flash)
  - o SmartSnippets
  - o CLI

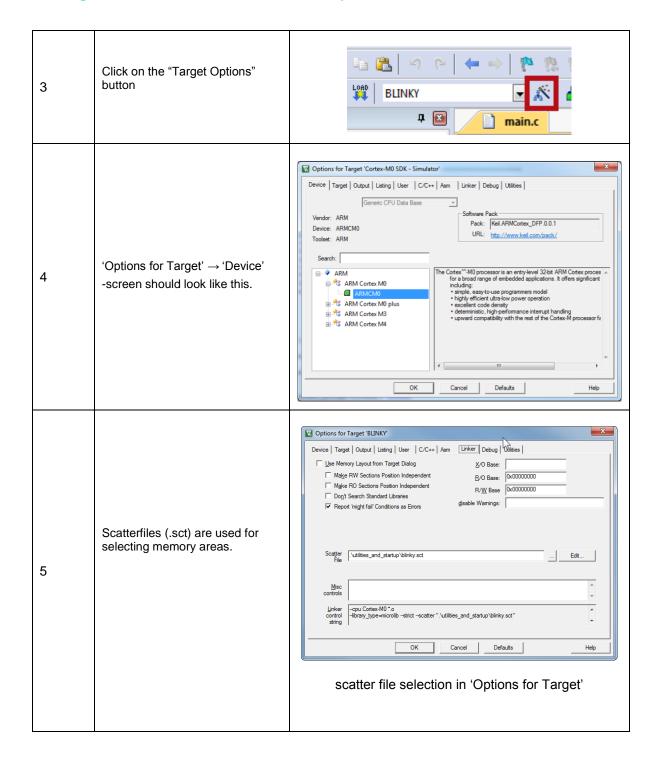
Example: loading software (hex-file) by using SmartSnippets

- PC → UART → DA14585/586
- PC  $\rightarrow$  UART  $\rightarrow$  DA14585/586  $\rightarrow$  SPI (flash)
- PC  $\rightarrow$  UART  $\rightarrow$  DA14585/586  $\rightarrow$  OTP

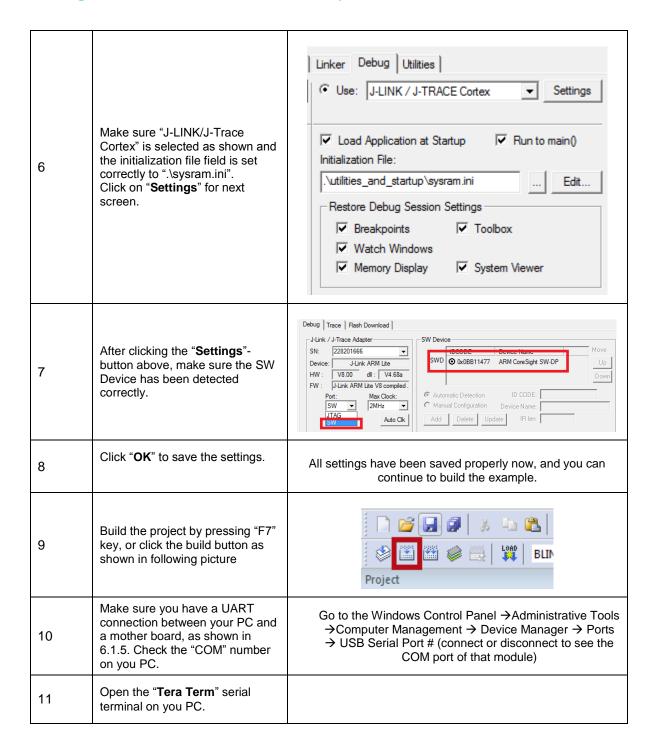
For the settings of the jumpers see Figure 13.



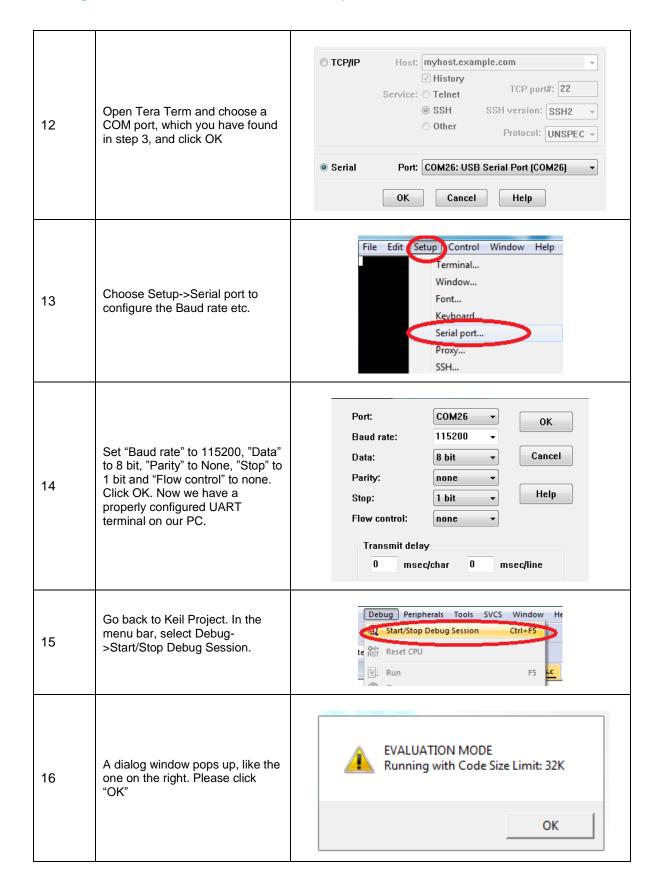

An example of the CLI is shown in Appendix D


## 4 Using the demo kit

Follow the steps shown in Table 11 to easily create a working demo kit.

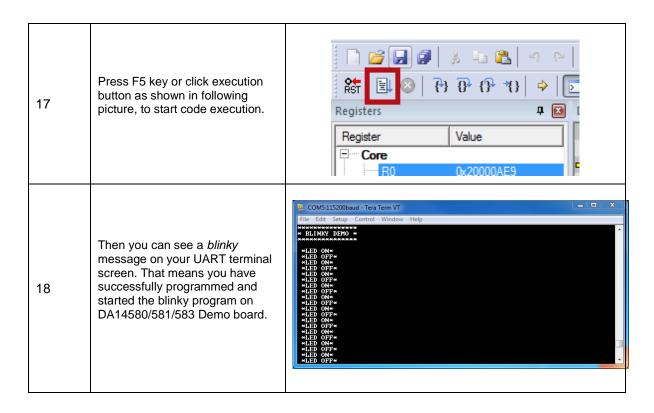

Table 11: Run an example on DA14580/581/583
















© 2017 Dialog Semiconductor





## **Appendix A Layout**

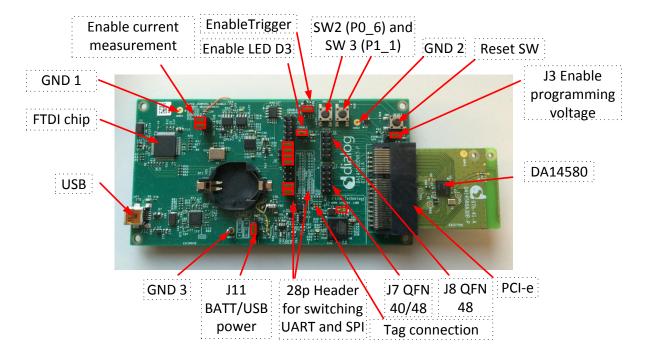



Figure 21: Board layout

## **Appendix B Connections of J7 and J8**

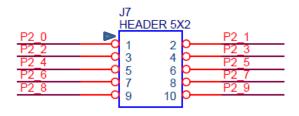



Figure 22: IO breakout available on QFN40 and QFN48

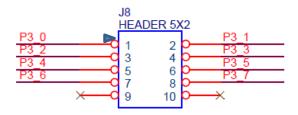



Figure 23: IO breakout available on QFN48



## **Appendix C Schematics Motherboard and Daughterboards**

#### **C.1** Peripherals

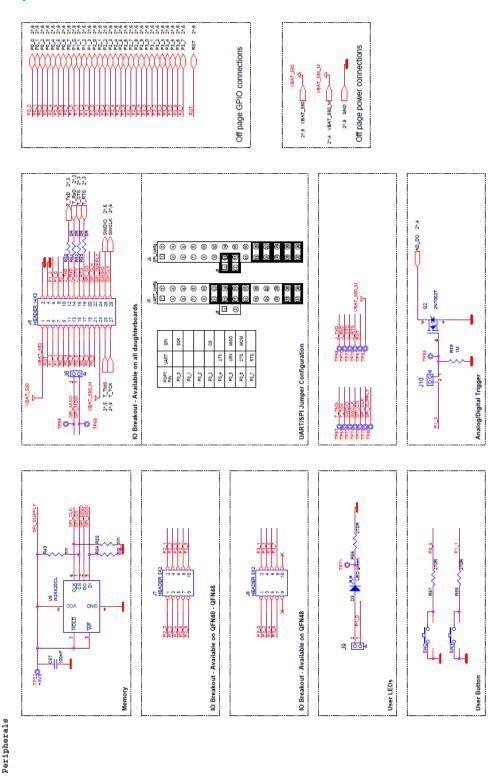



Figure 24: Peripherals schematic of Motherboard



#### C.2 SPI and serial

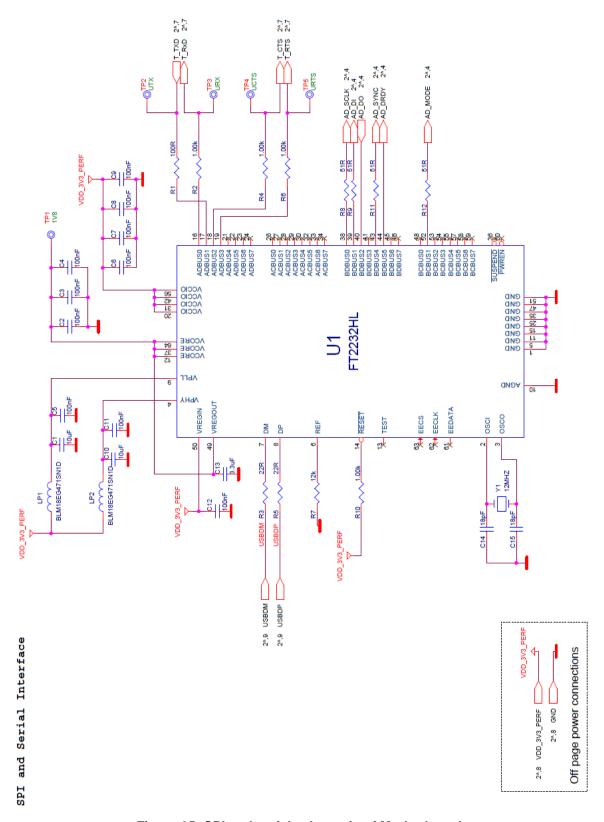



Figure 25: SPI and serial schematic of Motherboard



#### **C.3** Current measurement

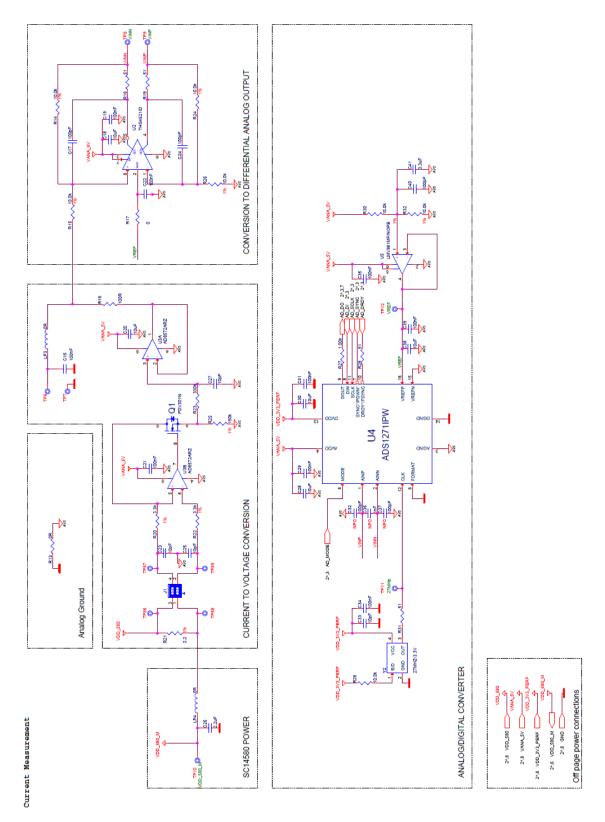



Figure 26: Current measurement schematic of Motherboard



#### C.4 JTAG Interface

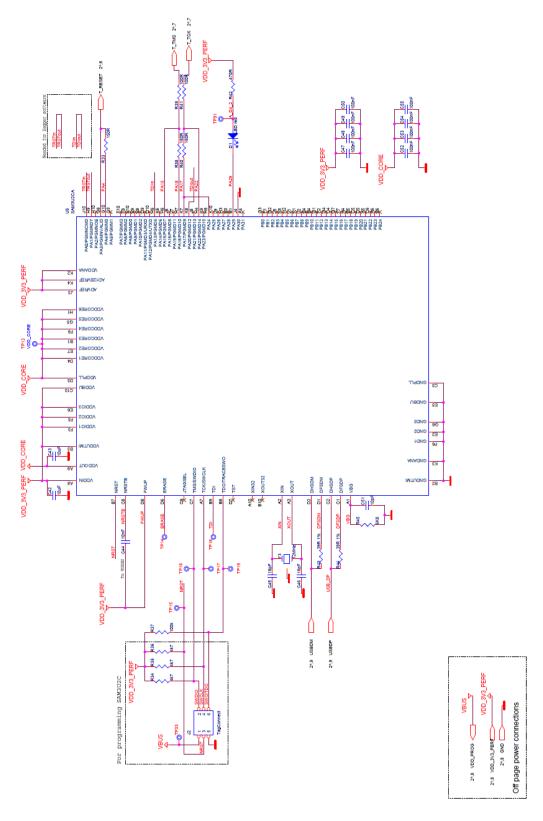



Figure 27: JTAG interface schematic of Motherboard

User manual Revision 1.2 30-March-2017

JTAG Interface



#### C.5 PCI-e

PCI-E

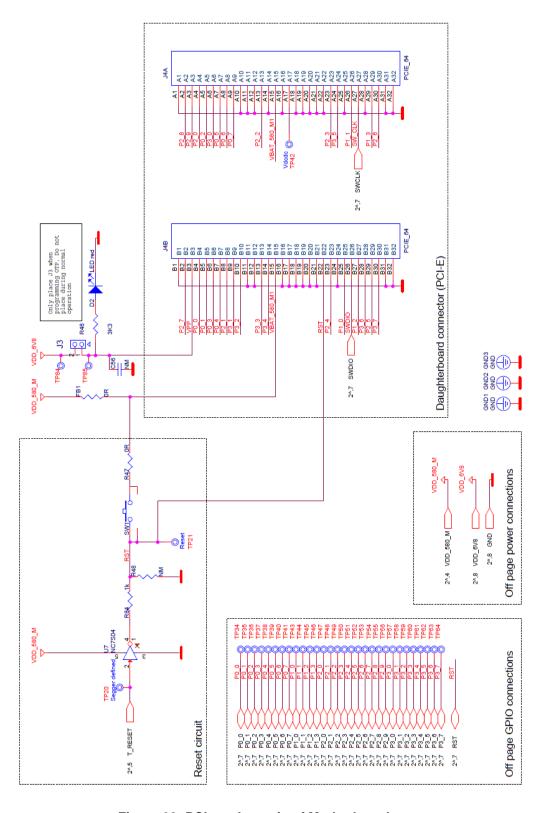
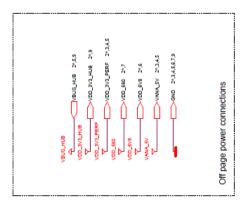




Figure 28: PCI-e schematic of Motherboard



## **C.6** Power supplies



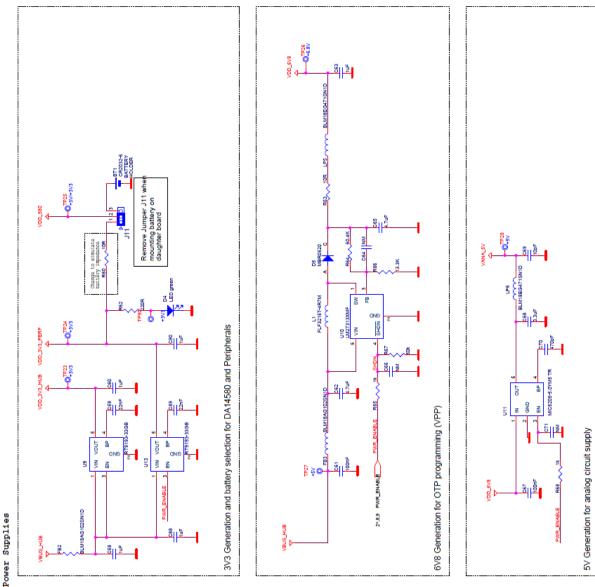



Figure 29: Power supplies schematics of Motherboard



#### C.7 USB HUB Controller

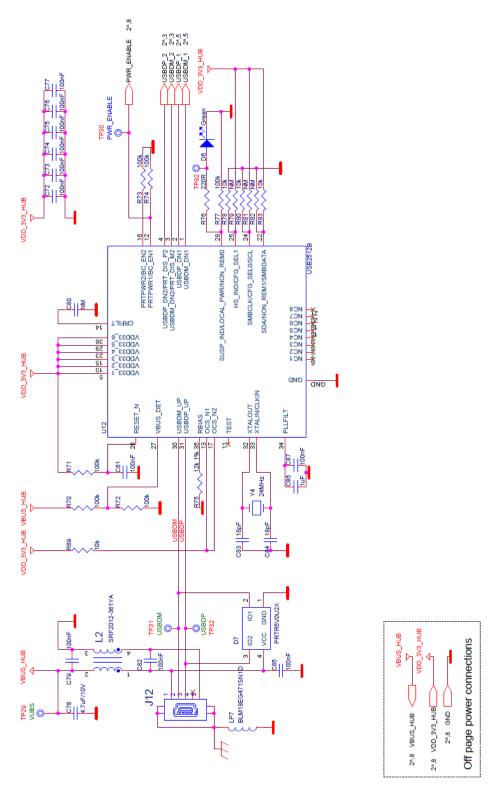



Figure 30: USB HUB controller schematic of Motherboard

User manual Revision 1.2 30-March-2017

USB HUB Controller



## C.8 DA14580 WLCSP Daughter board

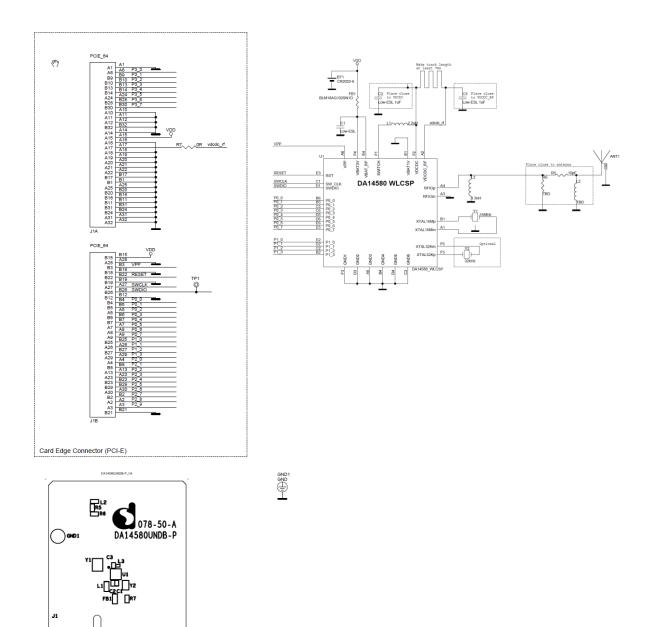
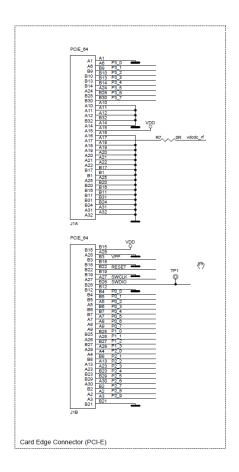
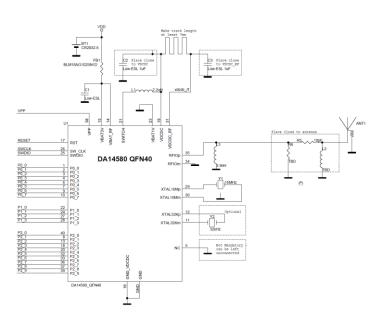





Figure 31: DA14580 WLCSP Daughter board



## C.9 DA14580 QFN40 Daughterboard





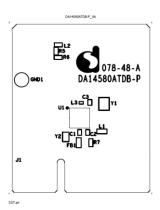



Figure 32: DA14580 QFN40 Daughterboard

User manual Revision 1.2 30-March-2017



## C.10 DA14580 QFN48 Daughterboard

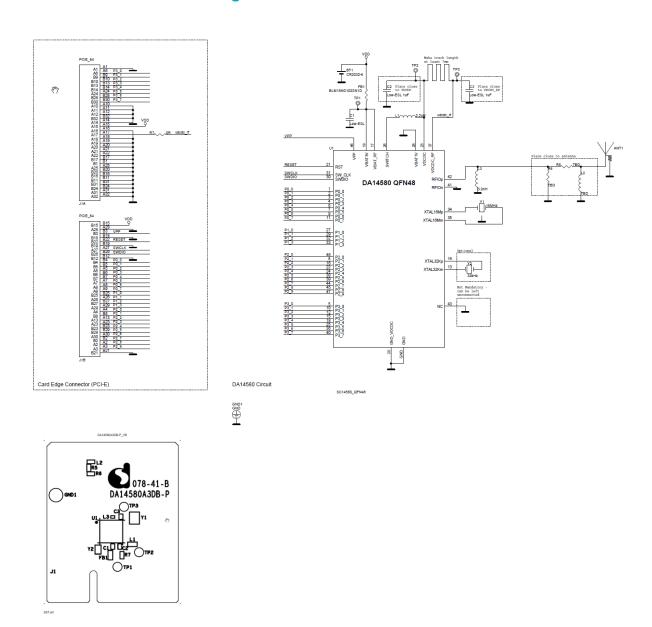
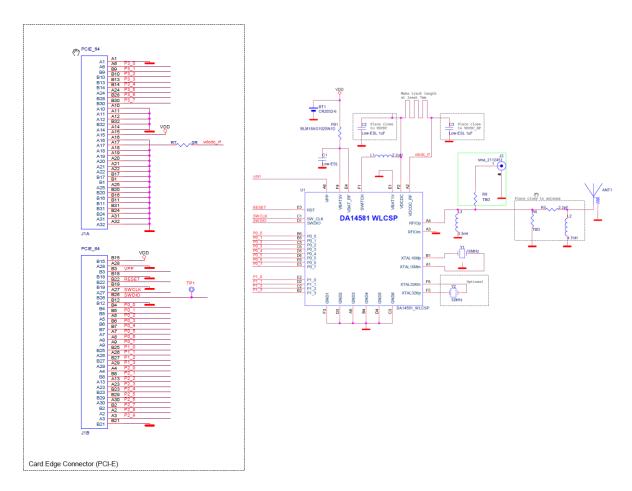




Figure 33: DA14580 QFN48 Daughterboard



## C.11 DA14581 WLCSP Daughterboard



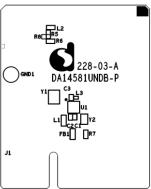


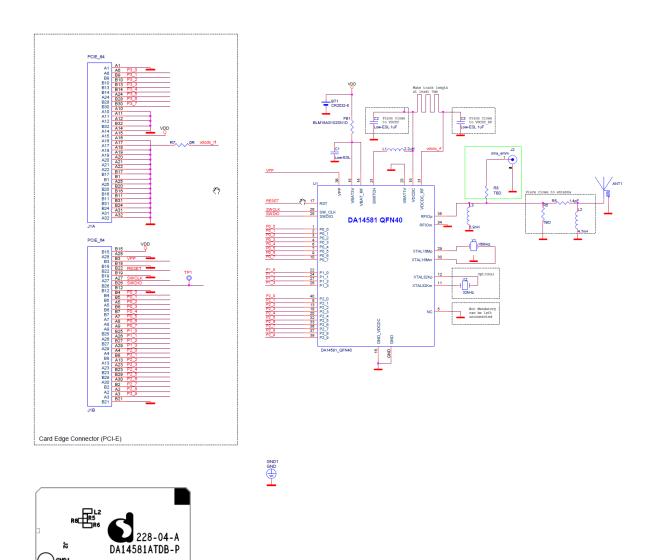
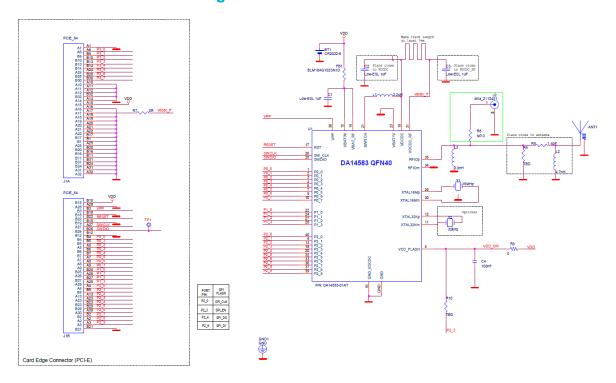

Figure 34: DA14581 WLCSP Daughterboard

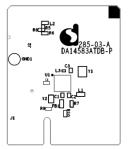


## C.12 DA14581 QFN40 Daughterboard

U1 • C3 Y1

J1

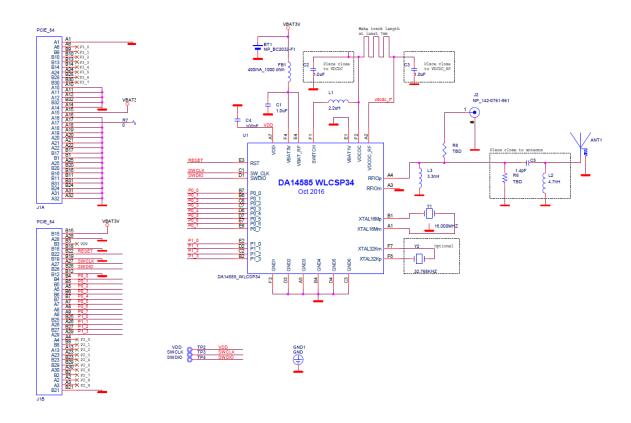


Figure 35: DA14581 QFN40 Daughterboard

User manual Revision 1.2 30-March-2017



## C.13 DA14583 QFN40 Daughterboard






NOTICE:To ensure proper functionality it is recomended to disable the SPI Flash located at the PRO motherboard as it might conflict with the built in SPI Flash inside the DA14583

Figure 36: DA14583 QFN40 Daughterboard



## C.14 DA14585 WLCSP34 Daughterboard (321-3-x)



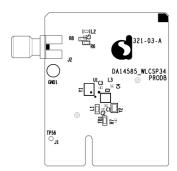
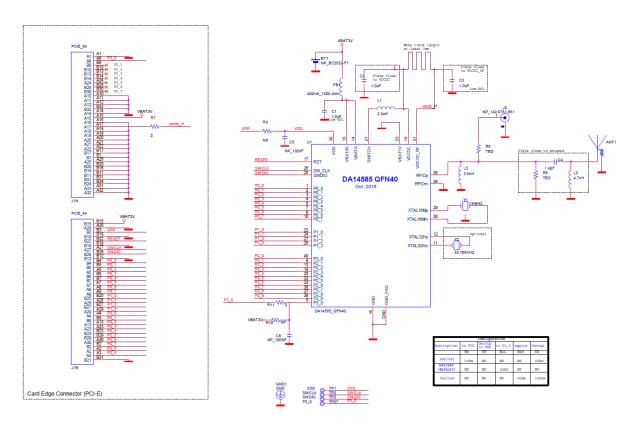




Figure 37: DA14585 WLCSP34 Daughterboard



## C.15 DA14585 QFN40 Daughterboard (321-2-x)



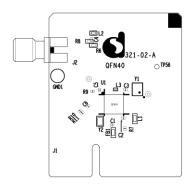
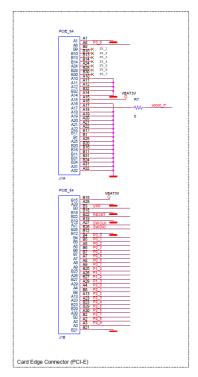
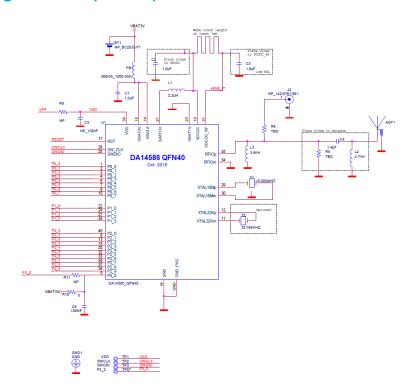





Figure 38: DA14585 QFN40 Daughterboard



## C.16 DA14586 QFN40 Daughterboard (321-2-x)





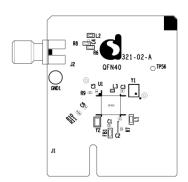



Figure 39: DA14586 QFN40 Daughterboard

Please notice that DA14585 – QFN40 and DA14586 – QFN40 designs are similar except few components assembly. Consequently same PCB is used with bill of materials (BOM) modifications:

Table 12: BOM diifferences between DA14585 and DA14586 designs

| Component | DA14585 QFN40   | DA14586 QFN40   |
|-----------|-----------------|-----------------|
|           | Daughterboard   | Daughterboard   |
| U1        | DA14585 – QFN40 | DA14586 – QFN40 |
| R11       | 0 Ohm           | No mount        |
| R10       | Not mount       | 0 Ohm           |
| C5        | Not mount       | 100nF           |

User manual Revision 1.2 30-March-2017



#### Appendix D Using the SmartSnippets CLI

All the information/syntaxes about the CLI can be found from the **HELP** tab in the SmartSnippets GUI or by written **Smartsnippets –help** in the CLI.

In this example, it is supposed that the SPI memory is using P0\_0 as SCK, P0\_3 as CS, P0\_5 as MISO and P0\_6 as MOSI.

First of all, the CLI can send the commands either via UART or JTAG according to the binary file which has to be loaded.

On the one hand, if the commands are going to be sent via UART, the following binary file which can be found from the resources folder of SmartSnippets has to be downloaded into the DA14580/DA14581/DA14583 using SmartSnippets:

flash programmer.bin

On the other hand, if the commands are going to be sent via JTAG, the following binary file which can be found from the resources folder of SmartSnippets, has to be downloaded into the DA14580/DA14581/DA14583 using SmartSnippets:

jtag\_programmer.bin

For additional help, please see the "HELP" in SmartSnippets as shown below:

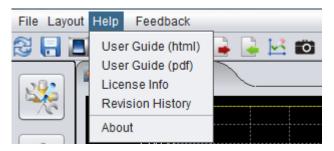



Figure 40: SmartSnippets HELP

Secondly, open the CLI by pushing the Shift button and right click on the **'bin'** folder of the SmartSnippet and select **'Open command window here'** as follow:

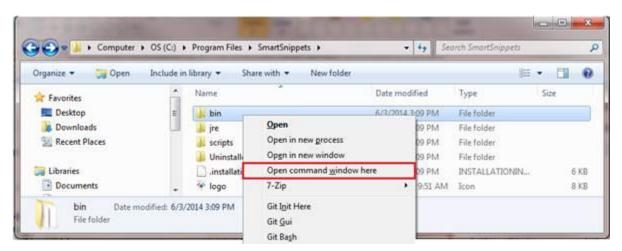



Figure 41: Open the CLI of SmartSnippets

User manual Revision 1.2 30-March-2017



Finally, in order to write a value 0x1347 (example of a 53luetooth device address) at the address 0x93 for instance, the following command line can be written:

SmartSnippets.exe –type spi –chip DA14580/DA14581-01 –jtag 228202458 -cmd write\_field –offset 0x93 –data 1347 –firmware "D:\SmartSnippets\resources\jtag\_programmer.bin"

The answers should be as shown below:

```
Found SWD-DP with ID 0x0BB11477
FPUnit: 4 code (BP) slots and 0 literal slots
Found Cortex-M0 r0p0, Little endian.
BILE device DA14580 selected.
Using default GPIO pin Id: P1_2.
Using default baudrate: 57600 Bd.
Burned 2 bytes to address 0x00093.
```

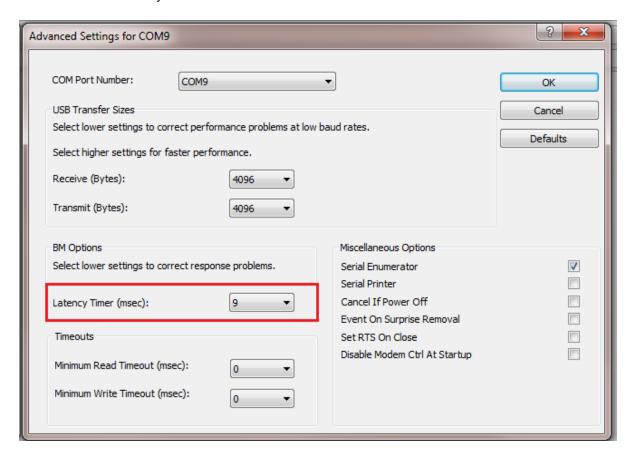
Figure 42: Smart snippet CMD window

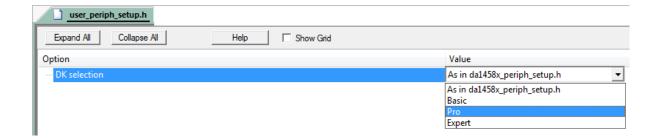


## **Appendix E Latency Timer of FTDI cable**

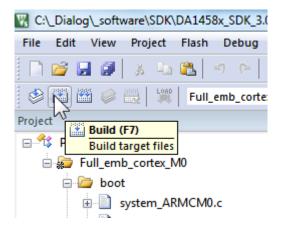
If an external FTDI cable is used to burn the OTP (or to download the image into the external memory), the Latency Timer of the FTDI cable has to be changed from 15ms to <10ms. To change the Latency Timer:

Device Manager  $\rightarrow$  COM port  $\rightarrow$  Right click on the COM port chosen  $\rightarrow$  Properties  $\rightarrow$  Port Settings  $\rightarrow$  Advanced  $\rightarrow$  Latency Timer: set it <10ms.





Figure 43: FTDI Latency Timer



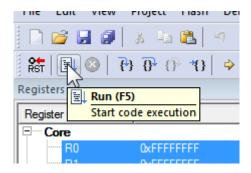

#### **Appendix F RF-Testing DEVKT - Pro**

Follow steps to start example from SDK:

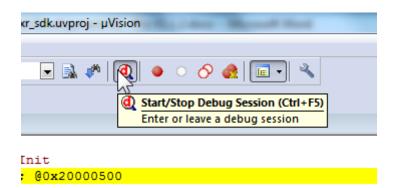
- Step 0. Connect DEVKT- Pro to USB-port.
- Step 1. For DA1458x: start KEIL via double click on project name:
   ... DA1458x\_SDK\5.0.x\projects\target\_apps\ble\_examples\prox\_reporter\Keil\_5
- Step 2. Define HW\_CONFIG\_PRO\_DK // Pro DK see: user\_periph\_setup.h



• Step 3. KEIL is started and press F7 for 'Building' the software. When the build-result is 'no errors', then got the next step.




• Step 4. Start Debug Session (Ctrl + F5)






• Step 5. Run the software by pressing 'F5'



 Step 6. Stop Debug Session by pressing 'Ctrl + F5' Software will start running now!



• Step 7. Check via 'Bluetooth scanning software' whether the RF-part of the DEVKT – Pro is working.

This software is available for iPhone and Android phone as an App.



# **Appendix G Battery connection 'workaround'**

There is a small hardware malfunction. When the board operates on battery (J11 jumper on 2-3), the RST-signal is permanently high. When USB is disconnected, then T\_RESET becomes low. After invertor U7 RST is high. In this case the board will not operate.

Workaround is the dismounting of R84.

In Figure 44 the Reset circuitry is shown.

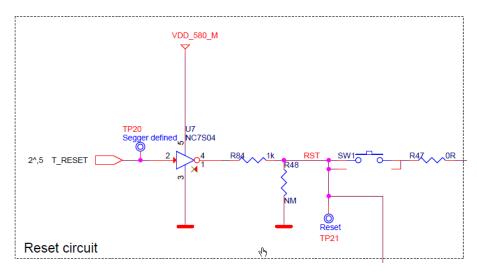



Figure 44: Reset circuitry. R84 to be dismounted.

In Figure 45 the location of R84 is shown.




Figure 45: Location of R84



#### **Appendix H Power bouncing workaround**

DA14585/6 daughterboards are supplied from PRO-Motherboard thru a jumper in header J11.

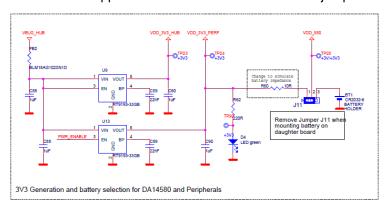
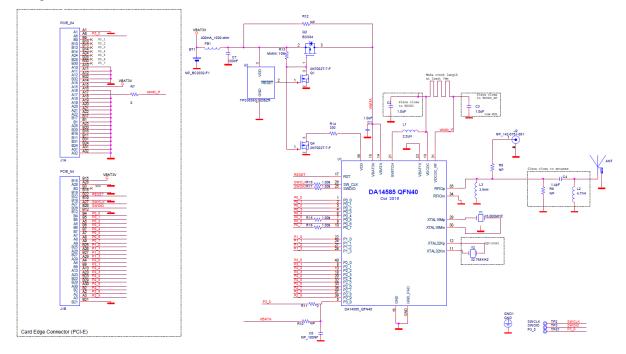
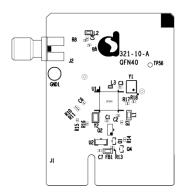





Figure 46: PRO-Motherboard power jumper

Insertion of this jumper when the daughterboards is mounted on the PRO-motherboard may cause bouncing issues. A hardware workaround is implemented on DA14585 and DA14586 QFN40 daughterboards.







**Figure 47:** DA14585/6 QFN40 Daughterboard (321-10-x)

#### 5 Web-Link

All support info:

• http://support.dialog-semiconductor.com



# **Revision history**

| Revision | Date        | Description                                     |
|----------|-------------|-------------------------------------------------|
| 1.0      | 27-Aug-2015 | Initial version for DA1458x family with SDK 5.  |
| 1.1      | 20-Oct-2015 | Minor Update in Keil installation instructions. |
| 1.2      | 30-Mar-2017 | Add DA14585/586                                 |



#### **Status definitions**

| Status               | Definition                                                                                                                   |
|----------------------|------------------------------------------------------------------------------------------------------------------------------|
| DRAFT                | The content of this document is under review and subject to formal approval, which may result in modifications or additions. |
| APPROVED or unmarked | The content of this document has been approved for publication.                                                              |

#### **Disclaimer**

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions of Sale, unless otherwise stated.

© Dialog Semiconductor. All rights reserved.

#### **RoHS Compliance**

Dialog Semiconductor complies to European Directive 2001/95/EC and from 2 January 2013 onwards to European Directive 2011/65/EU concerning Restriction of Hazardous Substances (RoHS/RoHS2).

Dialog Semiconductor's statement on RoHS can be found on the customer portal https://support.diasemi.com/. RoHS certificates from our suppliers are available on request.

# **Contacting Dialog Semiconductor**

United Kingdom (Headquarters)

Dialog Semiconductor (UK) LTD Dialog Sem

Phone: +44 1793 757700

Germany

Dialog Semiconductor GmbH Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V.

North America

Dialog Semiconductor Inc. Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K. Phone: +81 3 5425 4567

Dialog Semiconductor Taiwan

Singapore

Dialog Semiconductor Singapore Phone: +65 64 8499 29

Hong Kong

Dialog Semiconductor Hong Kong Phone: +852 3769 5200

Korea

Dialog Semiconductor Korea

China (Shenzhen)

Dialog Semiconductor China Phone: +86 755 2981 3669

China (Shanghai)

Dialog Semiconductor China Phone: +86 21 5424 9058

User manual Revision 1.2 30-March-2017



© 2017 Dialog Semiconductor

# Getting started with the DA1458x Development Kit – Pro

Phone: +31 73 640 8822 Phone: +886 281 786 222 Phone: +82 2 3469 8200

Email:

enquiry@diasemi.com w

www.dialog-semiconductor.com

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bluetooth Development Tools - 802.15.1 category:

Click to view products by Dialog Semiconductor manufacturer:

Other Similar products are found below:

DA14580PRODTLKT 1628 MBH7BLZ02-EF-KIT CYBLE-014008-PROG FWM7BLZ20-EB-KIT ATSAMB11ZR-XPRO SKY6611121EK1 SECO-RSL10-TAG-GEVB 3026 MIKROE-2471 MOD-NRF8001 BLE-IOT-GEVB 450-0184 MIKROE-2399 EKSHCNZXZ

EVAL\_PAN1026 EVAL\_PAN1720 EVAL\_PAN1740 2267 2479 2487 2633 STEVAL-IDB005V1D STEVAL-IDB001V1 MIKROE-2545

SIPKITSLF001 2995 STEVAL-IDB007V1M 2829 DFR0267 DFR0296 DFR0492 TEL0073 BM-70-CDB WSM-BL241-ADA-008DK

STEVAL-BTDP1 ACD52832 TEL0095 ISP1507-AX-TB RN-4871-PICTAIL DA14695-00HQDEVKT-P DA14695-00HQDEVKT-U EVK
NINA-B112 EBSHJNZXZ EKSHJNZXZ BMD-200-EVAL-S ACN BREAKOUT BOARD ACN SKETCH 2269 2746