

General Description

The SLG47105 provides a small, low power component for commonly used Mixed-Signal and H-Bridge functions. The user creates their circuit design by programming the one time programmable (OTP) Non-Volatile Memory (NVM) to configure the interconnect logic, the IO Pins, the High Voltage Pins, and the macrocells of the SLG47105.

Configurable PWM macrocells in combination with Special High Voltage outputs will be useful for a motor drive or load drive applications. High Voltage pins allow to design smart level translators or to drive the high voltage high current load.

Key Features

- Two Power Supply Inputs:
 - 2.5 V (±8 %) to 5.0 V (±10 %) V_{DD}
 - 3.3 V (±10 %) to 12.0 V (±10 %) V_{DD2}
- Four High Voltage High Current Drive GPOs
 - Dual/Single H-Bridge Motor Driver Option
 - Quad/Dual/Single Half-Bridge Driver Option
 - Sleep Function
 - Low RDS ON High Side + Low Side resistance = 0.4 Ω
 - 2 A Peak, 1.5 A ŘMS per H-Bridge (at V_{DD2} = 5 V, T = 25 °C) (Note 1)
 - 4 A Peak, 3 A RMS per two H-Bridge connected in parallel (at V_{DD2} = 5 V, T = 25 °C) (Note 1)
 - 2 A Peak, 1.5 A RMS per Half Bridge GPO (at V_{DD2} = 5 V, T = 25 °C) (Note 1)
 - Integrated Protections:
 - Over Current Protection (OCP)
 - Short Circuit Protection (SCP)
 - Under-Voltage Lockout (UVLO)
 - Temperature Shutdown (TSD)
 - SENSE_A, SENSE_B Inputs that are Connected to the Current Comparators for Current Control
 - Fault Signal Indicator Individual per H-bridge:
 - OCP
 - UVLO
 - TSD
- Differential Amplifier with Integrator and Comparator for Motor Speed Control Function
- Two Current Sense Comparators with Dynamical Vref Mode
- Two High-Speed General Purpose ACMPs
- Modes: UVLO, OCP, TSD, Voltage Monitor, Current Monitor
- One Voltage Reference (Vref) Output
- Five Multi-Function Macrocells

Applications

- Smart Locks
- Personal Computers and Servers
- Consumer Electronics
- Motor Drivers

- Four Selectable DFF/LATCH/3-bit LUTs + 8-bit Delay/ Counters
- One Selectable DFF/LATCH/4-bit LUT + 16-bit Delay/ Counter
- Twelve Combination Function Macrocells
 - Three Selectable DFF/LATCH or 2-bit LUTs
 - One Selectable Programmable Pattern Generator or 2-bit LUT
 - Six Selectable DFF/LATCH or 3-bit LUTs
 - One Selectable Pipe Delay or Ripple Counter or 3-bit LUT
 - One Selectable DFF/LATCH or 4-bit LUT
- Two PWM Macrocells
 - Flexible 8-bit/7-bit PWM Mode with the Duty Cycle Control
 - 16 Preset Duty Cycle Registers Switching Mode for PWM Sine or Other Waveforms (Note 2)
- Serial Communications
 - I²C Protocol Interface
- Programmable Delay with Edge Detector Output
- Additional Logic Function One Deglitch Filter with Edge Detectors
- Two Oscillators (OSC)
 - 2.048 kHz Oscillator
 - 25 MHz Oscillator
- Analog Temperature Sensor with ACMP Connected Out-
- put POR
- One Time Programmable Memory Operating Temperature Range: -40 °C to 85 °C
- RoHS Compliant/Halogen-Free
- 20-pin STQFN: 2 mm x 3 mm x 0.55 mm, 0.4 mm pitch
- Toys
- HV MOSFET Drivers
- Video Security Cameras
- LED Matrix Dimmers

Note 1 Power dissipation and thermal limits must be observed. See Section 3.3 Note 2 For all PWM features see Section 13.

_		-	
	+	ho	
Dd	Lds	ые	el

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Contents

General Description	1
Key Features	1
Applications	1
1 Block Diagram	
2 Pinout	11
2 1 Pin Configuration - STOEN- 201	
3 Characteristics	
3.1 Absolute Maximum Ratings	13
3.2 Electrostatic Discharge Patings	13
3.2 Decommonded Operating Conditions	13
2.4 Theoremail Information	14
	14
3.0 RV Output Electrical Characteristic	
3.7 Protection Circuits Electrical Characteristic	
3.8 Timing Characteristics	24
3.9 Counter/Delay Characteristics	
3.10 Oscillator Characteristics	27
3.11 Current Sense Comparator Characteristics	
3.12 Differential Amplifier with Integrator and Comparator Characteristics	29
3.13 ACMP Characteristics	
3.14 Analog Temperature Sensor Characteristics	32
4 User Programmability	
5 System Overview	35
5.1 GPIO Pins	35
5.2 High Voltage Output Pins	35
5.3 Connection Matrix	35
5.4 Two Current Sense Comparators	35
5.5 Differential Amplifier with Integrator and Comparator	35
5.6 Two general purpose analog comparators	35
5.7 Voltage reference	35
5.8 Twelve Combination Function Macrocells	35
5.9 Five Multi-Function Macrocells	35
5.10 Two PWM Macrocells	35
5.11 Serial Communication	
5.12 Programmable Delay	
5.13 Additional Logic Function	
5.14 Two Oscillators	
5.15 Dual V _{DD}	36
6 Input/Output Pins	
6.1 GPIO Pins	
6.2 GPI Pin	
6.3 HV GPO Pins	
6.4 Pull-Up/Down Resistors	
6.5 Fast Pull-Up/Down during Power-Up	
6.6 GPI IO Structure (for V _D Group)	
6.7 I ² C Mode IO Structure (for V _{DD} Group)	
6.8 Matrix OF IO Structure (for Voo Group)	41
6.9 GPO Matrix OE Structure (For V _{DD2} Group)	
7 High Voltage Output Modes	
7.1 Full-Bridge Mode	46
7.2 Half bridge mode	
7 3 Pre-Driver Mode	40 لام
7.4 Parallel Connection of HV GPO	
7.5 Protection Circuits	
7.6 PWM Voltage Control	

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

8 Differential Amplifier with Integrator and Comparator	52
8.1 Differential Amplifier with Integrator Block Diagram	53
9 Current Sense Comparator	54
9.1 Current Sense Comparator0 Block Diagram	54
9.2 Current Sense Comparator1 Block Diagram	55
9.3 Current Regulation	55
10 Connection Matrix	56
10.1 Matrix Input Table	57
10.2 Matrix Output Table	59
10.3 Connection Matrix Virtual Inputs	61
10.4 Connection Matrix Virtual Outputs	62
11 Combination Function Macrocells	63
11.1 2-bit LUT or D Flip-Flop Macrocells	63
11.2 2-bit LUT or Programmable Pattern Generator	66
11.3 3-bit LUT or D Flip-Flop with Set/Reset Macrocells	68
11.4 3-bit LUT or D Flip-Flop with Set/Reset Macrocell or PWM Chopper	75
11.5 3-bit LUT or Pipe Delay/Ripple Counter Macrocell	82
11.6 4-bit LUT or D Flip-Flop Macrocell	85
12 Multi-Function Macrocells	88
12.1 3-bit LUT or DFF/LATCH with 8-bit Counter/Delay Macrocells	89
12.2 4-bit LUT or DFF/LATCH with 16-bit Counter/Delay Macrocell	95
12.3 CNT/DLY/FSM Timing Diagrams	98
12.4 Wake and Sleep Controller	
13 Pulse Width Modulator Macrocell (PWM)	112
13.1 8-bit/7-bit PWM Resolution	112
13.2 PWM Inputs	112
13.3 PWM Outputs	
13.4 I ² C/Matrix/Auto dynamically changeable Duty Cycle and Period	
13.5 I ² C PWM Duty Cycle read/write	
13.6 Flexible OSC-integrated Divider	
13.7 Inverted Output option	
13.8 Changeable dead band option for OUT+ and OUT-	
13.9 Initial PWM value	
13.10 Sync On/Off setting for Power-Down signal	
13.11 Regular/Preset Registers Mode	
13.12 PWM Continuous/Autostop mode	
13.13 Internal Oscillator Auto Disable Mode	
13.14 Phase Correct PWM Mode	
13.15 PWM Period Output	
13.16 PWM Block Diagrams	
13.17 PWM Register Settings	
14 Analog Comparators	
14.1 ACMPUH Block Diagram	
14.2 ACMPTH Block Diagram	
14.3 ACMP Typical Performance	
15 Programmable Delay Timing Diagram Edge Detector OUTDUT	
15.1 Programmable Delay Timing Diagram - Edge Delector OUTPUT	
17 Voltago Poforonco	130 496
17 1 Voltage Reference Overview	130
17.1 voltage Nelection Table	100 196
17.2 VIEL DELEGUIUL LADIE	טטווטט 127
17.0 Wode Gelection	/ 10 100
17.4 viel Dioux Diaylani	001 100
18 Clocking	139 170 1 7
18.1 OSC General description	140 1/1
18.2 Oscillator0 (2.048 kHz)	1/11

18.3 Oscillator1 (25 MHz)	
18.4 CNT/DLY Clock Scheme	
18.5 PWM Clock Scheme	
18.6 External Clocking	
18.7 Oscillators Power-On Delay	
19 Low Power Bandgap (LP_BG)	
20 Power-On Reset	
20.1 General Operation	
20.2 POR Sequence	
20.3 Macrocells Output States During POR Sequence	
21 I ² C Serial Communications Macrocell	
21.1 I ² C Serial Communications Macrocell Overview	
21.2 I ² C Serial Communications Device Addressing	
21.3 I ² C Serial General Timing	
21.4 I ² C Serial Communications Commands	
21.5 I ² C Serial Command Register Map	
22 Analog Temperature Sensor	
23 Register Definitions	
23.1 Register Map	
24 Package Top Marking Definitions	
24.1 STQFN 20L 2 mm x 3 mm 0.4P FCD Green	211
25 Package Information	
25.1 Package Outlines for STQFN 20L 2 mm x 3 mm 0.4P FCD Green Package	
25.2 Moisture Sensitivity Level	213
25.3 Soldering Information	213
26 Ordering Information	
26.1 Tape and Reel Specifications	213
26.2 Carrier Tape Drawing and Dimensions	
27 Thermal Guidelines	
28 Layout consideration	04.0
29 Layout Guidelines	216 218
29 Layout Guidelines	216 218 218
29 Layout Guidelines	

Datasheet

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Figures

Figure 1: Block Diagram	10
Figure 2: Steps to Create a Custom GreenPAK Device	34
Figure 3: GPI Structure Diagram	
Figure 4: GPIO with I2C Mode Structure Diagram	
Figure 5: GPIO Matrix OF IO Structure Diagram	41
Figure 6: HV GPO Matrix OE IO Structure Diagram	42
Figure 7: HV GPO Matrix OF IO Structure Diagram	43
Figure 8: HV/ OF Block Diagram	
Figure 0: Full-Bridge Mode Operation	5
Figure 10: Drive and Decay Modes	48
Figure 11: Half Bridge Mode Operation	10
Figure 12: Parallel Connection of HV CPOs for Full Bridge Mode	50
Figure 12: Overcurrent Protection Operation	50
Figure 14: Differential Amplifier with Integrator Block Diagram	51
Figure 14. Differential Ampliner with Integrator Diock Diagram	55 54
Figure 15. Current Sense Comparatori Plack Diagram	
Figure 10. Current Sense Comparator Flock Diagram	55 EG
Figure 17. Connection Matrix	30
Figure 10: 2 bit LUTO or DEE0	50
Figure 19. 2-bit LUT1 or DEE1	03
Figure 20. 2-bit LUT2 or DEF2	04
Figure 21: 2-Dit LUT2 of DFF2	04
Figure 22: DFF Polarity Operations	00
Figure 23: 2-bit LUT3 of PGen	07
Figure 24: PGen Timing Diagram	07
Figure 25: 3-bit LUTU or DFF3	69
Figure 26: 3-bit LUT3 or DFF6	70
Figure 27: 3-DIT LUT4 of DFF7	70
Figure 28: 3-bit LU15 of DFF8	71
Figure 29: DFF Polarity Operations with nReset	73
Figure 30: DFF Polarity Operations with nSet	74
Figure 31: 3-bit LUT1 of DFF4	75
Figure 32: 3-bit LUT2 or DFF5	75
Figure 33: PWM Chopper Circuit Example	//
	/ /
Figure 35: PWM Chopper. Overcurrent Timing Diagram	78
Figure 36: PWM Chopper. Overcurrent Start During Blanking Time	78
Figure 37: PWM Chopper. PWM Duty Cycle is Less than Blanking Time	78
Figure 38: PWM Chopper. 0% Duty Cycle	79
Figure 39: PWM Chopper. Overcurrent when 100 % Duty Cycle	79
Figure 40: DFF Polarity Operations with nReset	80
Figure 41: DFF Polarity Operations with nSet	81
Figure 42: 3-bit LUT6/Pipe Delay/Ripple Counter	83
Figure 43: Example of Ripple Counter Functionality	84
Figure 44: 4-bit LUTO or DFF9	86
Figure 45: Possible Connections Inside Multi-Function Macrocell	88
Figure 46: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT//DFF10, CNT/DLY1)	90
Figure 47: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT8/DFF11, CNT/DLY2)	91
Figure 48: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT9/DFF12, CNT/DLY3)	92
Figure 49: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT10/DFF13, CNT/DLY4)	93
Figure 50: 16-bit Multi-Function Macrocell Block Diagram (4-bit LUT1/DFF14, CNT/DLY/FSM0)	96
Figure 51: Delay Mode Timing Diagram, Edge Select: Both, Counter Data: 3	98
Figure 52: Delay Mode Timing Diagram for Different Edge Select Modes	99
Figure 53: Counter Mode Timing Diagram without Two DFFs Synced Up	99
Figure 54: Counter Mode Timing Diagram with Two DFFs Synced Up	. 100
Figure 55: One-Shot Function Timing Diagram	. 101

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

Figure 56: Frequency Detection Mode Timing Diagram	102
Figure 57: Edge Detection Mode Timing Diagram	102
Figure 58: Delayed Edge Detection Mode Timing Diagram	10/
Figure 59: CNT/ESM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, LIP = 0) for Counter Data = 3	105
Figure 60: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, $UP = 0$) for Counter Data = 3	105
Figure 61: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3	106
Figure 62: CNT/ESM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3	100
Figure 62. Control of this plagram (Set rusing Edge Mode, Oscillator is Forced OI), $OI = 1/101$ Counter Data = 5	107
Figure 63. Counter Value, Counter Data – 5	107
Figure 64. Wake/Sleep Controller	100
Figure 03. Wate/Sleep Timing Diagram, Normal Water Mode, Counter Reset is Used	109
Figure 60: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Reset is Used	. 109
Figure 67: wake/Sleep Timing Diagram, Normal wake Mode, Counter Set is Used	.110
Figure 66. Wake/Sieep Finning Diagram, Short Wake widde, Counter Set is Used	. 1 10
Figure 69: PWM Output waveforms and Test Circuit Example for Driving NWOS FETS	.114
Figure 70: PWM Output waveforms and Test Circuit Example for Driving NWOS and PMOS FETS	.114
Figure 71: PWM Output waveforms for Phase Correct PWM Mode	.115
Figure /2: Power-Down with SYNC On/Off = 1 and Dead Band = 0 CLK	.116
Figure 73: Power-Down with SYNC On/Off = 1 and Dead Band = 1 to 3 CLK	.117
Figure 74: Power-Down with SYNC On/Off = 0 and Dead Band = 0 CLK	.118
Figure 75: Power-Down with SYNC On/Off = 0 and Dead Band = 1 to 3 CLK	.119
Figure 76: Example of PWM Auto Oscillator Control	. 122
Figure 77: Phase Correct PWM Mode	. 123
Figure 78: PWM Period Waveform	. 123
Figure 79: PWM0 Functional Diagram	. 124
Figure 80: PWM1 Functional Diagram	. 125
Figure 81: ACMP0H Block Diagram	. 130
Figure 82: ACMP1H Block Diagram	. 131
Figure 83: ACMPxH Input Offset Voltage vs. Vref at V _{DD} = 2.3 V to 5.5 V, T = -40 °C to 85 °C,	. 132
Figure 84: Typical Propagation Delay vs. Vref for ACMPxH at T = 25 °C, at V _{DD} = 2.3 V to 5.5 V, Gain = 1, Hysteresis = 0	0132
Figure 85: ACMPxH Power-On Delay vs. V _{DD}	133
Figure 86: Programmable Delay	.134
Figure 87: Edge Detector Output	. 134
Figure 88: Deglitch Filter/Edge Detector	. 135
Figure 89: Voltage Reference Block Diagram	. 138
Figure 90: Typical Load Regulation, T = -40 °C to +85 °C, V _{DD} = 3.3 V, Buffer - Enabled	. 139
Figure 91: Oscillator0 Block Diagram	.141
Figure 92: Oscillator1 Block Diagram	.141
Figure 93: Clock Scheme	.142
Figure 94: PWM Clock Scheme	. 142
Figure 95: Oscillator Startup Diagram	.143
Figure 96: POR Sequence	.146
Figure 97: Internal Macrocell States During POR Sequence	.147
Figure 98: Power-Down	. 148
Figure 99: Basic Command Structure	150
Figure 100: I ² C General Timing Characteristics	.150
Figure 101: Byte Write Command, R/W = 0	.151
Figure 102: Sequential Write Command	151
Figure 103: Current Address Read Command R/W = 1	152
Figure 104: Random Read Command	152
Figure 105: Sequential Read Command	152
Figure 106: Reset Command Timing	154
Figure 107: Example of I2C Byte Write Bit Masking	156
Figure 108: Analog Temperature Sensor Structure Diagram	157
Figure 100. Analog remperature densor diructure Diagram	159
Figure 100. TO Output vo. Temperature, v _{DD} - 2.0 v to 0.0 v	212
Figure 111: Die Temperature when HV OUTs are Active	212
Figure 112: Typical Application Circuit	210
TIGULE TTZ. TYPICALAPPIICALION CITCUL	. 210

Ei/	nuro	112 DCBIA	Vout Exam		217
гų	Juie	I I J. F UD La	your Exam	,pie	211

9-Jun-2020

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Tables

Table 1: Pin Description	11
Table 3: Absolute Maximum Ratings	13
Table 4: Electrostatic Discharge Ratings	13
Table 5: Recommended Operating Conditions	14
Table 6: Recommended Operating Conditions	14
Table 7: EC at T = -40 °C to +85 °C, V _{DD} = 2.3 V to 5.5 V Unless Otherwise Noted	14
Table 8: I ² C Pins Timing Characteristics T = -40 °C to +150 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted	18
Table 9: Typical Current Estimated for Each Macrocell at T = 25 °C	19
Table 10: HV Output Electrical Characteristic (H-Bridge or Half-Bridge Modes)	19
Table 11: HV Output Electrical Characteristic (Pre-driver Mode)	21
Table 12: Protection Circuits	23
Table 13: Typical Startup Estimated for Chip at 1 = 25 °C.	24
Table 14. Typical Delay Estimated for Each Macrocell at 1 – 25 C	24 26
Table 15. Flogrammable Delay Expected Typical Delays and Widths at $1 - 25$ C	20
Table 10. Typical mention rejection in the work of $z_{20} = 23$ V to 55 V	26
Table 11. El _DC opconter/Delay Offset at $T = 50 \circ C$, $v_{DD} = 2.0 \circ 10 \circ 0.0 \circ 1.0 \circ 10^{-1}$	26
Table 19: Oscillators Frequency Limits $V_{PP} = 2.3 \text{ V}$ to 5.5 V	
Table 20: Oscillators Power-On Delay at T = 25 °C. OSC Power Setting: "Auto Power-On"	27
Table 21: Current Sense Comparator Specifications at T = -40 °C to +85 °C. Vpp = 2.3 to 5.5 V Unless Otherwise Noted	27
Table 22: Differential Amplifier Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted	29
Table 23: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted	30
Table 24: TS Output vs Temperature (Output Range 1)	32
Table 25: TS Output vs Temperature (Output Range 2)	33
Table 26: GPIO2 Mode Selection	40
Table 27: GPIO3 Mode Selection	40
Table 28: H-Bridge Logic Control Selection Register = 0 (IN-IN Mode)	46
Table 29: H-Bridge Logic Control Selection Register = 1 (PH-EN Mode)	46
Table 30: PWM Control of Motor Speed (IN-IN Mode).	47
Table 31: PWM Control of Motor Speed (PH-EN Mode)	47
Table 32: Half-Bridge Logic	49
Table 33: Matrix Input Table	5/
Table 34. Matrix Output Table	59
Table 35. Connection Matrix Virtual inputs	0Z
Table 30. 2-bit LUT0 Truth Table	65
	65
Table 39: 2-bit I/I Standard Dioital Functions	65
Table 40: 2-bit LUT1 Truth Table	68
Table 41: 2-bit LUT Standard Digital Functions	68
Table 42: 3-bit LUT0 Truth Table	72
Table 43: 3-bit LUT4 Truth Table	72
Table 44: 3-bit LUT3 Truth Table	72
Table 45: 3-bit LUT5 Truth Table	72
Table 46: 3-bit LUT Standard Digital Functions	72
Table 47: 3-bit LUT1 Truth Table	76
Table 48: 3-bit LUT2 Truth Table	76
Table 49: 3-bit LUT Standard Digital Functions	76
Table 50: 3-bit LUTO Truth Table	85
Table 51: 4-bit LUT Of ruth Table	8/
Table 52: 4-bit LUT Statuaru Digital Futblions	۱۵ ۸۵
Table 57: 3-bit LUTT Truth Table	94 01
Table 55: 3-bit I I IT8 Truth Table	94 ∆0
Table 56: 3-bit I UT10 Truth Table	0 ∆Ω
Table 57: 4-bit I UT1 Truth Table	
Table 58: 4-bit LUT Standard Digital Functions	97
Table 59: Regular/Preset Mode Registers	.120
Table 60: Conditions for Disabling/Enabling an Internal Oscillator	.120
Table 61: PWM0 Register Settings	. 125

Datasheet

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Table 62: PWM1 Register Settings	
Table 63: Vref Selection Table	
Table 64: Mode Selection Table	
Table 65: Oscillator Operation Mode Configuration Settings	140
Table 66: Read/Write Protection Options	
Table 67: Register Map	
Table 68: MSL Classification	213
Table 69: Ordering Information	213
Table 68: MSL Classification Table 69: Ordering Information	213 213

1 Block Diagram

Figure 1: Block Diagram

_							
	-	+0	-	h	~	~	•
		Ld	-		е	е	L
_	-		-		-	-	-

2 Pinout

2.1 PIN CONFIGURATION - STQFN- 20L

Table 1: Pin Description

Pin #	Signal Name	Pin Functions
1	V _{DD}	Power Supply 2.5 V – 5.0 V
2	GPIO0	Matrix OE GPIO, Vref OUT, Diff Amp Vset Input, TS _OUT
3	GPI	GPI, EXT_Vref0, SLA_0
4	GND_HV	Analog Ground
5	SENSE_A	Winding A Sense, relate to HV_GPO0_HD, HV_GPO1_HD
6	V _{DD2_A}	High Voltage Power Supply 3.3 V - 12.0 V (Note)
7	HV_GPO0_HD	HV_GPO_HD
8	HV_GPO1_HD	HV_GPO_HD
9	HV_GPO2_HD	HV_GPO_HD
10	HV_GPO3_HD	HV_GPO_HD
11	V _{DD2_B}	High Voltage Power Supply 3.3 V - 12.0 V (Note)
12	SENSE_B	Winding B Sense, relate to HV_GPO2_HD, HV_GPO3_HD
13	GND_HV	Analog Ground
14	GPIO1	Matrix OE GPIO, SLA_1, EXT_CLK for OSC0 or Current Sense CMP0 EXT_Vref
15	SCL/GPIO2	SCL, GPIO
16	SDA/GPIO3	SDA, GPIO
17	GPIO4	Matrix OE GPIO, EXT_Vref1, SLA_2, EXT_CLK for OSC1 or Current Sense CMP1 EXT_Vref
18	GND	General Ground
19	GPIO5	Matrix OE GPIO, ACMP0_H
20	GPIO6	Matrix OE GPIO, SLA_3, ACMP1_H

Legend:

ACMP: Analog Comparator CMP: Comparator Diff Amp: Differential Amplifier GPI: General Purpose Input GPO: General Purpose Output GPIO: General Purpose Input/Output HD: High Current Drive HV: High Voltage SCL: I²C Clock Input SDA: I²C Clock Input SDA: I²C Clock Input SLA_x: Slave Address Vrefx: Voltage Reference Output TP: Thermal Pad TS_OUT: Temperature Sensor Output EXT: External CLK: Clock

_				_			
	-		_	_	-	- 4	
		та	C	n	Δ	<u>0</u> 1	
_	C.	LCI	-		v	U	

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Table 2: Pin Type Definitions

Pin Type	Description
V _{DD}	Power Supply
GPIO	General Purpose Input/Output
GPI	General Purpose Input
HV_GPO_HD	High Voltage General Purpose Output High Current Drive
SCL	I ² C Serial Clock Input
SDA	I ² C Serial Data Input/Output
GND	General Ground
GND_X	Analog Ground
SENSE_X	Current Sense Pin
V _{DD2}	High Voltage Power Supply

3 Characteristics

3.1 ABSOLUTE MAXIMUM RATINGS

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification are not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Table 3: Absolute Maximum Ratings

Parameter		Description	Condition	Min	Max	Unit	
Supply voltage on \	/ _{DD} relative to GND			-0.3	7.0	V	
Voltage at V _{DD}	Group Input Pin			-0.3	7.0	V	
Supply voltage on V	_{DD2} relative to GND			-0.3	18	V	
Maximum V _{DD} Ave	rage or DC Current	(Through V _{DD} or GND pin) for V _{DD} group for STQFN- 20L Package		-	120	mA	
Maximum V _{DD2} Average or DC Current		(Through V _{DD2 A} , V _{DD2 B} , SENSE_A or SENSE_B pin) STQFN-20L Pack- age			2000		
		(Through both V_{DD2_A} , and V_{DD2_B} pins or both SENSE_A and SENSE_B pins) STQFN-20L Package	All HV GPOs are in H-Bridge mode		4000	mA	
Maximum Average or DC Current (V _{DD2} power supply)	Push-Pull	Through V _{DD2} High Current Group pins			1500	mA	
Maximum pulsed current sink/sourced per HV HD pin		Pulse width <u><</u> 0.5 ms; duty cycle <u><</u> 2 %		-	Internally limited by OCP	mA	
Current at Input Pin		Through V _{DD} Group pin		-0.1	1.0	mA	
Input Leakage Current (Absolute Value)					1000	nA	
Storage Temp	erature Range			-65	150	°C	
Junction Te	emperature				150	°C	
Moisture Ser	nsitivity Level			,	1		

3.2 ELECTROSTATIC DISCHARGE RATINGS

Table 4: Electrostatic Discharge Ratings

Parameter		Мах	Unit
ESD Protection (Human Body Model)	4000		V
ESD Protection (Charged Device Model)	1300		V

3.3 RECOMMENDED OPERATING CONDITIONS

Table 5: Recommended Operating Conditions

Parameter	Condition	Min	Тур	Max	Unit		
Supply Voltage (V _{DD})		2.3	3.3	5.5	V		
High Supply Voltage (V _{DD2})		3.0	12.0	13.2	V		
Operating Ambient Temperature (T _A)		-40	25	85	°C		
Junction Temperature Range (T _J)	(Note)	-40		150	°C		
Capacitor Value at V _{DD}			0.1		μF		
Analog Input Common Mode Range	Allowable Input Voltage at Analog Pins	0		V _{DD} or V _{DD2} (Note 1)	V		
Note 1 V _{DD} for GPI, GPIO4, GPIO5, GPIO6 and V _{DD2} for HV GPO0 and HV GPO1							

3.4 THERMAL INFORMATION

Table 6: Recommended Operating Conditions

Parameter	Description	Condition	Min	Мах	Unit
θ _{JA}	Thermal Resistance	4L JEDEC PCB		65	°C/W
θ_{JA}	Thermal Resistance	4L JEDEC PCB with a thermal vias that connect thermal pad through all layers of the PCB		46	°C/W

3.5 ELECTRICAL CHARACTERISTICS

Table 7: EC at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted

Parameter	Description	Condition	Min	Тур	Мах	Unit
V _{IH}	HIGH-Level Input Voltage for V _{DD} group	Logic Input (Note 1)	0.7x V _{DD}		V _{DD} + 0.3	V
		Logic Input with Schmitt Trigger	0.8x V _{DD}		V _{DD} + 0.3	V
		Low-Level Logic Input (Note 1)	1.25		V _{DD} + 0.3	V
V _{IL}	LOW-Level Input Voltage for V _{DD} group	Logic Input (Note 1)	GND- 0.3		0.3x V _{DD}	V
		Logic Input with Schmitt Trigger	GND- 0.3		0.2x V _{DD}	V
		Low-Level Logic Input (Note 1)	GND- 0.3		0.5	V

Preliminary

Parameter	Description	Condition	Min	Тур	Max	Unit
		Push-Pull, 1x Drive, V _{DD} = 2.5 V ± 8 %, I _{OH} = 1 mA	1.96			V
		Push-Pull, 1x Drive, V _{DD} = 3.3 V ± 10 %, I _{OH} = 3 mA	2.50			V
	HIGH-Level Output Voltage	Push-Pull, 1x Drive, V _{DD} = 5 V ± 10 %, I _{OH} = 5 mA	3.88			V
	$T_J = -40 \text{ °C to 85 °C}$	Push-Pull, 2x Drive, V _{DD} = 2.5 V ± 8 %, I _{OH} = 1 mA	2.02			V
		Push-Pull, 2x Drive, V _{DD} = 3.3 V ± 10 %, I _{OH} = 3 mA	2.56			V
Van		Push-Pull, 2x Drive, V _{DD} = 5 V ± 10 %, I _{OH} = 5 mA	4.11			V
⊻ОН		Push-Pull, 1x Drive, V _{DD} = 2.5 V ± 8 %, I _{OH} = 1 mA	1.96	-	-	V
		Push-Pull, 1x Drive, V _{DD} = 3.3 V ± 10 %, I _{OH} = 3 mA	2.50			V
	HIGH-Level Output Voltage for V _{DD} Group	Push-Pull, 1x Drive, V _{DD} = 5 V ± 10 %, I _{OH} = 5 mA	3.88			V
	$T_{J} = -40 \ ^{\circ}C \text{ to } 150 \ ^{\circ}C$	Push-Pull, 2x Drive, V _{DD} = 2.5 V ± 8 %, I _{OH} = 1 mA	2.02			V
		Push-Pull, 2x Drive, V _{DD} = 3.3 V ± 10 %, I _{OH} = 3 mA	2.56			V
		Push-Pull, 2x Drive, V _{DD} = 5 V ± 10 %, I _{OH} = 5 mA	4.11			V
		Push-Pull, 1x Drive, V _{DD} = 2.5 V ± 8 %, I _{OL} = 1 mA			0.11	V
	LOW-Level Output Voltage for V _{DD} Group T _J = -40 °C to 85 °C	Push-Pull, 1x Drive, V _{DD} = 3.3 V ± 10 %, I _{OL} = 3 mA			0.24	V
		Push-Pull, 1x Drive, V _{DD} = 5 V ± 10 %, I _{OL} = 5 mA			0.29	V
		Push-Pull, 2x Drive, V _{DD} = 2.5 V ± 8 %, I _{OL} = 1 mA		-	0.05	V
V _{OL}		Push-Pull, 2x Drive, V _{DD} = 3.3 V \pm 10 %, I _{OL} = 3 mA			0.13	V
		Push-Pull, 2x Drive, V _{DD} = 5 V ± 10 %, I _{OL} = 5 mA		-	0.18	V
	LOW-Level Output Voltage	Push-Pull, 1x Drive, V _{DD} = 2.5 V ± 8 %, I _{OL} = 1 mA		-	0.11	V
	for V_{DD} Group T _J = -40 °C to 150 °C	Push-Pull, 1x Drive, V _{DD} = 3.3 V ± 10 %, I _{OL} = 3 mA			0.24	V
		Push-Pull, 1x Drive, V _{DD} = 5 V ± 10 %, I _{OL} = 5 mA			0.29	V
	LOW-Level Output Voltage	Push-Pull, 2x Drive, V _{DD} = 2.5 V ± 8 %, I _{OL} = 1 mA			0.05	V
V _{OL}	for V_{DD} Group T _J = -40 °C to 150 °C	Push-Pull, 2x Drive, V_{DD} = 3.3 V ± 10 %, I _{OL} = 3 mA			0.13	V
	, , , , , , , , , , , , , , , , , , ,	Push-Pull, 2x Drive, V _{DD} = 5 V ± 10 %, I _{OL} = 5 mA			0.18	V

Table 7: EC at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)

Datasheet

dial n

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

Table 7: EC at T = -40 °C to +85 °C, V _{DD} = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)

Parameter	Description	Condition	Min	Тур	Max	Unit
	HIGH-Level Output Voltage for V _{DD2} High Current Group	Push-Pull, DV_{DD} = 5 V ± 10 %, I _{OH2} = 10 mA	4.497			V
V _{OH2}		Push-Pull, $DV_{DD} = 9 V \pm 10 \%$, I _{OH2} = 10 mA	8.097			V
		Push-Pull, V_{DD} = 12 V ± 10 %, I _{OH2} = 10 mA	10.797			V
		Push-Pull, V_{DD} = 5 V ± 10 %, I _{OH2} = 10 mA			0.003	V
V _{OL2}	LOW-Level Output Voltage for V _{DD2} High Current Group	Push-Pull, V _{DD} = 9 V ± 10 %, I _{OH2} = 10 mA			0.003	V
		Push-Pull, V _{DD} = 12 V ± 10 %, I _{OH2} = 10 mA			0.003	V
		Push-Pull, 1x Drive, V _{DD} = 2.5 V ± 8 %, V _{OH} = V _{DD} - 0.2	1.37			mA
		Push-Pull, 1x Drive, V _{DD} = 3.3 V ± 10 %, V _{OH} = 2.4 V	4.8			mA
	HIGH-Level Output Pulse Current (Note 2) Voltage for V _{DD} Group, T _J = -40 °C to 85 °C	Push-Pull, 1x Drive, V _{DD} = 5 V ± 10 %, V _{OH} = 2.4 V	18.53			mA
		Push-Pull, 2x Drive, V _{DD} = 2.5 V ± 8 %, V _{OH} = V _{DD} - 0.2	2.81			mA
		Push-Pull, 2x Drive, V _{DD} = 3.3 V ± 10 %, V _{OH} = 2.4 V	9.88			mA
		Push-Pull, 2x Drive, V _{DD} = 5 V ± 10 %, V _{OH} = 2.4 V	36.43			mA
ЮН		Push-Pull, 1x Drive, V _{DD} = 2.5 V ± 8 %, V _{OH} = V _{DD} - 0.2	1.37			mA
		Push-Pull, 1x Drive, V _{DD} = 3.3 V ± 10 %, V _{OH} = 2.4 V	4.80			mA
	HIGH-Level Output Pulse Current (Note 2)	Push-Pull, 1x Drive, V _{DD} = 5 V ± 10 %, V _{OH} = 2.4 V	18.53			mA
	Voltage for V _{DD} Group, T _J = -40 °C to 150 °C	Push-Pull, 2x Drive, V _{DD} = 2.5 V ± 8 %, V _{OH} = V _{DD} - 0.2	2.81			mA
		Push-Pull, 2x Drive, V _{DD} = 3.3 V ± 10 %, V _{OH} = 2.4 V	9.88			mA
		Push-Pull, 2x Drive, V _{DD} = 5 V ± 10 %, V _{OH} = 2.4 V	36.43			mA
	LOW-Level Output Pulse	Push-Pull, 1x Drive, V_{DD} = 2.5 V ± 8 %, V_{OL} = 0.15 V	1.40			mA
I _{OL}	Current (Note 2) Voltage for V _{DD} Group,	Push-Pull, 1x Drive, V_{DD} = 3.3 V ± 10 %, V_{OL} = 0.4 V	4.53			mA
	$T_{\rm J}$ = -40 °C to 85 °C	Push-Pull, 1x Drive, $V_{DD} = 5.0 \text{ V} \pm 10 \%$, $V_{OL} = 0.4 \text{ V}$	6.50			mA

Preliminary

Parameter	Description	Condition	Min	Тур	Max	Unit
		Push-Pull, 2x Drive, V _{DD} = 2.5 V ± 8 %, V _{OL} = 0.15 V	2.80			mA
		Push-Pull, 2x Drive, V_{DD} = 3.3 V ± 10 %, V_{OL} = 0.4 V	9.22			mA
		Push-Pull, 2x Drive, V_{DD} = 5.0 V ± 10 %, V _{OL} = 0.4 V	12.88			mA
	LOW-Level Output Pulse	NMOS OD, 1x Drive, V _{DD} = 2.5 V ± 8 %, V _{OL} = 0.15 V	3.50			mA
	Current (Note 2) Voltage for V _{DD} Group,	NMOS OD, 1x Drive, $V_{DD} = 3.3 \text{ V} \pm 10\%$, $V_{OL} = 0.4 \text{ V}$	11.50			mA
	T _J = -40 °C to 85 °C	NMOS OD, 1x Drive, $V_{DD} = 5.0 \text{ V} \pm 10\%$, $V_{OL} = 0.4 \text{ V}$	16.02			mA
		NMOS OD, 2x Drive, V _{DD} = 2.5 V ± 8 %, V _{OL} = 0.15 V	7.02			mA
		NMOS OD, 2x Drive, V_{DD} = 3.3 V ± 10%, V_{OL} = 0.4 V	22.97			mA
		NMOS OD, 2x Drive, $V_{DD} = 5.0 \text{ V} \pm 10\%$, $V_{OL} = 0.4 \text{ V}$	28.47			mA
	LOW-Level Output Pulse Current (Note 2) Voltage for V _{DD} Group, T _J = -40 °C to 150 °C	Push-Pull, 1x Drive, V_{DD} = 2.5 V ± 8 %, V_{OL} = 0.15 V	1.40			mA
I _{OL}		Push-Pull, 1x Drive, V_{DD} = 3.3 V ± 10%, V _{OL} = 0.4 V	4.53			mA
		Push-Pull, 1x Drive, V_{DD} = 5.0 V ± 10%, V _{OL} = 0.4 V	6.50			mA
		Push-Pull, 2x Drive, V _{DD} = 2.5 V ± 8 %, V _{OL} = 0.15 V	2.80			mA
		Push-Pull, 2x Drive, V_{DD} = 3.3 V ± 10%, V _{OL} = 0.4 V	9.22			mA
		Push-Pull, 2x Drive, V_{DD} = 5.0 V ± 10%, V _{OL} = 0.4 V	12.88			mA
		NMOS OD, 1x Drive, V _{DD} = 2.5 V ± 8 %, V _{OL} = 0.15 V	3.50			mA
		NMOS OD, 1x Drive, $V_{DD} = 3.3 \text{ V} \pm 10\%$, $V_{OL} = 0.4 \text{ V}$	11.50			mA
		NMOS OD, 1x Drive, $V_{DD} = 5.0 \text{ V} \pm 10\%$, $V_{OL} = 0.4 \text{ V}$	16.02			mA
		NMOS OD, 2x Drive, V_{DD} = 2.5 V ± 8 %, V_{OL} = 0.15 V	7.02			mA
		NMOS OD, 2x Drive, V_{DD} = 3.3 V ± 10%, V_{OL} = 0.4 V	22.97			mA
		NMOS OD, 2x Drive, V_{DD} = 5.0 V ± 10%, V_{OL} = 0.4 V	28.47			mA
I _{sleep}	All macrocells are in sleep mode including charge pumps	For V _{DD2} <= 5.0V UVLO disabled			159	nA
PON _{THR}	Power-On Threshold	V_{DD} Level Required to Start Up the Chip, T _J = -40 °C to 150 °C	1.8	2	2.2	V
POFF _{THR}	Power-Off Threshold	V_{DD} Level Required to Switch Off the Chip, T _J = -40 °C to 150 °C	1.35	1.75	1.95	V

Table 7: EC at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)

Datasheet

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Table 7: EC at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)

Parameter	Description	Condition	Min	Тур	Max	Unit	
R _{PULL}	Pull-up or Pull-down Resistance T _J = -40 °C to 85°C	1 M for Pull-up: V _{IN} = DGND; for Pull-down: V _{IN} = DV _{DD}	0.60	1	1.40	MΩ	
		100 k for Pull-up: V _{IN} = DGND; for Pull-down: V _{IN} = DV _{DD}	60	100.7	141	kΩ	
		10 k For Pull-up: V _{IN} = DGND; for Pull-down: V _{IN} = DV _{DD}	6	10.8	15.10	kΩ	
	Pull-up or Pull-down Resistance T _J = -40 °C to 150 °C	1 M for Pull-up: V _{IN} = DGND; for Pull-down: V _{IN} = DV _{DD}	0.60	1	1.40	MΩ	
		100 k for Pull-up: V _{IN} = DGND; for Pull-down: V _{IN} = DV _{DD}	60	100.7	141	kΩ	
		10 k For Pull-up: V _{IN} = DGND; for Pull-down: V _{IN} = DV _{DD}	6	10.8	15.10	kΩ	
C _{IN}	Input Capacitance			2.5		pF	
Note 1 No hysteresis. Note 2 DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.							

Table 8: I²C Pins Timing Characteristics T = -40 °C to +150 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted

			Speed						
Parameter	Description	Condition		400 kHz			1 MHz		Unit
			Min	Тур	Max	Min	Тур	Max	
F _{SCL}	Clock Frequency, SCL				400			1000	kHz
t _{LOW}	Clock Pulse Width Low		1300			500			ns
t _{HIGH}	Clock Pulse Width High		600			260			ns
tı	Input Filter Spike Suppression (SCL, SDA)				50			50	ns
t _{AA}	Clock Low to Data OUT Valid				900			450	ns
t _{BUF}	Bus Free Time between Stop and Start		1300			500			ns
t _{HD_STA}	Start Hold Time		600			260			ns
t _{SU_STA}	Start Set-up Time		600			260			ns
t _{HD_DAT}	Data Hold Time		0			0			ns
t _{SU_DAT}	Data Set-up Time		100			50			ns
t _R	Inputs Rise Time				300			120	ns
t _F	Inputs Fall Time				300			120	ns
t _{su_sто}	Stop Set-up Time		600			260			ns
t _{DH}	Data OUT Hold Time		50			50			ns
Note 1: Plea Note 2: Whe	use follow official I ² C spec UM102 on SCL Input is in Low-Level Logi	204 c mode max frequer	ncy is 400	kHz					

Table 9: Typical Current Estimated for Each Macrocell at T = 25 $^{\circ}$ C

Parameter	Description	Note	V _{DD} = 2.5 V	V _{DD} = 3.3 V	V _{DD} = 5.0 V	Unit
		Chip Quiescent (Pdet + OTP st-by)	0.033	0.035	0.04	μA
		Chip Quiescent and LPBG (LPBG + Pdet + OTP st-by + I ² C en + leakages)	0.573	0.59	0.627	μΑ
		Vref (LPBG + Vref_mux + Vref_OUT_BUF)	21.45	21.53	21.95	μA
		OSC1 25 MHz, Pre-divider = 1	61.26	78.05	124.80	μΑ
	Current	OSC1 25 MHz, Pre-divider = 2	47.52	59.42	98.61	μΑ
		OSC1 25 MHz, Pre-divider = 4	39.21	48.34	77.55	μΑ
I _{DD}		OSC1 25 MHz, Pre-divider = 8	35.38	43.19	69.42	μA
		OSC1 25 MHz, Pre-divider = 12	34.33	47.75	67.05	μA
		OSC0 2.048 kHz, Pre-divider = 1	0.35	0.36	0.38	μΑ
		OSC0 2.048 kHz, Pre-divider = 4	0.35	0.35	0.37	μΑ
		OSC0 2.048 kHz, Pre-divider = 8	0.35	0.36	0.37	μΑ
		IO with 1x push-pull + 4 pF (2.048 kHz)	0.08	0.11	0.16	μΑ
		Temperature Sensor (LPBG + Vref_mux + Vref_OUT_BUF + I_TS)	23	23	24	μA
		Any ACMPxH (includes internal Vref) @ Gain = 1, Vin+ = 0 mV, hysteresis is dis- abled	36	36	37	μΑ

3.6 HV OUTPUT ELECTRICAL CHARACTERISTIC

Table 10: HV Output Electrical Characteristic (H-Bridge or Half-Bridge Modes)

Parameter	Description	Condition	Min	Тур	Мах	Unit
t _R	Rise time HV OUT	V _{DD2} = 5 V, 16 Ω to GND, 10 % to 90 % V _{DD2} , T _J = -40 °C to 150 °C	80	90	150	ns
t _F	Fall time HV OUT	V _{DD2} = 5 V, 16 Ω to GND, 90 % to 10 % V _{DD2} , T _J = -40 °C to 85 °C	80	135	200	ns
		V _{DD2} = 5 V, 16 Ω to GND, 90 % to 10 % V _{DD2} , T _J = -40 °C to 150 °C	80	145.5	250	ns
	Dead band time of HV_GPOx_HD in Pre-	V _{DD2} = 3 V, T _J = -40 °C to 150 °C		285		ns
t _{DEAD}	driver mode (not for Driv- er mode) (Break before making For H-bridge and Half- Bridge mode)	V _{DD2} = 5 V, T _J = -40 °C to 150 °C		58		ns
		V _{DD2} = 13.2 V, T _J = -40 °C to 150 °C	-	72	-	ns
PWM_t _{DEAD}	Dead band time, gener- ated by PWM block	Configured in PWM block	0; 1·	T _{clk} ; 2∙T _{clk} ; 3	·T _{clk} ;	Clk time

Datachoot	
Jalasheel	

Preliminary

Parameter	Description	Condition	Min	Тур	Мах	Unit
		V _{DD2} = 13.2 V, Io = 500 mA, T _J = 25 ℃		168.3		mΩ
		V _{DD2} = 13.2 V, lo = 500 mA, T _J = 150 °C			330	mΩ
		V _{DD2} = 9.0 V, Io = 500 mA, T _J = 25°C		168.3		mΩ
	HS FET on resistance (SENSE_A, SENSE_B,	$V_{DD2} = 9.0 \text{ V}, \text{ Io} = 500 \text{ mA}, T_{J} = 150 \text{ °C}$			330	mΩ
	GND_HV and GND Pins are connected together)	V _{DD2} = 5.0 V, Io = 500 mA, T _J = 25 ℃		173.7		mΩ
		V _{DD2} = 5.0 V, I _o = 500 mA, T _J = 150°C			335	mΩ
		V _{DD2} = 3.0 V, I _o = 500 mA, T _J = 25℃		245.3		mΩ
P		V _{DD2} = 3.0 V, I _o = 500 mA, T _J = 150°C			455	mΩ
NDS(ON)		V _{DD2} = 13.2 V, I _o = 500 mA, T _J = 25℃		181.5		mΩ
		V _{DD2} = 13.2 V, I _o = 500 mA, T _J = 150°C			355	mΩ
		V _{DD2} = 9.0 V, I _o = 500 mA, T _J = 25°C		181.5		mΩ
	LS FET on resistance (SENSE_A, SENSE_B,	V _{DD2} = 9.0 V, I _o = 500 mA, T _J = 150°C			355	mΩ
	GND_HV and GND Pins are connected together)	V _{DD2} = 5.0 V, I _o = 500 mA, T _J = 25°C		184.9		mΩ
		V _{DD2} = 5.0 V, I _o = 500 mA, T _J = 150°C			360	mΩ
		V _{DD2} = 3.0 V, I _o = 500 mA, T _J = 25°C		228.4		mΩ
		V _{DD2} = 3.0 V, I _o = 500 mA, T ₁ = 150°C			445	mΩ

Table 10: HV Output Electrical Characteristic (H-Bridge or Half-Bridge Modes)(Continued)

Preliminary

Parameter	Description	Condition	Min	Тур	Max	Unit
		GPO0_HD, GPO1_HD, V _{DD2} = 5.0 V, T _J = -40 °C to 85 °C PWM is off, including the charge pump OSC	0		29.9	μA
		GPO0_HD, GPO1_HD, $V_{DD2} = 5.0 V$, $T_J = -40 °C$ to 150 °C BW/M is off including the	-0.2		32.2	μΑ
		charge pump OSC				
OFF	On-state leakage current	GPO2_HD, GPO3_HD, $V_{DD2} = 5.0 V$, $T_J = -40 \degree C$ to 85 $\degree C$ PWM is off, including the charge pump OSC	-3.9		5.7	nA
		$\label{eq:GPO2_HD, GPO3_HD,} \begin{array}{l} \text{GPO2_HD, GPO3_HD,} \\ \text{V}_{\text{DD2}} = 5.0 \text{ V,} \\ \text{T}_{\text{J}} = -40 \ ^{\circ}\text{C} \ \text{to} \ 150 \ ^{\circ}\text{C} \\ \\ \text{PWM is off, including the} \end{array}$	-0.3		0.6	μΑ
I _{cc}	Charge Pump consump-	charge pump OSC $V_{DD2} = 5.0 V,$ $T_J = -40 °C to 150 °C$ PWM is off, including the charge pump OSC		160	200	μA
		V _{DD2} = 5.0 V, T _J = -40 °C to 150 °C PWM = 250 kHz	100		600	μA
t _{WAKE}	Wake-up time	HV SLEEP OUT high to output transition, BG is always on, Another pins sleep - disable		33	100	μs

Table 10: HV Output Electrical Characteristic (H-Bridge or Half-Bridge Modes)(Continued)

Table 11: HV Output Electrical Characteristic (Pre-driver Mode)

Parameter	Description	Conditions	Min	Тур	Мах	Unit
t _R	Rise time HV OUT	V _{DD2} = 5 V, 16 Ω to GND, 10 % to 90 % V _{DD2} , T _J = -40 °C to 85 °C		18		ns
		V _{DD2} = 5 V, 16 Ω to GND, 10 % to 90 % V _{DD2} , T _J = -40 °C to 150 °C		18		ns
t _F	Fall time HV OUT	V_{DD2} = 5 V, 16 Ω to GND, 10 % to 90 % V_{DD2} , T _J = -40 °C to 85 °C	-	18	-	ns
		V_{DD2} = 5 V, 16 Ω to GND, 10 % to 90 % V_{DD2} , T _J = -40 °C to 150°C		18		ns

Datasheet	Revision 2.0	
	21 of 223	

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

dial

Table 11: HV Output Electrical Characteristic (Pre-driver Mode) (Continued)

Parameter	Description	Conditions	Min	Тур	Мах	Unit
	Dead band time of HV_GPOx_HD in Pre-	V _{DD2} = 3 V, T _J = -40 °C to 150 °C		55		ns
t _{DEAD}	driver mode (not for Driv- er mode) (Break before making	V _{DD2} = 5 V, T _J = -40 °C to 150 °C		25		ns
	For H-bridge and Half- Bridge mode)	V _{DD2} = 13.2 V, T _J = -40 °C to 150 °C		23		ns
PWM_t _{DEAD}	PWM dead band time	Configured in PWM block	0; 1·⊺	Γ _{clk} ; 2·Τ _{clk} ; 3	·T _{clk} ;	Clk time
		V _{DD2} = 13.2 V, Io = 500 mA, T _J = 25 ℃		169.8		mΩ
		V _{DD2} = 13.2 V, Io = 500 mA, T _J = 150 °C			328.4	mΩ
		V _{DD2} = 9.0 V, Io = 500 mA, T _J = 25 ℃		169.9		mΩ
	HS FET on resistance (SENSE_A, SENSE_B, GND_HV and GND Pins are connected together)	V _{DD2} = 9.0 V, Io = 500 mA, T _J = 150 ℃			327.9	mΩ
		V _{DD2} = 5.0 V, Io = 500 mA, T _J = 25 ℃		175.3		mΩ
		V _{DD2} = 5.0 V, I _o = 500 mA, T _J = 150 ℃	-		335.5	mΩ
		V _{DD2} = 3.0 V, I _o = 500 mA, T _J = 25 ℃	-	246.2		mΩ
Bracow		V _{DD2} = 3.0 V, I _o = 500 mA, T _J = 150 ℃	-		454.5	mΩ
TDS(ON)		V _{DD2} = 13.2 V, I _o = 500 mA, T _J = 25 ℃	-	181.9		mΩ
		V _{DD2} = 13.2 V, I _o = 500 mA, T _J = 150 ℃	-		355.7	mΩ
		V _{DD2} = 9.0 V, I _o = 500 mA, T _J = 25 ℃	-	181.9		mΩ
	LS FET on resistance (SENSE_A, SENSE_B,	V _{DD2} = 9.0 V, I _o = 500 mA, T _J = 150 ℃	-		354.9	mΩ
	GND_HV and GND Pins are connected together)	V _{DD2} = 5.0 V, I _o = 500 mA, T _J = 25 ℃		185.2		mΩ
		V _{DD2} = 5.0 V, I _o = 500 mA, T _J = 150 °C			362.7	mΩ
		V _{DD2} = 3.0 V, I _o = 500 mA, T _J = 25 ℃		228.6		mΩ
		V _{DD2} = 3.0 V, I _o = 500 mA, T _J = 150 °C			449.9	mΩ

Preliminary

Parameter	Description	Conditions	Min	Тур	Max	Unit
		GPO0_HD, GPO1_HD, V _{DD2} = 5.0 V, T _J = -40 °C to 85 °C PWM is off, including the charge pump OSC	0		29.9	μA
		GPO0_HD, GPO1_HD, $V_{DD2} = 5.0 V$, $T_J = -40 ^{\circ}C$ to 150 $^{\circ}C$ PWM is off. including the	-0.2		32.2	μA
	Off state lookage surrent	charge pump OSC				
IOFF	Un-state leakage current	GPO2_HD, GPO3_HD, V_{DD2} = 5.0 V, T_{J} = -40 °C to 85 °C PWM is off, including the charge pump OSC	-3.9		5.7	nA
		GPO2_HD, GPO3_HD, $V_{DD2} = 5.0 V$, $T_{J} = -40 ^{\circ}C$ to 150 $^{\circ}C$ PWM is off including the	-0.3		0.6	μA
		charge pump OSC				
I _{cc}	Charge Pump consump- tion current	V _{DD2} = 5.0 V, T _J = -40 °C to 150 °C, PWM is off, including the charge pump OSC		160	200	μA
		V _{DD2} = 5.0 V, T _J = -40 °C to 150 °C, PWM = 250 kHz	100		600	μA
t _{WAKE}	Wake-up time	HV SLEEP OUT high to output transition, BG is always on, Another pins sleep - disable		33	100	μs

Table 11: HV Output Electrical Characteristic (Pre-driver Mode) (Continued)

3.7 PROTECTION CIRCUITS ELECTRICAL CHARACTERISTIC

Table 12: Protection Circuits

Parameter	Description	Conditions	Min	Тур	Мах	Unit
I _{OCP}	Overcurrent protection threshold	Per any HS or LS FET		2.2		А
	OCP deglitch time (Note 1)	V _{DD} = 5 V, V _{DD2} = 5 V, T = 25 °C, Deglitch = Enable, High Side		2		μs
^C OCP1		V_{DD} = 5 V, V_{DD2} = 5 V, T = 25 °C, Deglitch = Enable, Low Side		2		μs

ata	cł	100	h t
ata	51	164	3ι

Preliminary

Table 12: Protection Circuits

Parameter	Description	Conditions	Min	Тур	Мах	Unit
		Delay = 492 μs		492		μs
		Delay = 656 μs		656		μs
t		Delay = 824 μs		824		μs
	OCP rotry time (Note 2)	Delay = 988 μs		988		μs
OCP2		Delay = 1152 μs		1152		μs
		Delay = 1316 μs		1316		μs
		Delay = 1480 μs		1480		μs
		Delay = 1640μs		1640		μs
V _{UVLO}	Recover from undervoltage lockout	At rising edge of V _{DD2}			3.0	V
	Undervoltage lockout	At falling edge of V _{DD2}			2.8	V
T _{TSD}	Thermal shutdown tem- perature	Junction temperature T _J	140	150	160	°C
T _{HYST}	Thermal shutdown hyster- esis			15		°C
Note 1: OCP d	eglitch time option can be en	abled by register [873] and regist	er [875] sepa	arately for ea	ch H-Bridge.	-

Note 2: OCP retry time can be selected separately for each HV OUT: HV GPO0 - registers[780:778], HV GPO1 - registers[788:786], HV GPO2 - registers[796:794], HV GPO3 - registers[804:802]. For more information check the Section 7.5.3.

3.8 TIMING CHARACTERISTICS

Table 13: Typical Startup Estimated for Chip at T = 25 °C

Parameter	Description	Conditions	Min	Тур	Мах	Unit
T _{SU}	Chip Startup Time	From V _{DD} rising past PON _{THR}		1	2	ms

Table 14: Typical Delay Estimated for Each Macrocell at T = 25 °C

Deremeter	Description	Noto	V _{DD} =	2.5 V	V _{DD} =	: 3.3 V	V _{DD} = 5 V		Unit
Parameter	Description	Note	Rising	Falling	Rising	Falling	Rising	Falling	Unit
tpd	Delay	Digital Input to PP 1x	24	25	16	18	12	13	ns
tpd	Delay	Digital Input with Schmitt Trigger to PP 1x	25	27	17	19	14	14	ns
tpd	Delay	Low Voltage Digital Input to PP 1x	41	231	34	132	24	72	ns
tpd	Delay	Digital Input to PP 2x	22	25	15	17	11	13	ns
tpd	Delay	Digital Input to NMOS 1x		24		17		13	ns
tpd	Delay	Digital Input to NMOS 2x		23		16		12	ns
tpd	Delay	1x3-State Hi-Z to 0		24		17		12	ns
tpd	Delay	1x3-State Hi-Z to 1	25		17		12		ns
tpd	Delay	2x3-State Hi-Z to 0		23		16		11	ns
tpd	Delay	2x3-State Hi-Z to 1	24		16		12		ns
tpd	Delay	OE Hi-Z to 0		24		17		12	ns
tpd	Delay	OE Hi-Z to 1	25		17		12		ns
tpd	Delay	DFF	23	25	15	17	10	11	ns

Datasheet

9-Jun-2020

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Table 14: Typical Delay Estimated for Each Macrocell at T = 25 °C(Continued)

tpd	Delay	LATCH	24	25	16	17	10	11	ns
tpd	Delay	CTN/DLY	74	73	51	50	35	34	ns
tpd	Delay	2-bit LUT	17	17	11	12	8	8	ns
tpd	Delay	3-bit LUT	20	20	13	12	8	9	ns
tpd	Delay	4-bit LUT	21	20	13	12	9	9	ns
tpd	Delay	Pipe Delay nRESET OUT0		25		17		12	ns
tpd	Delay	Pipe Delay nRESET OUT1 nQ	26		17		12		ns
tpd	Delay	Pipe Delay nRESET OUT1 Q		25		17		12	ns
tpd	Delay	Pipe Delay OUT0 Q	24	22	16	15	10	10	ns
tpd	Delay	Pipe Delay OUT1 nQ	23	26	15	18	10	12	ns
tpd	Delay	Pipe Delay OUT1 Q	24	22	15	15	10	10	ns
tpd	Delay	PGEN CLK	18	19	12	13	8	9	ns
tpd	Delay	PGEN nRESET Zto0		21		14		10	ns
tpd	Delay	PGEN nRESET Zto1	21		14		9		ns
tw	Width	Edge detect	262	261	181	181	125	125	ns
tpd	Delay	Edge detect	18	19	12	12	8	8	ns
tpd	Delay	Edge detect Delayed	281	282	193	194	133	134	ns
tpd	Delay	Filter nQ	186	216	121	139	76	83	ns
tpd	Delay	Filter nQ First spark		197		125		75	ns
tpd	Delay	Filter Q	215	186	139	122	82	76	ns
tpd	Delay	Filter Q First spark	196		125		75		ns
tpd	Delay	Inverter Filter nQ First spark		172		111		70	ns
tpd	Delay	Inverter Filter Q First spark	170		111		69		ns
tpd	Delay	Ripple CNT CLK UP Q1	26	24	17	17	11	11	ns
tpd	Delay	Ripple CNT CLK UP Q2	29	22	20	16	13	11	ns
tpd	Delay	Ripple CNT CLK UP Q3	34	23	23	16	15	11	ns
tpd	Delay	Ripple CNT CLK DOWN Q1	25	24	17	17	11	11	ns
tpd	Delay	Ripple CNT CLK DOWN Q2	26	29	17	20	11	13	ns
tpd	Delay	Ripple CNT CLK DOWN Q3	25	36	16	25	11	16	ns
tpd	Delay	Ripple CNT nSET UP Q1	25	42	16	29	11	19	ns
tpd	Delay	Ripple CNT nSET UP Q2	23	42	15	29	11	19	ns
tpd	Delay	Ripple CNT nSET UP Q3	22	46	14	31	10	21	ns
tpd	Delay	Ripple CNT nSET DOWN Q1	25	41	16	28	11	19	ns
tpd	Delay	Ripple CNT nSET DOWN Q2	23	40	15	27	10	18	ns
tpd	Delay	Ripple CNT nSET DOWN Q3	22	40	14	27	10	18	ns
tpd	Delay	PWM CHOPPER0 BLANK nQ		37		25		17	ns
tpd	Delay	PWM CHOPPER0 BLANK Q	37		25		16		ns
tpd	Delay	PWM CHOPPER1 BLANK nQ		37		25		16	ns
tpd	Delay	PWM CHOPPER1 BLANK Q	37		24		16		ns
tpd	Delay	PWM0 OUT- nQ1	131	25	116	17	103	11	ns
tpd	Delay	PWM0 OUT- Q1	25	135	16	117	11	105	ns

Datasheet

9-Jun-2020

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

tpd	Delay	PWM0 OUT+ nQ1	22	132	14	116	9	104	ns
tpd	Delay	PWM0 OUT+ Q1	136	22	116	15	104	10	ns
tpd	Delay	PWM1 OUT- nQ1	135	25	117	17	107	11	ns
tpd	Delay	PWM1 OUT- Q1	25	135	16	116	11	104	ns
tpd	Delay	PWM1 OUT+ nQ1	22	132	14	116	9	104	ns
tpd	Delay	PWM1 OUT+ Q1	135	22	117	15	104	10	ns

Table 14: Typical Delay Estimated for Each Macrocell at T = 25 °C(Continued)

Table 15: Programmable Delay Expected Typical Delays and Widths at T = 25 °C

Parameter	Description	Note	V _{DD} = 2.5 V	V _{DD} = 3.3 V	V _{DD} = 5.0 V	Unit
tw	Pulse Width, 1 cell	mode: (any) edge detect, edge detect output	239	164	113	ns
tw	Pulse Width, 2 cell	mode: (any) edge detect, edge detect output	474	325	224	ns
tw	Pulse Width, 3 cell	mode: (any) edge detect, edge detect output	709	486	335	ns
tw	Pulse Width, 4 cell	mode: (any) edge detect, edge detect output	914	648	447	ns
time1	Delay, 1 cell	mode: (any) edge detect, edge detect output	19	12	8	ns
time1	Delay, 2 cell	mode: (any) edge detect, edge detect output	19	12	8	ns
time1	Delay, 3 cell	mode: (any) edge detect, edge detect output	19	12	8	ns
time1	Delay, 4 cell	mode: (any) edge detect, edge detect output	19	12	8	ns
time2	Delay, 1 cell	mode: both edge delay, edge detect output	256	176	121	ns
time2	Delay, 2 cell	mode: both edge delay, edge detect output	492	336	231	ns
time2	Delay, 3 cell	mode: both edge delay, edge detect output	728	498	342	ns
time2	Delay, 4 cell	mode: both edge delay, edge detect output	964	660	454	ns

Table 16: Typical Filter Rejection Pulse Width at T = 25 °C

Parameter	V_{DD} = 2.5 V	V _{DD} = 3.3 V	V _{DD} = 5.0 V	Unit
Filtered Pulse Width	< 130	< 90	< 60	ns

Table 17: LP_BG Specifications at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V

Parameter	Description	Conditions	Min	Тур	Мах	Unit
LP_BG Start-Up Time			0.5	1	1.9	ms
LP_BG I _{cc}			0.24	0.51	0.79	μA

3.9 COUNTER/DELAY CHARACTERISTICS

Table 18: Typical Counter/Delay Offset at T = 25 °C

Parameter	OSC Freq	OSC Power-On	V_{DD} = 2.5 V	V _{DD} = 3.3 V	V _{DD} = 5.0 V	Unit
Power-On time	25 MHz	auto	0.14	0.13	0.13	μs
Power-On time	2.048 kHz	auto	509	480	480	μs
Frequency settling time	25 MHz	auto	1.08	1.12	1.07	μs
Frequency settling time	2.048 kHz	auto	1477.76	1475.72	1475.81	μs
Variable (CLK period)	25 MHz	forced	40-41.9	40-41.9	40-42.1	ns
Variable (CLK period)	2.048 kHz	forced	472 - 523	472 - 523	472-523	μs

Table 18: Typical Counter/Delay Offset(Continued) at T = 25 °C

Parameter	OSC Freq	OSC Power-On	V_{DD} = 2.5 V	V _{DD} = 3.3 V	V _{DD} = 5.0 V	Unit
tpd (non-delayed edge)	25 MHz	either	50	40	40	ns

3.10 OSCILLATOR CHARACTERISTICS

Table 19: Oscillators Frequency Limits, V_{DD} = 2.3 V to 5.5 V

		Temperature Range											
OSC		+25 °C		-40 °C to +85 °C			-40 °C to +150 °C						
	Minimum Value	Maximum Value	Error, %	Minimum Value	Maximum Value	Error, %	Minimum Value	Maximum Value	Error, %				
2.048 kHz	2.017	2.079	+1.51	1.884	2.171	+6.01	1.823	2.171	+6.01				
OSC0	kHz	kHz	-1.51	kHz	kHz	-8.01	kHz	kHz	-10.99				
25 MHz	24.625	25.500	+2.00	24.00	26.75	+7.00	23.75	26.75	+7.00				
OSC1	MHz	MHz	-1.50	MHz	MHz	-4.00	MHz	MHz	-5.00				

3.10.1 OSC Power-On Delay

Table 20: Oscillators Power-On Delay at T = 25 °C, OSC Power Setting: "Auto Power-On"

Power Supply	OSC0 2	.048 kHz	OSC1	25 MHz	OSC1 25 MHz Start with Delay		
(V _{DD}) V	Typical Value, μs	Maximum Value, µs	Typical Value, ns	Typical Maximum Value, ns Value, ns		Maximum Value, ns	
2.30	530	759	50	60	140	150	
2.50	500	700	45	55	135	140	
3.30	480	600	30	40	130	135	
5.00	480	550	25	40	130	135	
5.50	480	550	25	30	130	135	

3.11 CURRENT SENSE COMPARATOR CHARACTERISTICS

Table 21: Current Sense Comparator Specifications at T = -40 °C to +85 °C, V_{DD} = 2.3 to 5.5 V Unless Otherwise Noted

Parameter	Description	Note	Conditions	Min	Тур	Max	Unit
R _{CurrCMP}	Current limit input range	Per H-bridge SENSE_x Pin (LS FET only)	I _{FET} *R _{SENSE}	50		500	mV
1	Current Sense	TJ = -40 °C	50 mV input	-1.3		+7.4	%
'accur	accuracy	to 85 °C	500 mV input	-0.7		+4.3	%
t _{start}	Current Sense CMP Startup Time	Current Sense CMP Power- On delay	T _J = -40 °C to 85 °C		6.7	12.5	μs

Datasheet	Revision 2.0	9-Jun-2020
CFR0011-120-00	27 of 223	© 2020 Dialog Semiconductor

Table 21: Current Sense Comparator Specifications at T = -40 °C to +85 °C, V_{DD} = 2.3 to 5.5 V Unless Otherwise Noted

Parameter	Description	Note	Conditions	Min	Тур	Max	Unit
			Low to High, T _J = -40 °C to 85 °C, Vref = 1024 mV, Overdrive = 100 mV		0.5	1.1	μs
			Low to High, $T_J = -40$ °C to 85 °C, Vref = 1024 mV, Overdrive = 10 mV		0.9	2.5	μs
			Low to High, $T_J = -40$ °C to 85 °C, Vref = 480 mV to 2016 mV, Overdrive = 100 mV		0.5	1.3	μs
			Low to High, $T_J = -40$ °C to 85 °C, Vref = 480 mV to 2016 mV, Overdrive = 10 mV		0.9	3.9	μs
			High to Low, T _J = -40 °C to 85 °C, Vref = 1024 mV, Overdrive = 100 mV		0.6	1.1	μs
PROP	Propagation Delay, Response Time		High to Low, T _J = -40 °C to 85 °C, Vref = 1024 mV, Overdrive = 10 mV		2.0	7.0	μs
			High to Low, $T_J = -40$ °C to 85 °C, Vref = 480 mV to 2016 mV, Overdrive = 100 mV		0.6	1.2	μs
			High to Low, $T_J = -40$ °C to 85 °C, Vref = 480 mV to 2016 mV, Overdrive = 10 mV		2.0	8.2	μs
			Low to High, $T_J = -40$ °C to 150 °C, Vref = 1024 mV, Overdrive = 100 mV		0.5	1.2	μs
			Low to High, $T_J = -40$ °C to 150 °C, Vref = 1024 mV, Overdrive = 10 mV		1.0	2.5	μs
			Low to High, $T_J = -40$ °C to 150 °C, Vref = 480 mV to 2016 mV, Overdrive = 100 mV		0.5	1.4	μs

Table 21: Current Sense Comparator Specifications at T = -40 °C to +85 °C, V_{DD} = 2.3 to 5.5 V Unless Otherwise Noted

Parameter	Description	Note	Conditions	Min	Тур	Max	Unit
			Low to High, $T_J = -40$ °C to 150 °C, Vref = 480 mV to 2016 mV, Overdrive = 10 mV		1.0	3.9	μs
			High to Low, $T_J = -40$ °C to 150 °C, Vref = 1024 mV, Overdrive = 100 mV		0.6	1.3	μs
PROP	Propagation Delay, Response Time		High to Low, $T_J = -40$ °C to 150 °C, Vref = 1024 mV, Overdrive = 10 mV		2.0	7.0	μs
			High to Low, $T_J = -40$ °C to 150 °C, Vref = 480 mV to 2016 mV, Overdrive = 100 mV		0.6	1.5	μs
			High to Low, $T_J = -40$ °C to 150 °C, Vref = 480 mV to 2016 mV, Overdrive = 10 mV		2.1	10.3	μs

3.12 DIFFERENTIAL AMPLIFIER WITH INTEGRATOR AND COMPARATOR CHARACTERISTICS

Table 22: Differential Amplifier Specifications at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted

Parameter	Description	Conditions	Min	Тур	Max	Unit
		$V_{DD2} = 5 V \text{ to } 13.2 V, V_{OUT} = 4.096 V,$ T _J = -40 °C to 85 °C		±3.9		%
A)/	Line Regulation	$V_{DD2} = 9 V \text{ to } 13.2 V, V_{OUT} = 8.064 V,$ T _J = -40 °C to 85 °C		±4.6		%
∆vLINe		V _{DD2} = 5 V to 13.2 V, V _{OUT} = 4.096 V, T _J = -40 °C to 150 °C		±4.3		%
		V _{DD2} = 9 V to 13.2 V, V _{OUT} = 8.064 V, T _J = -40 °C to 150 °C		±4.9		%
		$V_{DD2} = 5 V, V_{OUT} = 4.096 V,$ $I_{LOAD} = 200 mA to 500 mA,$ $T_{J} = -40 °C to 85 °C$		±3.8		%
∆v LOAD		$V_{DD2} = 5 V, V_{OUT} = 4.096 V,$ $I_{LOAD} = 200 \text{ mA to } 500 \text{ mA},$ $T_{J} = -40 ^{\circ}\text{C} \text{ to } 150 ^{\circ}\text{C}$		±3.8		%
f _{INT}	Integrated Frequency		44			kHz

dia \cap

Preliminary

3.13 ACMP CHARACTERISTICS

Table 23: ACMP Specifications at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted

Parameter	Description	Note	Condition	Min	Тур	Max	Unit
Views	ACMP Input Voltage	Positive Input		0		V _{DD}	V
▲ ACMP	Range	Negative Input		0		V_{DD}	V
Variat	ACMP Input Offset	ACMPxH Vhys = 0 mV, Gain = 1	T_J = -40 °C to 85 °C	-9		8	mV
* onset		Vref = 32 mV to 2016 mV	T_J = -40 °C to 150 °C	-11		9	mV
	ACMP Startup Time	ACMPxH Power-On delay, Minimal required wake	T _J = -40 °C to 85 °C			45	μs
t _{start}		time for the "Wake and Sleep function"	T _J = -40 °C to 150 °C			45	μs
		V _{HYS} = 32 mV		20.6		37.3	mV
		V _{HYS} = 64 mV	T _J = -40 °C to 85 °C	52.5		70.5	mV
N	Built-in Hysteresis	V _{HYS} = 192 mV		178.6		198.1	mV
VHYS	(Note)	V _{HYS} = 32 mV		20.6		37.3	mV
		V _{HYS} = 64 mV	T _J = -40 °C to 150 °C	52.5		70.5	mV
		V _{HYS} = 192 mV		178.6		198.1	mV
		Gain = 1x			10		GΩ
D	Series Input	Gain = 0.5x			2		MΩ
r sin	Resistance	Gain = 0.33x			2		MΩ
		Gain = 0.25x			2		MΩ
		ACMPxH, Vref =1.024 V, Gain = 1, Overdrive = 100 mV/	Low to High, T _J = -40 °C to 85 °C		0.52	2.15	μs
			High to Low, T _J = -40 °C to 85 °C		0.49	0.71	μs
		ACMPxH, Vref = 0.032 V to 2.016 V.	Low to High, T _J = -40 °C to 85 °C		0.52	1.96	μs
DROD	Propagation Delay,	Gain = 1, Overdrive = 100 mV	High to Low, T _J = -40 °C to 85 °C		0.56	1.55	μs
FROF	Response Time	ACMPxH, Vref = 1.024 V,	Low to High, T _J = -40 °C to 150 °C		0.52	2.15	μs
		Gain = 1, Overdrive = 100 mV	High to Low, T _J = -40 °C to 150 °C		0.49	0.75	μs
		ACMPxH, Vref = 0.032 V to 2.016 V,	Low to High, T _J = -40 °C to 150 °C		0.53	1.64	μs
		Gain = 1, Overdrive = 100 mV	High to Low, T _J = -40 °C to 150 °C		0.57	1.67	μs

Table 23: ACMP Specifications at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)

Parameter	Description	Note	Condition	Min	Тур	Max	Unit
		G = 1		1	1	1	
		G = 0.5		0.490	0.501	0.513	
		G = 0.33	$1_{\rm J} = -40$ C to 85 C	0.327	0.334	0.342	
<u> </u>	Gain Error (including	G = 0.25	-	0.245	0.251	0.257	
G	Vref error)	G = 1		1	1	1	
		G = 0.5	$T = 40^{\circ}$ C to 150 °C	0.490	0.501	0.513	
		G = 0.33	$1_{\rm J} = -40$ C to 150 C	0.327	0.334	0.342	
		G = 0.25	-	0.245	0.251	0.257	
			$T_J = 25 °C,$ Loading = 1 mA V _{DD} ≥ 3.3 V	-6.1		11.8	mV
			$T_J = 25 \ ^\circ C$, Loading = 500 µA V _{DD} < 3.3 V	-10.7		10.3	mV
Vrof	Vref Error with Output	$\sqrt{rof} = 32 to 20 \pi o 16 m)/{rof}$	T_J = -40 °C to 85 °C, Loading = 1 mA $V_{DD} \ge 3.3 V$	-14.0		15.9	mV
Viei	Buffer Enabled	viei - 32 to 2010 to 11v	$T_{J} = -40 \text{ °C to } 85 \text{ °C},$ Loading = 500 µA V _{DD} < 3.3 V	-19.1		13.0	mV
			$T_J = -40 \text{ °C to } 150 \text{ °C,}$ Loading = 1 mA $V_{DD} \ge 3.3 \text{ V}$	-14.0		27.1	mV
			$T_{J} = -40 \text{ °C to } 150 \text{ °C},$ Loading = 500 μ A V _{DD} < 3.3 V	-19.1		22.2	mV
			1 MΩ			5	pF
			560 kΩ			10	pF
	Vref Output	Resistance Load in	100 kΩ			40	pF
C _{VREF}	Capacitance Loading	Condition cell	10 kΩ			80	pF
			2 kΩ			120	pF
			1 kΩ, Vref: 32 mV to 1024 mV			150	pF
Note V _{IL} = \	/in - V _{HYS} , V _{IH} = Vin.						

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

3.14 ANALOG TEMPERATURE SENSOR CHARACTERISTICS

Table 24: TS Output vs Temperature (Output Range 1)

T °C	V _{DD} = 2.3	V to 3.0 V	V _{DD} = 3.3	V to 3.6 V	V _{DD} = 4.5	V to 5.5 V
1, 0	Typical, mV	Accuracy, %	Typical, mV	Accuracy, %	Typical, mV	Accuracy, %
-40	1003.4	±0.84	995.3	±0.79	1008.1	±0.82
-30	981.2	±0.82	973.4	±0.77	985.9	±0.80
-20	958.7	±0.82	951.0	±0.78	963.4	±0.81
-10	936.1	±0.84	928.3	±0.81	940.6	±0.85
0	913.2	±0.88	905.4	±0.83	917.9	±0.88
10	890.1	±0.89	882.4	±0.85	894.7	±0.90
20	867.0	±0.90	859.4	±0.85	871.2	±0.89
25	855.0	±0.90	847.5	±0.87	859.2	±0.91
30	843.6	±0.91	836.1	±0.88	847.8	±0.92
40	820.2	±0.91	812.6	±0.91	824.3	±0.96
50	796.5	±0.97	788.9	±0.93	800.4	±0.98
60	772.6	±0.97	765.3	±0.92	776.2	±1.00
70	748.5	±1.00	741.3	±0.94	752.2	±1.03
80	724.3	±1.01	717.1	±0.97	728.1	±1.08
85	711.9	±1.03	704.8	±0.97	715.3	±1.11
90	699.9	±1.03	692.9	±0.97	703.4	±1.10
100	675.5	±1.07	668.6	±0.99	679.1	±1.17
110	650.8	±1.03	644.1	±1.00	654.5	±1.24
120	626.2	±1.05	619.4	±1.05	629.9	±1.29
125	613.5	±1.09	606.6	±1.09	617.3	±1.37
130	601.2	±1.10	594.4	±1.10	605.2	±1.40
140	576.3	±1.18	569.4	±1.15	580.2	±1.51
150	551.0	±1.22	544.2	±1.18	555.2	±1.61

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

T °C	V _{DD} = 2.3	V to 3.0 V	V _{DD} = 3.3	V to 3.6 V	V _{DD} = 4.5	V to 5.5 V
1, 0	Typical, mV	Accuracy, %	Typical, mV	Accuracy, %	Typical, mV	Accuracy, %
-40	1211.3	±0.83	1201.7	±0.78	1216.2	±0.80
-30	1184.5	±0.79	1175.3	±0.76	1189.0	±0.79
-20	1157.3	±0.82	1148.0	±0.79	1162.2	±0.83
-10	1129.9	±0.84	1120.7	±0.81	1134.8	±0.84
0	1102.3	±0.84	1093.2	±0.81	1106.9	±0.85
10	1074.5	±0.87	1065.4	±0.83	1079.1	±0.87
20	1046.5	±0.87	1037.6	±0.83	1051.0	±0.89
25	1032.2	±0.89	1023.2	±0.85	1036.6	±0.91
30	1018.3	±0.88	1009.5	±0.85	1022.6	±0.90
40	990.2	±0.93	981.2	±0.89	994.4	±0.94
50	961.4	±0.93	952.7	±0.88	965.9	±0.98
60	932.6	±0.95	923.9	±0.91	937.0	±1.01
70	903.5	±0.97	894.8	±0.94	908.2	±1.06
80	874.3	±0.98	865.6	±0.97	879.1	±1.12
85	859.4	±1.02	850.7	±0.99	864.3	±1.16
90	844.8	±1.01	836.3	±0.98	849.6	±1.17
100	815.3	±1.01	807.2	±0.97	820.2	±1.25
110	785.6	±1.06	777.8	±0.97	791.0	±1.32
120	755.9	±1.06	748.2	±0.98	761.4	±1.39
125	740.7	±1.11	732.7	±1.04	745.9	±1.42
130	725.7	±1.09	717.9	±1.03	731.4	±1.44
140	695.6	±1.11	687.7	±1.09	701.4	±1.54
150	665.2	±1.14	657.3	±1.13	671.0	±1.62

Table 25: TS Output vs Temperature (Output Range 2)

Dutusiicet

4 User Programmability

The SLG47105 is a user programmable device with one time programmable (OTP) memory elements that are able to configure the connection matrix and macrocells. A programming development kit allows the user the ability to create initial devices. Once the design is finalized, the programming code (.gpx file) is forwarded to Dialog Semiconductor to integrate into a production process.

Figure 2: Steps to Create a Custom GreenPAK Device

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

5 System Overview

5.1 GPIO PINS

- Digital Input (low voltage or normal voltage, with or without Schmitt Trigger)
- NMOS Open-Drain Outputs
- Push-Pull Outputs
- Analog IO
- 10 kΩ/100 kΩ/1 MΩ Pull-up/Pull-down resistors
- GPIO with OE can be configured as bidirectional IO or three-state output

5.2 HIGH VOLTAGE OUTPUT PINS

- High voltage digital output in Push-Pull, Open-Drain configurations or H-Bridge logic
- Build-in Overcurrent and Short Circuit protection
- Configurable Dead Band Time
- Sleep mode to save energy
- Advanced Voltage Control and Current Control

5.3 CONNECTION MATRIX

Digital matrix for circuit connections based on user design

5.4 TWO CURRENT SENSE COMPARATORS

- SENSE_x pin connected input for Advanced Current Control
- Separate Selectable Vref: 6-bit selection
- Static or Dynamic Vref selection
- Configurable Gain: 4x or 8x

5.5 DIFFERENTIAL AMPLIFIER WITH INTEGRATOR AND COMPARATOR

- Low Quiescent Current
- Provide constant motor speed for variable V_{DD2}
- Connected to HV GPO0 and HV GPO1

5.6 TWO GENERAL PURPOSE ANALOG COMPARATORS

- Wide Vref Selector: 32 mV to 2016 mV, with 32 mV step
- Selectable hysteresis: 2-bit selection
- Configurable Gain (resistor divider) 1x; 0.5x; 0.33x; 0.25x
- Different input sources: PINs, V_{DD} or Temp sense

5.7 VOLTAGE REFERENCE

- Used for references on Analog Comparators
- Can be driven to external pin

5.8 TWELVE COMBINATION FUNCTION MACROCELLS

- Three Selectable DFF/LATCH or 2-bit LUTs
- One Selectable Programmable Pattern Generator or 2-bit LUT
- Six Selectable DFF/LATCH with Set/Reset input or 3-bit LUTs
- One Selectable Pipe Delay or Ripple Counter or 3-bit LUT
- One Selectable DFF/LATCH with Set/Reset input or 4-bit LUT

5.9 FIVE MULTI-FUNCTION MACROCELLS

- Four Selectable DFF/LATCH/3-bit LUTs + 8-bit Delay/Counters
- One Selectable DFF/LATCH/4-bit LUT + 16-bit Delay/Counter

5.10 TWO PWM MACROCELLS

- Flexible 8-bit or 7-bit PWM mode with the Duty Cycle control
- True 0 % and 100 % Duty Cycle
- Regular or 16 Preset Registers mode
- Autostop mode
- Phase correct mode
- Selectable separate Dead Band Time

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Glitch Safety

5.11 SERIAL COMMUNICATION

I²C Interface

5.12 PROGRAMMABLE DELAY

- 125 ns/250 ns/375 ns/500 ns @ 3.3 V
- Includes Edge Detection function

5.13 ADDITIONAL LOGIC FUNCTION

- One Deglitch filter macrocell
- Includes Edge Detection function

5.14 TWO OSCILLATORS

- 2.048 kHz
- 25 MHz

5.15 DUAL V_{DD}

- General Power Supply V_{DD} in range 2.5 V to 5.0 V
 Second Power Supply V_{DD2} in range 3.3 V to 12.0 V (Note)
 Two GPIOs groups: V_{DD} GPIOs Group, V_{DD2} GPOs Group

Note $V_{DD2}A$ Pin should be used necessarily if V_{DD2} is used. Using $V_{DD2}B$ without using $V_{DD2}A$ is unacceptable, because internal high voltage circuit part is supplied by $V_{DD2}A$ Pin. Therefore, HV_GPO0_HD and HV_GPO1_HD should be used firstly.

Datasheet

6 Input/Output Pins

6.1 GPIO PINS

The SLG47105 has a total of 7 GPIO, 1 GPI, and 4 HV GPO Pins, which can function as either a user-defined Input or Output, as well as serving as a special function (such as outputting the voltage reference).

6.2 GPI PIN

GPI serves as General Purpose Input Pin of V_{DD} Group.

6.3 HV GPO PINS

HV GPO0, HV GPO1, HV GPO2, HV GPO3 serve as High Voltage General Purpose Output Pins of V_{DD2} Group.

6.4 PULL-UP/DOWN RESISTORS

All IO Pins of V_{DD} Group have the option for user selectable resistors connected to the input structure. The selectable values on these resistors are 10 k Ω , 100 k Ω , and 1 M Ω . The internal resistors can be configured as either Pull-up or Pull-downs.

6.5 FAST PULL-UP/DOWN DURING POWER-UP

During power-up, IO Pull-up/down resistance will switch to 2.6 k Ω initially and then it will switch to the normal setting value. This function is enabled by register [754].

-		- 1-		
Da	aτa	sn	ee	τ

6.6 GPI IO STRUCTURE (FOR V_{DD} GROUP)

Input Mode [1:0] 00: Digital In without Schmitt Trigger, wosmt_en = 1 01: Digital In with Schmitt Trigger, smt_en = 1 10: Low Voltage Digital In mode, Iv_en = 1 11: Analog IO mode

Note: Can be varied over PVT, for reference only.

6.6.1 GPI IO Structure

Da	tas	hee	t
			•

Non-Schmitt

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

6.7 I²C MODE IO STRUCTURE (FOR V_{DD} GROUP)

6.7.1 I²C Mode IO Structure (for SCL/GPIO2 and SDA/GPIO3, Register OE)

Input Mode [1:0] 00: Digital Input without Schmitt Trigger, WOSMT_EN = 1 01: Digital Input with Schmitt Trigger, SMT_EN = 1 10: Low Voltage, Digital Input, LV_EN = 1 11: Reserved

I²C_EN

register [830]

Note 1: It is possible to apply an input voltage higher than V_{DD} to GPIO2 and GPIO3. However, this voltage should not exceed 5.5 V **Note 2:** GPIO2 and GPIO3 don't support Push-Pull and PMOS Open-Drain

modes Note 3: When an internal Pull-up/down is used, the input voltage can't be higher

ways floating

Figure 4: GPIO with I²C Mode Structure Diagram

n	-	ta	~	h	~	~	6
	α	ια	5		e	e	L

Table 26: GPIO2 Mode Selection

Register [2032]	Register [831]	Register [830]	GPIO2 Mode
0	х	х	I ² C SCL
1	0	х	GPI, depends on registers [826:825]
1	1	х	GPO, 3.4x OD only

Table 27: GPIO3 Mode Selection

Register [2032]	Register [837]	Register [830]	GPIO3 Mode
0	x	0	I ² C SDA, fast+
0	х	1	l ² C SDA, standard/fast
1	0	x	GPI, depends on registers [833:832]
1	1	x	GPO, 3.4x OD only

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

6.8 MATRIX OE IO STRUCTURE (FOR V_{DD} GROUP)

6.8.1 Matrix OE IO Structure (for GPIOs 0, 1, 4, 5, 6)

Figure 5: GPIO Matrix OE IO Structure Diagram

	_	4	_		-	-		
		та	C	n	Δ	ο	т.	
_	C.	LCI	-		v	C	•	

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

6.9 GPO MATRIX OE STRUCTURE (FOR V_{DD2} GROUP)

Using sleep mode to minimize supply current should be sufficient under normal operation.

Outputs HV GPO0, HV GPO1, HV GPO2, HV GPO3 have individual HV_SLEEP Input signal. If Sleep Input is active, Charge Pumps are disabled, and H-bridge FETs are set to Hi-Z state.

6.9.1 GPO with Matrix OE Structure (for HV GPOs 0 and 1)

Output Mode registers [777:776] for HV_GPO_0, registers [785:784] for HV_GPO_1: 00: Hi-Z mode (High Impedance)

- 01: NMOS 1x LOW SIDE Open-DRAIN mode (Open-DRAIN LOW side On)
- 10: NMOS 1x HIGH SIDE Open-DRAIN mode (Open-DRAIN HIGH side On)
- 11: Push-Pull 1x mode (Open-DRAIN HIGH and LOW sides On)

HV GPO SLEEP

Figure 6: HV GPO Matrix OE IO Structure Diagram

Datashoot	Povision 2.0
Datasheet	Revision 2.0

Preliminary

6.9.2 GPO with Matrix OE Structure (for HV GPOs 2 and 3)

Output Mode registers [793:792] for HV_GPO_2, registers [801:800] for HV_GPO_3: 00: Hi-Z mode (High Impedance)

01: NMOS 1x LOW SIDE Open-DRAIN mode (Open-DRAIN LOW side On) 10: NMOS 1x HIGH SIDE Open-DRAIN mode (Open-DRAIN HIGH side On)

11: Push-Pull 1x mode (Open-DRAIN HIGH and LOW sides On)

HV GPO SLEEP

Figure 7: HV GPO Matrix OE IO Structure Diagram

-							
	а	ta	S	n	е	ρ	t.
-	~		-		-	-	•

7 High Voltage Output Modes

The device integrates four High Drive Half bridges, PWM voltage regulation method, current regulation circuitry, and protection circuits, including dead band circuit.

HV GPOs work as power PINs, so if two bridges open simultaneously for any reason, for example, timing desynchronization, it will result in cross-conduction (shoot-through) between the two bridges and damage the chip. To avoid this, t_{DEAD} is entered between switching on upper and lower power transistors. During output state transition from LOW to HIGH, the lower NMOS turns off and only after t_{DEAD} the upper NMOS turns on. While t_{DEAD} the PIN is in Hi-Z state. The same process is applied when transiting from HIGH to LOW. t_{DEAD} is different for DRIVER and PREDRIVER modes.

The user can select Modes of HV Outputs:

- Full-Bridge Mode;
- Half-Bridge Mode;
- Pre-Driver Mode.

PWM Voltage regulation is useful for designs where there is a need to maintain constant motor speed with changeable power supply level. When the High V_{DD2} is decreasing (battery discharging), it's possible to increase PWM duty cycle, and when the High V_{DD2} is increasing (battery charging) it's possible to decrease PWM duty cycle. It's possible to turn off the PWM and HV GPO for battery saving when the motor is idle, and others.

Preliminary

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Figure 8: HV OUT Block Diagram

_								
П	a	ta	C	h	Δ	Δ	t.	
-	0	LCI	9		C	0	•	

Full-Bridge (H-bridge) mode is selected by setting register [782] and register [798] to 1 for HV_GPO0/HV_GPO1 and HV_GPO2/HV_GPO3 respectively. In this mode, HV GPO0 functions in couple with HV GPO1 and HV GPO2 functions in couple with HV GPO3. This mode is useful for driving up to two DC motors with the ability to change the motors rotation direction. Also, this mode can be used to drive one Stepper Motor as shown in Figure 9.

Figure 9: Full-Bridge Mode Operation

OE inputs of high voltage pins aren't used in Full-Bridge mode except HV GPO0 OE input and HV GPO2 OE input in PH-EN sub-mode, where these inputs are used to select Decay Mode for each of H-Bridges.

Note : All 4 Sleep pins in this mode are active separately.

Other inputs and outputs operate depending on Control_Sel register [874] and register [876] for HV_GPO0/HV_GPO1 and HV_GPO2/HV_GPO3 respectively as shown in Table 28 and Table 29.

Table 28: H-Bridge	Logic Control	Selection Registe	r = 0 (IN-IN Mode)
		J	

HV H-Bridge Sleep	Digital OUT1	Digital OUT2	HV GPO0	HV GPO1	Function
1	Х	Х	Hi-Z	Hi-Z	Off (Coast)
0	0	0	Hi-Z	Hi-Z	Coast
0	0	1	L	Н	Reverse
0	1	0	Н	L	Forward
0	1	1	L	L	Brake

Table 29: H-Bridge	e Logic Control	Selection Regis	ter = 1 (PH-EN Mode)
--------------------	-----------------	-----------------	----------------------

HV H-Bridge Sleep	Decay Mode IN (HV GPO0 OE)	Digital OUT1 (EN/PWM)	Digital OUT2 (PH/Direct)	HV GPO0	HV GPO1	Function
1	Х	Х	Х	Hi-Z	Hi-Z	Off (Coast)
0	0 (Fast Decay)	0	Х	Hi-Z	Hi-Z	Coast
0	1 (Slow Decay)	0	Х	L	L	Brake
0	Х	1	0	Н	L	Forward
0	Х	1	1	L	Н	Reverse

HV GPO0, HV GPO1, HV GPO2, and HV GPO3 are tri-state Pins, which can't be pulled up/down internally.

The HV GPOs can be used to control the motor speed with the help of PWM technique. Fast decay mode causes a rapid reduction in inductive current and allows the motor to coast toward zero velocity. Slow decay mode leads to a slower reduction

Preliminary

in inductive current, but produces rapid deceleration.

For IN-IN mode, to drive DC motor in fast-decay mode, the PWM signal should be applied to one HV GPOx pin, while the other is held in the logic LOW state. To use slow-decay mode, one HV GPOx pin should be sourced by PWM signal, while the opposite pin is held in the logic HIGH state.

Table 30: PWM Control of Motor Speed (IN-IN Mode)

Function	Digital OUT1	Digital OUT2
Forward PWM, fast decay	PWM	0
Forward PWM, slow decay	1	PWM
Reverse PWM, fast decay	0	PWM
Reverse PWM, slow decay	PWM	1

PH-EN mode is convenient for H-Bridge control by internal PWM macrocell, because PWM signal is connected to Digital OUT1 input only. In this case there is no need to use an additional MUXs. Rotation direction is changed by Digital OUT2 input.

Table 31: PWM Control of Motor Speed (PH-EN Mode)

Function	Digital OUT1	Digital OUT2	Decay Mode IN
Forward PWM, fast decay	PWM	0	0
Reverse PWM, fast decay	PWM	1	0
Forward PWM, slow decay	PWM	0	1
Reverse PWM, slow decay	PWM	1	1

Figure 10 shows the current paths in a different drive and decay modes.

Datasheet

Figure 10: Drive and Decay Modes

	-	L	_	-	-	۰.
			9			г.
-		LCI	9	•	•	ι.

7.2 HALF BRIDGE MODE

Half-Bridge Mode is selected by setting register [782] and register [798] to 0 for HV_GPO0/HV_GPO1 and HV_GPO2/ HV_GPO3 respectively. This mode is the default mode for HV GPO pins. In this mode, there is a possibility to drive up to four motors spinning in one direction.

Figure 11: Half-Bridge Mode Operation

In Half-Bridge mode HV GPO will work as shown in Table 32.

Table 32: Half-Bridge Logic

Function	HV GPO Sleep	OE	Digital OUT	HV GPO
Off	1	Х	Х	Hi-Z
Off (Coast)	0	0	Х	Hi-Z
Brake	0	1	0	L
Forward	0	1	1	Н

7.3 PRE-DRIVER MODE

This mode is activated by setting register [781] and register [797] to 1 for HV_GPO0/HV_GPO1 and HV_GPO2/HV_GPO3 respectively. The difference of this mode is that the rise time t_R and fall time t_F of High Drive HV GPO MOSFETs are much smaller than in regular mode. This allows using SLG47105 as a driver for external transistors.

When this mode is active, user can configure HV GPO to work in Full-Bridge or Half-Bridge Modes, as well as in regular mode (Pre-Driver Mode is disabled, registers [781] / [797] = 0).

7.4 PARALLEL CONNECTION OF HV GPO

The user can connect outputs in parallel to increase current rating. Note that this regime has no special register for activation.

To work in parallel Full-bridge Mode, the user must connect HV_GP00_HD with HV_GP02_HD and HV_GP01_HD with HV GP03 HD. Figure 12 shows a simplified schematic of DC motor connected to parallel H-Bridge of SLG47105.

Note that user can configure HV GPO outputs in Half-bridge Mode and connect them in parallel. In this case, user must take care of HV GPO control to prevent short circuit.

C SEM			9
	Ρ	relimin	ary

Datasheet	Revision 2.0	9-Jun-202	
Datachoot	Devision 2.0	9 Jun 20	

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Figure 12: Parallel Connection of HV GPOs for Full-Bridge Mode

7.5 PROTECTION CIRCUITS

7.5.1 General FAULT signals

The SLG47105 has five FAULT signals. Two of them are FAULT_A and FAULT_B. They are the general signals which consist of all available FAULT signals for both $V_{DD2 A}$ and $V_{DD2 B}$ separately.

FAULT_A:

- Over-current Protection OCP_A
- Thermal Shutdown
- Under-voltage Lockout

FAULT_B:

- Over-current Protection OCP_B
- Thermal Shutdown
- Under-voltage Lockout

For more information on each of FAULT signals see Section 7.5.3 (Over-current Protection), Section 7.5.4 (Thermal Shutdown), and Section 7.5.5 (Under-voltage Lockout).

7.5.2 Advanced Current Control

A current control circuit is provided to regulate the system in the event of an overcurrent condition, for example, an abnormal mechanical load of DC motor. This circuit can be used for implementing constant current closed loop systems or for current limitation.

The current is sensed by external sense resistors connected to SENSE_A and SENSE_B Pins. Two current comparators are used to convert these currents to logic level. Using a current comparator with PWM block, output current can be dynamically changed. For example, for a stepper motor for micro stepping it is possible to set 16 values for sinusoidal current limit form.

7.5.3 Over-current Protection (OCP)

Each of FETs has an analog current limit circuit for turning off FETs when the current exceeds the threshold. When the overcurrent (I_{OCP}) persists for longer than the t_{OCP1} time, the FETs in the Half-Bridge are disabled, and FAULT signal to matrix driven high. t_{OCP1} time is optional. It can be enabled by register [873] for HV GPO0/1 and by register [875] for HV GPO2/3. When this option is disabled, OCP circuit reacts immediately without deglitch time. The FETs will be disabled along t_{OCP2} time when the current decreases to a normal value. t_{OCP2} could be changed by setting the registers (HV GPO0 - registers[780:778], HV GPO1 - registers[788:786], HV GPO2 - registers[796:794], HV GPO3 - registers[804:802]). Overcurrent conditions are detected for both high- and low-side FETs. There are special type of matrix input FAULTs, first one is personal matrix input [60]

Datasheet

Revision 2.0

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

for OCP_FAULT_A and another one is personal matrix input [61] for OCP_FAULT_B.

7.5.4 Thermal Shutdown (TSD) and Thermal Considerations

If the die temperature exceeds safe limits T_{SD} , all output FETs in each H-/Half-bridge are disabled. After the die temperature has fallen to a safe level, operation automatically resumes. Note that TSD is active only during HV GPOs are wake. When all HV GPOs are in Power-down, TSD function is inactive. The SLG47105 has a special package optimized for better heat dissipation. All HV output pins and central plates should be thermally connected to copper traces or pads on the PCB for better heat dissipation. It is recommended to use thermal vias under the Ground and V_{DD} plates for the better thermal characteristic. TSD_FAULT signal is connected to Matrix Input [62]. TSD_FAULT signal is also present in FAULT_A and FAULT_B signals.

7.5.5 Under-voltage Lockout (UVLO)

When the voltage on the pin V_{DD2} is less than the V_{UVLO} , then the HV_GPOx outputs are disabled, Fault_A and Fault_B outputs are driven HIGH. When the voltage rises to the minimal V_{DD2} voltage, then the Fault outputs is driven LOW and work is restored.]

UVLO can be enabled separately for V_{DD2} A and V_{DD2} B by register [864]/[865].

7.6 PWM VOLTAGE CONTROL

The SLG47105 provides the ability to control the voltage applied to the motor winding. This feature allows achieving constant motor speed during supply voltage variations.

To use this function, the user needs to enable H-Bridge mode and use the integrator on first H-Bridge, which consists of HV_GPO0_HD and HV_GPO1_HD Pins. The integrator output is connected to the positive input of separate Analog Comparator. Also, Vref value on the negative comparator input must be selected. The integrator monitors the voltage difference between HV_GPO0_HD and HV_GPO1_HD Pins of H-Bridge and integrates it to get an average voltage value.

The outputs of the comparator must be connected to the PWM block with or without an additional logic circuit. If the average output voltage is lower than Vref, the duty cycle of the PWM output needs to increase; if the average output value is higher than Vref, the duty cycle needs to decrease; when the average output value is equal to Comparator threshold, PWM duty cycle is kept by EQUAL output.

Note that if the desired output voltage (reference of ACMP) is greater than the supply voltage, the device will operate at 100 % duty cycle and the voltage regulation feature will be disabled. In this mode the device behaves as a conventional H-Bridge driver.

Datasheet

8 Differential Amplifier with Integrator and Comparator

Differential Amplifier with Integrator and Analog Comparator is connected to HV_GPO0_HD and HV_GPO1_HD (first H-Bridge). This macrocell is useful when there is a need to keep the constant voltage at H-Bridge load. Differential Amplifier with Integrator and Comparator has dedicated power-up input control (Connection Matrix output). During LOW on power-up input the Differential Amplifier with Integrator is in power down state and its outputs are latched in previous state.

"Upward" output of macrocell is active HIGH when Average Voltage Difference on H-Bridge (integrated Voltage) is higher than upper Vref of Comparator (including Differential Amplifier influence). "Upward" output can be optionally inverted by setting register [753] to 1.

"Equal" output is active HIGH when integrated Voltage is equal to Comparator Threshold.

The inputs of the Differential Amplifier can be:

-HV_GPO0_HD or HV_GPO1_HD outputs for non-inverting ("+") input;

-HV_GPO1_HD or HV_GPO0_HD outputs for inverting ("-") input.

The internal multiplexer connects HV_GPOx_HD Pins to Differential Amplifier inputs in right combination automatically, depending on H-Bridge logic inputs current state (in H-Bridge Mode only).

The Comparator IN- voltage source is internal 0 - 2.016 V with 32 mV step or external voltage (GPIO0). There is 0.25x Gain divider after Differential Amplifier.

The Differential Amplifier operation conditions:

- PWM0 is enabled
- HV OUT CRTL0 is configured in H-Bridge mode
- PWM frequency 44 kHz or higher to make sure that Integrator operates correctly.

The integrated DC voltage level is applied to the comparator positive input. The comparator outputs are used to control the PWM duty cycle. In this case, a closed loop system controls the PWM duty cycle to ensure the constant average output voltage level.

Note that PWM duty cycle CNT CLK requires the rate of update at latest two PWM period cycles or more.

Differential Amplifier with Integrator and Analog Comparator macrocell operates synchronously to PWM0 macrocell. So, to use Differential Amplifier with Integrator and Analog Comparator it is necessary to enable PWM0 macrocell and Oscillator, used by this PWM macrocell.

It's recommended not to use Hi-Z state of HV_GPO0_HD and HV_GPO1_HD Pins when working with Differential Amplifier with Integrator and Comparator macrocell. Hi-Z state can decrease the accuracy of Differential Amplifier and may cause thermal shut down due to current flow through the diodes in the HV outputs, when Hi-Z state is enabled.

8.1 DIFFERENTIAL AMPLIFIER WITH INTEGRATOR BLOCK DIAGRAM

Figure 14: Differential Amplifier with Integrator Block Diagram

Datacha	-
Datasne	ег

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

9 Current Sense Comparator

There are two Current Sense Comparator macrocells in the SLG47105.

Each of the Current CMP macrocells has a positive input signal that is connected to SENSE_x pins through Selectable Gain block. The options for Selectable Gain are 4x or 8x.

Each of the Current CMP macrocells has a negative input signal that can be connected to static or dynamic variable Vref. The static Vref value is selected via registers. The dynamically changed Vref values are selected with the help of one of the PWM blocks, different for each Current Sense Comparator. In this case, 6-bit Vref is selected by 6 Low Significant bits of Synchro Buffer, which is a part of the PWM block (detailed in Section 13). For example, the Current Sense Comparator Vref can be changed "on the flight" from 16-bytes Register File, which is connected to the Synchro Buffer by PWM block settings, and where user-defined Vref values are stored. The Vref values are switched Up or Down depending on the level of PWM macrocell Up/ Down input, each pulse on DUTY_CYCLE_CLK input.

Note 1: The PWM block can be active when 16-bytes Register File is used by Current Sense Comparator. **Note 2**: The Vref can be changed in a range from 32 mV to 2016 mV with 32 mV step.

During power-up, the Current Sense Comparator output will remain LOW, and then become valid 12.5 µs (max) after power-up signal goes high.

Current Sense Comparator0 IN+ is connected with SENSE_A pin through Selectable Gain0.

Current Sense Comparator1 IN+ is connected with SENSE_B pin through Selectable Gain1.

9.1 CURRENT SENSE COMPARATOR0 BLOCK DIAGRAM

Da	tas	he	et
			-

9.2 CURRENT SENSE COMPARATOR1 BLOCK DIAGRAM

Figure 16: Current Sense Comparator1 Block Diagram

9.3 CURRENT REGULATION

To use the Current Regulation, it is necessary to connect sense-resistors between SENSE_x pins and ground. The resistor value is calculated by the formula:

$$I[n] = \frac{Vref[n]}{Rsense \times GAIN}$$

Where:

- I[n]- Load Current (through controlled winding or resistive load) for selected V_{ref}[n]
- Vref reference voltage of Current Sense Comparator, constant value, external source, or selectable value from Register File
 R_{SENSE} resistance of the sense resistor
- GAIN selectable gain (4x or 8x, selectable by the register)

The reference voltage can be set statically or dynamically. For static reference voltage setting it is required to calculate R_{SENSE} for selected reference voltage and desired motor current.

For dynamic reference voltage setting it is required to calculate R_{SENSE} for the maximal user-defined reference voltage and maximal current via motor winding.

16 values in the Reg File can be used to determine the shape of motor current, for example, sin current for the stepper motor.

DUTY_CYCLE_CLK input of PWM macrocell is used to switch to the next Vref value, and UP/DOWN input of PWM macrocell selects the direction of Vref change (next or previous Vref value). For more detailed description of Reg File see Section 13.

n	а	ta	S	h	ρ	ρ	F
-	α	ια	3		C		L

10 Connection Matrix

The Connection Matrix in the SLG47105 is used to create the internal routing for internal functional macrocells of the device once it is programmed. The registers are programmed from the one time programmable (OTP) NVM cell during Test Mode Operation. The output of each functional macrocell within the SLG47105 has a specific digital bit code assigned to it, that is either set to active "High", or inactive "Low", based on the design that is created. Once the 2048 register bits within the SLG47105 are programmed, a fully custom circuit will be created.

The Connection Matrix has 64 inputs and 96 outputs. Each of the 64 inputs to the Connection Matrix is hard-wired to the digital output of a particular source macrocell, including IO pins, LUTs, analog comparators, other digital resources, such as V_{DD} and GND. The input to a digital macrocell uses a 6-bit register to select one of these 64 input lines.

For a complete list of the SLG47105's register table, see Section 23.

Figure 17: Connection Matrix

Datasheet
Datasheet

Preliminary

10.1 MATRIX INPUT TABLE

Table 33: Matrix Input Table

Matrix Input	Materia Innut Cinnal Function	Matrix Decode					
Number			4	3	2	1	0
0	GND	0	0	0	0	0	0
1	LUT2_0/DFF0 output	0	0	0	0	0	1
2	LUT2_1/DFF1 output	0	0	0	0	1	0
3	LUT2_2/DFF2 output	0	0	0	0	1	1
4	LUT2_3/PGen output	0	0	0	1	0	0
5	LUT3_0/DFF3 output	0	0	0	1	0	1
6	LUT3_1/DFF4/Chopper0 output	0	0	0	1	1	0
7	LUT3_2/DFF5/Chopper1 output	0	0	0	1	1	1
8	LUT3_3/DFF6 output	0	0	1	0	0	0
9	LUT3_4/DFF7 output	0	0	1	0	0	1
10	LUT3_5/DFF8 output	0	0	1	0	1	0
11	LUT4_0/DFF9 output	0	0	1	0	1	1
12	LUT3_6/PD/RIPP CNT output0	0	0	1	1	0	0
13	LUT3_6/PD/RIPP CNT output1	0	0	1	1	0	1
14	LUT3_6/PD/RIPP CNT output2		0	1	1	1	0
15	PROG_DLY_EDET_OUT	0	0	1	1	1	1
16	MULTFUNC_8BIT_1: DLY_CNT_OUT		1	0	0	0	0
17	MULTFUNC_8BIT_2: DLY_CNT_OUT		1	0	0	0	1
18	MULTFUNC_8BIT_3: DLY_CNT_OUT		1	0	0	1	0
19	MULTFUNC_8BIT_4: DLY_CNT_OUT	0	1	0	0	1	1
20	MULTFUNC_8BIT_1: LUT3_DFF_OUT	0	1	0	1	0	0
21	MULTFUNC_8BIT_2: LUT3_DFF_OUT	0	1	0	1	0	1
22	MULTFUNC_8BIT_3: LUT3_DFF_OUT	0	1	0	1	1	0
23	MULTFUNC_8BIT_4: LUT3_DFF_OUT	0	1	0	1	1	1
24	MULTFUNC_16BIT_0: DLY_CNT_OUT		1	1	0	0	0
25	MULTFUNC_16BIT_0: LUT4_DFF_OUT		1	1	0	0	1
26	GPIO0 Digital Input	0	1	1	0	1	0
27	GPI Digital Input	0	1	1	0	1	1
28	GPIO1 Digital Input	0	1	1	1	0	0
29	GPIO4 Digital Input	0	1	1	1	0	1
30	GPIO5 Digital Input	0	1	1	1	1	0
31	GPIO6 Digital Input	0	1	1	1	1	1
32	GPIO2 digital input or I ² C_virtual_0 Input	1	0	0	0	0	0
33	GPIO3 digital input or I ² C_virtual_1 Input	1	0	0	0	0	1
34	I ² C_virtual_2 Input	1	0	0	0	1	0
35	I ² C_virtual_3 Input	1	0	0	0	1	1
36	I ² C_virtual_4 Input	1	0	0	1	0	0
37	I ² C_virtual_5 Input	1	0	0	1	0	1

Datasheet

Preliminary

Table 33:	Matrix Inp	out Table(Continued)

Matrix Input	Materia langet Olympic Franctica	Matrix Decode					
Number	Matrix input Signal Function	5	4	3	2	1	0
38	l ² C_virtual_6 Input	1	0	0	1	1	0
39	I ² C_virtual_7 Input	1	0	0	1	1	1
40	PWM0_OUT+	1	0	1	0	0	0
41	PWM0_OUT-	1	0	1	0	0	1
42	PWM1_OUT+	1	0	1	0	1	0
43	PWM1_OUT-	1	0	1	0	1	1
44	Diff. Amp +Integrator UPWARD	1	0	1	1	0	0
45	Diff. Amp +Integrator EQUAL	1	0	1	1	0	1
46	ACMP0H_OUT	1	0	1	1	1	0
47	ACMP1H_OUT		0	1	1	1	1
48	CurrentSenseComp0_OUT		1	0	0	0	0
49	CurrentSenseComp1_OUT		1	0	0	0	1
50	Fault_A	1	1	0	0	1	0
51	Fault_B		1	0	0	1	1
52	EDET_FILTER_OUT		1	0	1	0	0
53	Oscillator1 (25 MHz) output		1	0	1	0	1
54	Flex-Divider output		1	0	1	1	0
55	Oscillator0 (2.048 kHz) output 0		1	0	1	1	1
56	Oscillator0 (2.048 kHz) output 1	1	1	1	0	0	0
57	POR OUT	1	1	1	0	0	1
58	PWM0_PERIOD	1	1	1	0	1	0
59	PWM1_PERIOD	1	1	1	0	1	1
60	OCP_FAULT_A	1	1	1	1	0	0
61	OCP_FAULT_B	1	1	1	1	0	1
62	TSD_FAULT	1	1	1	1	1	0
63	V _{DD}	1	1	1	1	1	1

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

10.2 MATRIX OUTPUT TABLE

Table 34: Matrix Output Table

Register Bit Address	Matrix Output Signal Function			
[5:0]	GPIO0 Digital Output	0		
[11:6]	GPIO0 Digital Output OE	1		
[17:12]	GPIO1 Digital Output	2		
[23:18]	GPIO1 Digital Output OE	3		
[29:24]	GPIO2 Digital Output	4		
[35:30]	GPIO3 Digital Output	5		
[41:36]	GPIO4 Digital Output	6		
[47:42]	GPIO4 Digital Output OE	7		
[53:48]	GPIO5 Digital Output	8		
[59:54]	GPIO5 Digital Output OE	9		
[65:60]	GPIO6 Digital Output	10		
[71:66]	GPIO6 Digital Output OE	11		
[77:72]	HV GPO0 Digital Output	12		
[83:78]	HV GPO0 Digital Output OE	13		
[89:84]	HV GPO1 Digital Output	14		
[95:90]	HV GPO1 Digital Output OE	15		
[101:96]	HV GPO2 Digital Output	16		
[107:102]	HV GPO2 Digital Output OE	17		
[113:108]	HV GPO3 Digital Output	18		
[119:114]	HV GPO3 Digital Output OE	19		
[125:120]	Reserved	20		
[131:126]	Reserved	21		
[137:132]	Reserved	22		
[143:138]	HV GPO0 SLEEP	23		
[149:144]	HV GPO1 SLEEP	24		
[155:150]	HV GPO2 SLEEP	25		
[161:156]	HV GPO3 SLEEP	26		
[167:162]	IN0 of LUT2_0 or Clock Input of DFF0	27		
[173:168]	IN1 of LUT2_0 or Data Input of DFF0	28		
[179:174]	IN0 of LUT2_3 or Clock Input of PGen	29		
[185:180]	IN1 of LUT2_3 or nRST of PGen	30		
[191:186]	IN0 of LUT2_1 or Clock Input of DFF1	31		
[197:192]	IN1 of LUT2_1 or Data Input of DFF1	32		
[203:198]	IN0 of LUT2_2 or Clock Input of DFF2	33		
[209:204]	IN1 of LUT2_2 or Data Input of DFF2	34		
[215:210]	IN0 of LUT3_0 or Clock Input of DFF3	35		
[221:216]	IN1 of LUT3_0 or Data Input of DFF3	36		
[227:222]	IN2 of LUT3_0 or nRST(nSET) of DFF3	37		

Datasheet

Table 34: Matrix Output Table(Continued)

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

Register Bit Address	Matrix Output Signal Function			
[233:228]	IN0 of LUT3_1 or Clock Input of DFF4			
[239:234]	IN1 of LUT3_1 or Data Input of DFF4	39		
[245:240]	IN2 of LUT3_1 or nRST(nSET) of DFF4	40		
[251:246]	IN0 of LUT3_2 or Clock Input of DFF5	41		
[257:252]	IN1 of LUT3_2 or Data Input of DFF5	42		
[263:258]	IN2 of LUT3_2 or nRST(nSET) of DFF5	43		
[269:264]	IN0 of LUT3_3 or Clock Input of DFF6	44		
[275:270]	IN1 of LUT3_3 or Data Input of DFF6	45		
[281:276]	IN2 of LUT3_3 or nRST(nSET) of DFF6	46		
[287:282]	IN0 of LUT3_4 or Clock Input of DFF7	47		
[293:288]	IN1 of LUT3_4 or Data Input of DFF7	48		
[299:294]	IN2 of LUT3_4 or nRST(nSET) of DFF7	49		
[305:300]	IN0 of LUT3_5 or Clock Input of DFF8	50		
[311:306]	IN1 of LUT3_5 or Data Input of DFF8	51		
[317:312]	IN2 of LUT3_5 or nRST(nSET) of DFF8	52		
[323:318]	IN0 of LUT3_6 or Input of Pipe Delay or UP Signal of RIPP CNT	53		
[329:324]	IN1 of LUT3_6 or nRST of Pipe Delay or nSET of RIPP CNT	54		
[335:330]	IN2 of LUT3_6 or Clock of Pipe/RIPP_CNT	55		
[341:336]	IN0 of LUT4_0 or Clock Input of DFF9	56		
[347:342]	IN1 of LUT4_0 or Data Input of DFF9	57		
[353:348]	IN2 of LUT4_0 or nRST(nSET) of DFF9	58		
[359:354]	IN3 of LUT4_0	59		
[365:360]	MULTFUNC_8BIT_1: IN0 of LUT3_7 or Clock Input of DFF10, Delay1 Input (or Counter1 nRST Input)	60		
[371:366]	MULTFUNC_8BIT_1: IN1 of LUT3_7 or nRST (nSET) of DFF10, Delay1 Input (or Counter1 nRST Input) or Delay/Counter1 External Clock Source	61		
[377:372]	MULTFUNC_8BIT_1: IN2 of LUT3_7 or Data Input of DFF10, Delay1 Input (or Counter1 nRST Input)	62		
[383:378]	MULTFUNC_8BIT_2: IN0 of LUT3_8 or Clock Input of DFF11, Delay2 Input (or Counter2 nRST Input)	63		
[389:384]	MULTFUNC_8BIT_2: IN1 of LUT3_8 or nRST (nSET) of DFF11, Delay2 Input (or Counter2 nRST Input) or Delay/Counter2 External Clock Source	64		
[395:390]	MULTFUNC_8BIT_2: IN2 of LUT3_8 or Data Input of DFF11, Delay2 Input (or Counter2 nRST Input)	65		
[401:396]	MULTFUNC_8BIT_3: IN0 of LUT3_9 or Clock Input of DFF12, Delay3 Input (or Counter3 nRST Input)	66		
[407:402]	MULTFUNC_8BIT_3: IN1 of LUT3_9 or nRST (nSET) of DFF12, Delay3 Input (or Counter3 nRST Input) or Delay/Counter3 External Clock Source	67		
[413:408]	MULTFUNC_8BIT_3: IN2 of LUT3_9 or Data Input of DFF12, Delay3 Input (or Counter3 nRST Input)	68		
[419:414]	MULTFUNC_8BIT_4: IN0 of LUT3_10 or Clock Input of DFF13, Delay4 Input (or Counter4 nRST Input)	69		

Datasheet

Revision 2.0

Table 34: Matrix Output Table(Continued)

Register Bit Address	Matrix Output Signal Function	Matrix Output Number
[425:420]	MULTFUNC_8BIT_4: IN1 of LUT3_10 or nRST (nSET) of DFF13; Delay4 Input (or Counter4 nRST Input) or Delay/Counter4 External Clock Source	70
[431:426]	MULTFUNC_8BIT_4: IN2 of LUT3_10 or Data Input of DFF13; Delay4 Input (or Counter4 nRST Input)	71
[437:432]	MULTFUNC_16BIT_0: IN0 of LUT4_1 or Clock Input of DFF14; Delay0 Input (or Counter0 RST/SET Input)	72
[443:438]	MULTFUNC_16BIT_0: IN1 of LUT4_1 or nRST of DFF14; Delay0 Input (or Counter0 nRST Input) or Delay/Counter0 External Clock Source	73
[449:444]	MULTFUNC_16BIT_0: IN2 of LUT4_1 or nSET of DFF14 or KEEP Input of FSM0 or External Clock Input of Delay0 (or Counter0)	74
[455:450]	MULTFUNC_16BIT_0: IN3 of LUT4_1 or Data Input of DFF14; Delay0 Input (or Counter0 nRST Input) or UP Input of FSM0	75
[461:456]	PWM0_UP/DOWN	76
[467:462]	PWM0_KEEP/STOP	77
[473:468]	PWM0_DUTY_CYCLE_CNT	78
[479:474]	PWM0_EXT_CLK	79
[485:480]	PWM0_RESET/SET	80
[491:486]	PWM1_UP/DOWN	81
[497:492]	PWM1_KEEP/STOP	82
[503:498]	PWM1_DUTY_CYCLE_CNT	83
[509:504]	PWM1_EXT_CLK	84
[515:510]	PWM1_RESET/SET	85
[521:516]	pd of ACMP0H from the matrix	86
[527:522]	pd of ACMP1H from the matrix	87
[533:528]	Filter/Edge detect input	88
[539:534]	Programmable delay/edge detect input	89
[545:540]	OSC0 ENABLE from matrix	90
[551:546]	OSC1 ENABLE from matrix	91
[557:552]	Temp sensor PD from matrix	92
[563:558]	BG Power-down from the matrix	93
[569:564]	Diff_Amp_Integrator_En	94
[575:570]	Reserved	95

10.3 CONNECTION MATRIX VIRTUAL INPUTS

As mentioned previously, the Connection Matrix inputs come from the outputs of various digital macrocells on the device. Eight of the Connection Matrix inputs have the special characteristic that the state of these signal lines comes from a corresponding data bit written as a register value via l^2C . This gives the user the ability to write data via the serial channel, and have this information translated into signals that can be driven into the Connection Matrix and from the Connection Matrix to the digital inputs of other macrocells on the device. The l^2C address for reading and writing these register values is at 0x4C (76).

An I²C write command to these register bits will set the signal values going into the Connection Matrix to the desired state. A read command to these register bits will read either the original data values coming from the NVM memory bits (that were loaded during the initial device startup) or the values from a previous write command (if that has happened).

Preliminary

Matrix Input Number Matrix Input Signal Function		Register Bit Addresses (d)
32	I ² C_virtual_0 Input	[608]
33	l ² C_virtual_1 Input	[609]
34	l ² C_virtual_2 Input	[610]
35	I ² C_virtual_3 Input	[611]
36	l ² C_virtual_4 Input	[612]
37	l ² C_virtual_5 Input	[613]
38	l ² C_virtual_6 Input	[614]
39	l ² C_virtual_7 Input	[615]

Table 35: Connection Matrix Virtual Inputs

10.4 CONNECTION MATRIX VIRTUAL OUTPUTS

The digital outputs of the various macrocells are routed to the Connection Matrix to enable interconnections to the inputs of other macrocells in the device. At the same time it is possible to read the state of each of the macrocell outputs as a register value via I^2C . This option, called Connection Matrix Virtual Outputs, allows the user to remotely read the values of each macrocell output. The I^2C addresses for reading these register values are registers [639:576]. Write commands to these same register values will be ignored (with the exception of the Virtual Input register bits at registers [615:608]).

D	а	ta	s	h	e	e	t
-	•		-		•	•	•

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

11 Combination Function Macrocells

The SLG47105 has 12 combination function macrocells that can serve more than one logic or timing function. In each case, they can serve as a Look Up Table (LUT), or as another logic or timing function. See the list below for the functions that can be implemented in these macrocells.

- Three macrocells that can serve as either 2-bit LUT or as D Flip-Flop
- Four macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset Input
- Two macrocells that can serve as either 3-bit LUTs, as D Flip-Flops with Set/Reset Input or as PWM Choppers
- One macrocell that can serve as either 3-bit LUT or as Pipe Delay/Ripple Counter
- One macrocell that can serve as either 2-bit LUT or as Programmable Pattern Generator (PGen)
- One macrocell that can serve as either 4-bit LUT or as D Flip-Flop with Set/Reset Input

Inputs/Outputs for the 12 combination function macrocells are configured from the connection matrix with specific logic functions being defined by the state of configuration bits.

When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).

11.1 2-BIT LUT OR D FLIP-FLOP MACROCELLS

There are three macrocells that can serve as either 2-bit LUT or as D Flip-Flop. When used to implement LUT functions, the 2bit LUT takes in two input signals from the connection matrix and produces a single output, which goes back into the connection matrix. When used to implement D Flip-Flop function, the two input signals from the connection matrix go to the data (D) and clock (CLK) inputs for the Flip-Flop, with the output going back to the connection matrix.

The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:

DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change

LATCH: when CLK is Low, then Q = D; otherwise Q remains its previous value (input D has no effect on the output, when CLK is

High).

Datasheet	Revision 2.0	9-Jun-2020

Figure 21: 2-bit LUT2 or DFF2

Datachoot	
ναιασπεει	

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

11.1.1 2-bit LUT or D Flip-Flop Macrocell Used as 2-bit LUT

Table 36: 2-bit LUT0 Truth Table

IN1	INO	OUT	
0	0	register [1248]	LSB
0	1	register [1249]	
1	0	register [1250]	
1	1	register [1251]	MSB

Table 37: 2-bit LUT1 Truth Table

IN1	INO	OUT	
0	0	register [1252]	LSB
0	1	register [1253]	
1	0	register [1254]	
1	1	register [1255]	MSB

Table 38: 2-bit LUT2 Truth Table

IN1	INO	OUT	
0	0	register [1256]	LSB
0	1	register [1257]	
1	0	register [1258]	
1	1	register [1259]	MSB

This macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:

2-bit LUT0 is defined by registers [1251:1248]

2-bit LUT1 is defined by registers [1255:1252]

2-bit LUT2 is defined by registers [1259:1256]

Table 39 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created within each of the 2-bit LUT logic cells.

Table 39: 2-bit LUT Standard Digital Functions

Function	MSB			LSB
AND-2	1	0	0	0
NAND-2	0	1	1	1
OR-2	1	1	1	0
NOR-2	0	0	0	1
XOR-2	0	1	1	0
XNOR-2	1	0	0	1

11.1.2 Initial Polarity Operations

11.2 2-BIT LUT OR PROGRAMMABLE PATTERN GENERATOR

The SLG47105 has one combination function macrocell that can serve as a logic or timing function. This macrocell can serve as a Look Up Table (LUT), or a Programmable Pattern Generator (PGen).

When used to implement LUT functions, the 2-bit LUT takes in two input signals from the connection matrix and produces a single output, which goes back into the connection matrix. When used as a LUT to implement combinatorial logic functions, the outputs of the LUT can be configured to any user-defined function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR). The user can also define the combinatorial relationship between inputs and outputs to be any selectable function.

It is possible to define the RST level for the PGen macrocell. There are both high-level reset (RST) and a low-level reset (nRST) options available, which are selected by register [1193]. When operating as a Programmable Pattern Generator, the output of the macrocell will clock out a sequence of two to sixteen bits that are user selectable in their bit values, and user selectable in the number of bits (up to sixteen) that are output before the pattern repeats.

	<u> </u>	
Datasheet	Revision 2.0	9-Jun-2020

Jat	asn	eet

11.2.1 2-bit LUT or PGen Macrocell Used as 2-bit LUT

Table 40: 2-bit LUT1 Truth Table

IN1	INO	OUT	
0	0	register [1168]	LSB
0	1	register [1169]	
1	0	register [1170]	
1	1	register [1171]	MSB

This macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:

2-bit LUT3 is defined by registers [1171:1168]

Table 41 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created within each of the 2-bit LUT logic cells.

Table 41: 2-bit LUT Standard Digital Functions

Function	MSB			LSB
AND-2	1	0	0	0
NAND-2	0	1	1	1
OR-2	1	1	1	0
NOR-2	0	0	0	1
XOR-2	0	1	1	0
XNOR-2	1	0	0	1

11.3 3-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELLS

There are four macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset inputs. When used to implement LUT functions, the 3-bit LUTs each takes in three input signals from the connection matrix and produces a single output, which goes back into the connection matrix. When used to implement D Flip-Flop function, the three input signals from the connection matrix go to the data (D) and clock (CLK), and Reset/Set (nRST/nSET) inputs for the Flip-Flop, with the output going back to the connection matrix. It is possible to define the active level for the reset/set input of DFF/LATCH macrocell. There are both active high level reset/set (RST/SET) and active low level reset/set (nRST/nSET) options available, which are selected by register [1226].

DFF3 functionality is different from the other DFFs. DFF3 operation will flow the functional description below:

- If register [1228] = 0, and the CLK is rising edge triggered, then Q = D, otherwise Q will not change.
- If register [1228] = 1, then data from D is written into the DFF by the rising edge on CLK and output to Q by the falling edge on CLK.

atasheet		
----------	--	--

D

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Figure 25: 3-bit LUT0 or DFF3

	-	4-	-	L	-	-	L .
	-	12	5	п	е	e	
-	-		-		-	-	

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

	_	•	_	h	_	_	4
υ	d	ld	S		e	е	ι

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Figure 28: 3-bit LUT5 or DFF8

	-	4	_		_	-		
		Ta	9	n	0	Δ	т.	
-	•	LC.	-		-	v	•	

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

11.3.1 3-bit LUT or D Flip-Flop Macrocells Used as 3-bit LUTs

Table 42: 3-bit LUT0 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1224]	LSB
0	0	1	register [1225]	
0	1	0	register [1226]	
0	1	1	register [1227]	
1	0	0	register [1228]	
1	0	1	register [1229]	
1	1	0	register [1230]	
1	1	1	register [1231]	MSB

Table 43: 3-bit LUT4 Truth Table

IN2	IN1	IN0		
0	0	0	register [1160]	LSB
0	0	1	register [1161]	
0	1	0	register [1162]	
0	1	1	register [1163]	
1	0	0	register [1164]	
1	0	1	register [1165]	
1	1	0	register [1166]	
1	1	1	register [1167]	MSB

Table 44: 3-bit LUT3 Truth Table

IN2	IN1	IN0	IN0 OUT				
0	0	0	register [1152]	LSB			
0	0	1	register [1153]				
0	1	0	0 register [1154]				
0	1	1	register [1155]				
1	0	0	register [1156]				
1	0	1	register [1157]				
1	1	0	register [1158]				
1	1	1	register [1159]	MSB			

Table 45: 3-bit LUT5 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1240]	LSB
0	0	1	register [1241]	
0	1	0	register [1242]	
0	1	1	register [1243]	
1	0	0	register [1244]	
1	0	1	register [1245]	
1	1	0	register [1246]	
1	1	1	register [1247]	MSB

Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:

3-bit LUT0 is defined by registers [1231:1224]
3-bit LUT3 is defined by registers [1159:1152]
3-bit LUT4 is defined by registers [1167:1160]
3-bit LUT5 is defined by registers [1247:1240]

Table 46 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created within each of the four 3-bit LUT logic cells.

Table	46:	3-bit	LUT	Standard	Digital	Functions
TUDIC	τυ.	0-010	-01	otuniaura	Digitai	i unctions

Function	MSB							LSB
AND-3	1	0	0	0	0	0	0	0
NAND-3	0	1	1	1	1	1	1	1
OR-3	1	1	1	1	1	1	1	0
NOR-3	0	0	0	0	0	0	0	1
XOR-3	1	0	0	1	0	1	1	0
XNOR-3	0	1	1	0	1	0	0	1

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

11.3.2 Initial Polarity Operations

-							
	а	ta	S	n	е	ρ	t.
-	~		-		-	-	•

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

_						
	+-	0	h	0	0	F.
Ua	La	-		е	e	ι.

11.4 3-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELL OR PWM CHOPPER

There are two macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset inputs, or as PWM Chopper. When used to implement LUT functions, the 3-bit LUTs each takes in three input signals from the connection matrix and produces a single output, which goes back into the connection matrix. When used to implement D Flip-Flop function, the three input signals from the connection matrix go to the data (D) and clock (CLK), and Reset/Set (nRST/nSET) inputs for the Flip-Flop, with the output going back to the connection matrix. It is possible to define the active level for the reset/set input of DFF/LATCH macrocell. There are both active high-level reset/set (RST/SET) and active low-level reset/set (nRST/nSET) options available, which are selected by register [1139] and register [1147]. When used to implement PWM Chopper function, the three input signals from the connection matrix go to the PWM input (PWM) and Blanking Time input (Blanking Time), and Chopper input (Chop) for the PWM Chopper, with the output (OUT) going back to the connection matrix..

Figure 31: 3-bit LUT1 or DFF4

Figure 32: 3-bit LUT2 or DFF5

Datasheet	Revision 2.0	9-Jun-2020

11.4.1 3-bit LUT or D Flip-Flop or PWM Chopper Macrocells Used as 3-bit LUTs

Table 47: 3-bit LUT1 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1136]	LSB
0	0	1	register [1137]	
0	1	0	register [1138]	
0	1	1	register [1139]	
1	0	0	register [1140]	
1	0	1	register [1141]	
1	1	0	register [1142]	
1	1	1	register [1143]	MSB

Table 48: 3-bit LUT2 Truth Table

IN2	IN1	IN0	IN0 OUT	
0	0	0	register [1144]	LSB
0	0	1	register [1145]	
0	1	0	register [1146]	
0	1	1	1 register [1147]	
1	0	0	register [1148]	
1	0	1	register [1149]	
1	1	0	register [1150]	
1	1	1	register [1151]	MSB

This macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:

3-bit LUT1 is defined by registers [1143:1136]

3-bit LUT2 is defined by registers [1151:1144]

Table 49 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created within each of the four 3-bit LUT logic cells.

Table 49: 3-bit LUT Standard Digital Functions

Function	MSB							LSB
AND-3	1	0	0	0	0	0	0	0
NAND-3	0	1	1	1	1	1	1	1
OR-3	1	1	1	1	1	1	1	0
NOR-3	0	0	0	0	0	0	0	1
XOR-3	1	0	0	1	0	1	1	0
XNOR-3	0	1	1	0	1	0	0	1

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

11.4.2 PWM chopper

PWM Chopper function can be used to chop PWM Duty Cycle by Current Comparator signal.

Figure 33: PWM Chopper Circuit Example

In PWM Chopper mode all internal components of 3-bit LUT or D Flip-Flop, or PWM Chopper Macrocell are connected as shown in Figure 34.

Figure 34: PWM Chopper Interconnection

This configuration allows ignoring Current Comparator signal during Blanking time during the motor start period. Any active signal from Current CMP after Blanking time causes PWM Duty Cycle chopping to currently Period end. The following figures demonstrate PWM Chopper operation.

Datasheet	Revision 2.0	9-Jun-2020
CFR0011-120-00	77 of 223	© 2020 Dialog Semiconductor

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Figure 35: PWM Chopper. Overcurrent Timing Diagram

Figure 37: PWM Chopper. PWM Duty Cycle is Less than Blanking Time

n:	at	20	٠h	0	21	
		ac			-	

....ь

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

Figure 38: PWM Chopper. 0% Duty Cycle

Figure 39: PWM Chopper. Overcurrent when 100 % Duty Cycle

_				
na	ta	cł	າດ	ot.
Da	LCI	31	10	Cι

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

11.4.3 Initial Polarity Operations

	2	ta	•	h	^	^	4
-	α	ια	3		C	C	L

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

_						
	+-	0	h	0	0	F.
Ua	La	-		е	e	ι.

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

11.5 3-BIT LUT OR PIPE DELAY/RIPPLE COUNTER MACROCELL

There is one macrocell that can serve as either a 3-bit LUT or as a Pipe Delay/Ripple Counter.

When used to implement LUT functions, the 3-bit LUT takes in three input signals from the connection matrix and produces a single output, which goes back into the connection matrix.

When used as a Pipe Delay, there are three inputs signals from the matrix, Input (IN), Clock (CLK), and Reset (nRST). The Pipe Delay cell is built from 16 D Flip-Flop logic cells that provide the three delay options, two of which are user selectable. The DFF cells are tied in series where the output (Q) of each delay cell goes to the next DFF cell input (IN). Both of the two outputs (OUT0 and OUT1) provide user selectable options for 1 - 16 stages of delay. There are delay output points for each set of the OUT0 and OUT1 outputs to a 4-input mux that is controlled by registers [1203:1200] for OUT0 and registers [1207:1204] for OUT1. The 4-input mux is used to control the selection of the amount of delay.

The overall time of the delay is based on the clock used in the SLG47105 design. Each DFF cell has a time delay of the inverse of the clock time (either external clock or the internal Oscillator within the SLG47105). The sum of the number of DFF cells used will be the total time delay of the Pipe Delay logic cell. OUT1 Output can be inverted (as selected by register [1197]).

In the Ripple Counter mode, there are 3 options for setting which use 7 bits. There are 3 bits to set nSET value (SV) in the range from 0 to 7. This value will be set into the Ripple Counter outputs when nSET input goes LOW. End value (EV) will use 3 bits for setting output code, which will be last code in the cycle. After reaching the EV, the Ripple Counter goes to the first code by the rising edge on CLK input. The Functionality mode option uses 1 bit. This setting defines how exactly Ripple Counter will operate.

The user can select one of the functionality modes by the register: RANGE or FULL. If the RANGE option is selected, the count starts from SV. If UP input is LOW the count goes down: $SV \rightarrow EV \rightarrow EV-1$ to $SV+1 \rightarrow SV$, and others (if SV is smaller than EV), or $SV \rightarrow SV-1$ to $EV+1 \rightarrow EV \rightarrow SV$ (if SV is bigger than EV). If UP input is HIGH, the count starts from SV up to EV, and others.

In the FULL range configuration, the Ripple Counter functions as follows. If UP input is LOW, the count starts from SV and goes down to 0. The current counter value jumps to EV and goes down to 0, and others.

If UP input is HIGH, the count goes up starting from SV. The current counter value jumps to 0 and counts up to EV, and others. See Ripple Counter functionality example in Figure 43.

Every step is executed by the rising edge on CLK input.

	-	4-	-	L	-	-	4
	-	12	5	п	е	е	
_	-		-		-	-	•

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Figure 42: 3-bit LUT6/Pipe Delay/Ripple Counter

D	а	ta	s	h	e	et	
-	a	LC	•		C	C I	

LOW

SV<EV

SV>EV

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

(5)

start counter value set by LOW on nSET input of ripple Counter cell

END ripple Counter value, after wich CNT start again

ripple Counter value, out of the used range

(

- any ripple Counter value in used range

5

Figure 43: Example of Ripple Counter Functionality

Datasheet	Revision 2.0	
	<u> </u>	

- direction of crossvalue transition

- direction of crossvalue transition, first after nSET

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

11.5.1 3-bit LUT or Pipe Delay Macrocells Used as 3-bit LUT

IN2	IN1	IN0	OUT	
0	0	0	register [1200]	LSB
0	0	1	register [1201]	
0	1	0	register [1202]	
0	1	1	register [1203]	
1	0	0	register [1204]	
1	0	1	register [1205]	
1	1	0	register [1206]	
1	1	1	register [1207]	MSB

Table 50: 3-bit LUT6 Truth Table

Macrocell, when programmed for a LUT function, uses an 8-bit register to define their output function:

3-bit LUT6 is defined by registers [1207:1200]

11.6 4-BIT LUT OR D FLIP-FLOP MACROCELL

There is one macrocell that can serve as either 4-bit LUT or as D Flip-Flop. When used to implement LUT functions, the 4-bit LUT takes in two input signals from the connection matrix and produces a single output, which goes back into the connection matrix. When used to implement D Flip-Flop function, the two input signals from the connection matrix go to the data (D) and clock (CLK) inputs for the Flip-Flop, with the output going back to the connection matrix.

The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:

DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change.

LATCH: when CLK is Low, then Q = D; otherwise Q remains its previous value (input D has no effect on the output when CLK is High).

Preliminary

Figure 44: 4-bit LUT0 or DFF9

	-	40	-	h	~	~	4
	а	Ld	S	п	е	е	L
-	-		-		-	-	-

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

11.6.1 4-bit LUT Macrocell Used as 4-bit LUT

Table 51: 4-bit LUT0 Truth Table

IN3	IN2	IN1	IN0	OUT	
0	0	0	0	register [1208]	LSB
0	0	0	1	register [1209]	
0	0	1	0	register [1210]	
0	0	1	1	register [1211]	
0	1	0	0	register [1212]	
0	1	0	1	register [1213]	
0	1	1	0	register [1214]	
0	1	1	1	register [1215]	
1	0	0	0	register [1216]	
1	0	0	1	register [1217]	
1	0	1	0	register [1218]	
1	0	1	1	register [1219]	
1	1	0	0	register [1220]	
1	1	0	1	register [1221]	
1	1	1	0	register [1222]	
1	1	1	1	register [1223]	MSB

This macrocell, when programmed for a LUT function, uses a 16-bit register to define their output function: 4-bit LUT1 is defined by registers [1223:1208]

Function	MSB															LSB
AND-4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NAND-4	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
OR-4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
NOR-4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
XOR-4	0	1	1	0	1	0	0	1	1	0	0	1	0	1	1	0
XNOR-4	1	0	0	1	0	1	1	0	0	1	1	0	1	0	0	1

Table 52: 4-bit LUT Standard Digital Functions

12 Multi-Function Macrocells

The SLG47105 has 5 Multi-Function macrocells that can serve as more than one logic or timing function. In each case, they can serve as a LUT, DFF with flexible settings, or as CNT/DLY with multiple modes such as One Shot, Frequency Detect, Edge Detect, and others. Also, the macrocell is capable to combine those functions: LUT/DFF connected to CNT/DLY or CNT/DLY connected to LUT/DFF, see Figure 45.

See the list below for the functions that can be implemented in these macrocells:

- Four macrocells that can serve as 3-bit LUTs/D Flip-Flops and as 8-bit Counter/Delays
- One macrocell that can serve as a 4-bit LUT/D Flip-Flop and as 16-bit Counter/Delay/FSM

Figure 45: Possible Connections Inside Multi-Function Macrocell

Inputs/Outputs for the 5 Multi-Function macrocells are configured from the connection matrix with specific logic functions being defined by the state of NVM bits.

When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).

n	-	ta	~	h	~	~	4	
	α	ια	9		C	C	L	

12.1 3-BIT LUT OR DFF/LATCH WITH 8-BIT COUNTER/DELAY MACROCELLS

There are four macrocells that can serve as 3-bit LUTs/D Flip-Flops and as 8-bit Counter/Delays.

When used to implement LUT functions, the 3-bit LUTs each takes in three input signals from the connection matrix and produces a single output, which goes back into the connection matrix or can be connected to CNT/DLY's input.

When used to implement D Flip-Flop function, the three input signals from the connection matrix go to the data (D), clock (CLK), and Reset/Set (nRST/nSET) inputs of the Flip-Flop, with the output going back to the connection matrix or to the CNT/DLY's input.

When used to implement Counter/Delays, each macrocell has a dedicated matrix input connection. For flexibility, each of these macrocells has a large selection of internal and external clock sources, as well as the option to chain from the output of the previous (N-1) CNT/DLY macrocell, to implement longer count/delay circuits. These macrocells can also operate in a One-Shot mode, which will generate an output pulse of user-defined width. They can also operate in a Frequency Detection or Edge Detection mode.

Counter/Delay macrocell has an initial value, which defines its initial value after GPAK is powered up. It is possible to select initial Low or initial High, as well as the initial value defined by a Delay In signal.

For example, in case the initial LOW option is used, the rising edge delay will start operation.

For timing diagrams refer to Section 12.3.

Only CNT0 and CNT4 active count value can be read via I²C. However, it is possible to change the counter value for any macrocell using I²C write commands. In this mode, it is possible to load count data immediately (plus two clock cycles) or after counter ends counting. See Section 21.5.4 for further details.

Note: After two DFF – counters initialize with counter data = 0 after POR. Initial state = 1 – counters initialize with counter data = 0 after POR. Initial state = 0 And After two DFF is bypass – counters initialize with counter data after POR.

_							
	-	4-	-	b	-	-	4
		12	5	r 1	н	е	
_	-		-		~	~	•

Preliminary

12.1.1 3-bit LUT or 8-bit CNT/DLY Block Diagrams

Figure 46: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT7/DFF10, CNT/DLY1)

_							
D	a	ta	S	h	e	e	t.
_	-		-		-	-	•

Figure 47: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT8/DFF11, CNT/DLY2)

	4-	_		_	_	4
Da	ta	S	Π	e	e	τ

Figure 48: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT9/DFF12, CNT/DLY3)

D	а	ta	S	h	e	ρ	t	
-	a	ια	3		C	C	L	

Figure 49: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT10/DFF13, CNT/DLY4)

There is a possibility to use LUT/DFF and CNT/DLY simultaneously.

Note: It is not possible to use LUT and DFF at once, one of these macrocells must be selected.

- Case 1. LUT/DFF in front of CNT/DLY. Three input signals from the connection matrix go to previously selected LUT or DFF's inputs and produce a single output which goes to a CND/DLY input. In its turn Counter/Delay's output goes back to the matrix.
- Case 2. CNT/DLY in front of LUT/DFF. Two input signals from the connection matrix go to CND/DLY's inputs (IN and CLK). Its output signal can be connected to any input of previously selected LUT or DFF, after which the signal goes back to the matrix.
- Case 3. Single LUT/DFF or CNT/DLY. Also, it is possible to use a standalone LUT/DFF or CNT/DLY. In this case, all inputs and output of the macrocell are connected to the matrix.

Datasheet	Revision 2.0	9-Jun-2020
CFR0011-120-00	93 of 223	© 2020 Dialog Semiconductor

12.1.2 3-bit LUT or CNT/DLYs Used as 3-bit LUTs

Table 53: 3-bit LUT7 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1032]	LSB
0	0	1	register [1033]	
0	1	0	register [1034]	
0	1	1	register [1035]	
1	0	0	register [1036]	
1	0	1	register [1037]	
1	1	0	register [1038]	
1	1	1	register [1039]	MSB

Table 54: 3-bit LUT9 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1064]	LSB
0	0	1	register [1065]	
0	1	0	register [1066]	
0	1	1	register [1067]	
1	0	0	register [1068]	
1	0	1	register [1069]	
1	1	0	register [1070]	
1	1	1	register [1071]	MSB

Table 55: 3-bit LUT8 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1048]	LSB
0	0	1	register [1049]	
0	1	0	register [1050]	
0	1	1	register [1051]	
1	0	0	register [1052]	
1	0	1	register [1053]	
1	1	0	register [1054]	
1	1	1	register [1055]	MSB

Preliminary

Table 56: 3-bit LUT10 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1080]	LSB
0	0	1	register [1081]	
0	1	0	register [1082]	
0	1	1	register [1083]	
1	0	0	register [1084]	
1	0	1	register [1085]	
1	1	0	register [1086]	
1	1	1	register [1087]	MSB

Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:

3-bit LUT7 is defined by registers [1039:1032]

3-bit LUT8 is defined by registers [1055:1048]

3-bit LUT9 is defined by registers [1071:1064]

3-bit LUT10 is defined by registers [1087:1080]

12.2 4-BIT LUT OR DFF/LATCH WITH 16-BIT COUNTER/DELAY MACROCELL

There is one macrocell that can serve as either 4-bit LUT or as 16-bit Counter/Delay. When used to implement LUT function, the 4-bit LUT takes in four input signals from the Connection Matrix and produces a single output, which goes back into the Connection Matrix. When used to implement 16-bit Counter/Delay function, two of four input signals from the connection matrix go to the external clock (EXT_CLK) and reset (DLY_IN/CNT Reset) for the Counter/Delay, with the output going back to the connection matrix.

This macrocell has an optional Finite State Machine (FSM) function. There are two additional matrix inputs for Up and Keep to support FSM functionality.

This macrocell can also operate in a one-shot mode, which will generate an output pulse of user-defined width.

This macrocell can also operate in a frequency detection or edge detection mode.

This macrocell can have its active count value read via I^2C . See Section 21.5.4 for further details.

Note: After two DFF – counters initialize with counter data = 0 after POR. Initial state = 1 – counters initialize with counter data = 0 after POR. Initial state = 0 And After two DFF is bypass – counters initialize with counter data after POR.

Preliminary

SLG47105

Figure 50: 16-bit Multi-Function Macrocell Block Diagram (4-bit LUT1/DFF14, CNT/DLY/FSM0)

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

12.2.2 4-bit LUT or 16-bit Counter/Delay Macrocells Used as 4-bit LUTs

Table 57: 4-bit LUT1 Truth Table

IN3	IN2	IN1	IN0	OUT	
0	0	0	0	register [1000]	LSB
0	0	0	1	register [1001]	
0	0	1	0	register [1002]	
0	0	1	1	register [1003]	
0	1	0	0	register [1004]	
0	1	0	1	register [1005]	
0	1	1	0	register [1006]	
0	1	1	1	register [1007]	
1	0	0	0	register [1008]	
1	0	0	1	register [1009]	
1	0	1	0	register [1010]	
1	0	1	1	register [1011]	
1	1	0	0	register [1012]	
1	1	0	1	register [1013]	
1	1	1	0	register [1014]	
1	1	1	1	register [1015]	MSB

This macrocell, when programmed for a LUT function, uses a 16-bit register to define their output function:

4-bit LUT1 is defined by registers [1015:1000]

Function	MSB															LSB
AND-4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NAND-4	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
OR-4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
NOR-4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
XOR-4	0	1	1	0	1	0	0	1	1	1	0	0	1	1	1	0
XNOR-4	1	0	0	1	0	1	1	0	0	0	1	1	0	0	0	1

Table 58: 4-bit LUT Standard Digital Functions

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

12.3 CNT/DLY/FSM TIMING DIAGRAMS

12.3.1 Delay Mode CNT/DLY0 to CNT/DLY4

Figure 51: Delay Mode Timing Diagram, Edge Select: Both, Counter Data: 3

ata	cł	100	h t
ata	51	164	3ι

The macrocell shifts the respective edge to a set time and restarts by appropriate edge. It works as a filter if the input signal is shorter than the delay time.

Figure 52: Delay Mode Timing Diagram for Different Edge Select Modes

12.3.2 Count Mode (Count Data: 3), Counter Reset (Rising Edge Detect) CNT/DLY0 to CNT/DLY4

Datasheet	Revision 2.0

Note 1 This mode may cause counter data to be loaded wrong, if reset releases at the same time when the clock appears. As a solution please use the mode with two DFFs synced up.

12.3.3 One-shot Mode CNT/DLY0 to CNT/DLY4

This macrocell will generate a pulse whenever a selected edge is detected on its input. Register bits set the edge selection. The pulse width is determined by counter data and clock selection properties.

The output pulse polarity (non-inverted or inverted) is selected by register bit. Any incoming edges will be ignored during the pulse width generation. The following diagram shows one-shot function for non-inverted output.

Da	ta	s	h	e	el	ŧ.
_				-	-	

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

This macrocell generates a high level pulse with a set width (defined by counter data) when detecting the respective edge. It does not restart while pulse is high.

12.3.4 Frequency Detection Mode CNT/DLY0 to CNT/DLY4

Rising Edge: The output goes high if the time between two successive edges is less than the delay. The output goes low if the second rising edge has not come after the last rising edge in specified time.

Falling Edge: The output goes high if the time between two falling edges is less than the set time. The output goes low if the second falling edge has not come after the last falling edge in specified time.

Both Edge: The output goes high if the time between the rising and falling edges is less than the set time, which is equivalent to the length of the pulse. The output goes low if after the last rising/falling edge and specified time, the second edge has not come.

Datasheet	Revision 2.0	9-Jun-2020
CFR0011-120-00	101 of 223	© 2020 Dialog Semiconductor

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Figure 56: Frequency Detection Mode Timing Diagram

	-	4-	-		-	-	4
IJ	а	та	s	п	e	e	Г.
_	-		-		-	-	•

12.3.5 Edge Detection Mode CNT/DLY1 to CNT/DLY4

The macrocell generates high level short pulse when detecting the respective edge.

Figure 57: Edge Detection Mode Timing Diagram

	-	4-	-		-	-4	
		та	S	п	е	ет	
-	•		-		-	υı	

12.3.6 Delayed Edge Detection Mode CNT/DLY0 to CNT/DLY4

In Delayed Edge Detection Mode, High level short pulses are generated on the macrocell output after the configured delay time, if the corresponding edge was detected on the input.

If the input signal is changed during the set delay time, the pulse will not be generated. See Figure 58.

Figure 58: Delayed Edge Detection Mode Timing Diagram

12.3.7 CNT/FSM Mode CNT/DLY0

Figure 59: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3

Figure 60: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Figure 61: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3

Figure 62: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator Is Forced On, UP = 1) for Counter Data = 3

12.3.8 The Difference in Counter Value for Counter, Delay, One-Shot, and Frequency Detect Modes

There is a difference in counter value for Counter and Delay/One-Shot/Frequency Detect modes. Compared to Counter mode, in Delay/One-Shot/Frequency Detect modes the counter value is shifted for two rising edges of the clock signal.

Figure 63: Counter Value, Counter Data = 3

12.4 WAKE AND SLEEP CONTROLLER

SLG47105 has a Wake and Sleep function for two General Purpose ACMPs. The macrocell CNT/DLY0 can be reconfigured for this purpose by setting register [918] = 1 and registers [904:903] = 11. The WS serves for power saving, it allows to switch on and off selected General Purpose ACMPs on a selected bit of 16-bit counter.

Datasheet	Revision 2.0	9-Jun-2020	
CFR0011-120-00	107 of 223	© 2020 Dialog Semiconductor	

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Note 1 BG/Analog_Good time is long and should be considered in the wake and sleep timing in case it dynamically powers on/off. **Note 2** Wake time should be long enough to make sure ACMP and Vref have enough time to get a sample before going to sleep.

Figure 64: Wake/Sleep Controller

_							2	
D	a	ta	S	h	e	e	t.	
_	-		-		-	-	-	

Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.

Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.

Figure 66: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Reset is Used

	2	ta	c	h	0	0	ŧ.
-	C.	LCI	9		C	C	L

Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.

Figure 68: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Set is Used

Note: If low power BG is powered on/off by WS, the wake time should be longer than 2.1 ms. The BG/analog startup time will take maximal 2 ms. Therefore, 8 periods of the Oscillator0 is recommended for the wake time, when BG is configured to Auto Power mode. If low power BG is always on, Oscillator0 period is longer than required wake time. The short wake mode can be used to reduce the current consumption. The short wake mode is edge triggered when the wake signal is latched by a rising edge

Datashoot	
Datasheet	

Revision 2.0

and released the Power-On signal after the ACMP output data is latched. This allows to have a valid ACMP data for any type of wake signal and have the optimized current consumption.

To use any ACMP under WS controller, the following settings must be done:

- ACMP Power Up Input from matrix = 1 (for each ACMP separately);
- CNT/DLY0 must be set to Wake and Sleep Controller function (for all ACMP);
- Register WS \rightarrow enable (for each ACMP separately);
- CNT/DLY0 set/reset input = 0 (for all ACMP).

As the OSC, any oscillator with any pre-divider can be used. The user can select a period of time while the ACMP is sleeping in a range of 1 - 65535 clock cycles. Before they are sent to sleep their outputs are latched, so the ACMPs remain their state (High or Low) while sleeping.

WS controller has the following settings:

Wake and Sleep Output State (High/Low)

If OSC is powered off (Power-down option is selected; Power-down input = 1) and Wake and Sleep Output State = High, the ACMP is continuously on.

If OSC is powered off (Power-down option is selected; Power-down input = 1) and Wake and Sleep Output State = Low, the ACMP is continuously off.

Both cases WS function is turned off.

- Counter Data (Range: 1 65535) The User can select wake and sleep ratio of the ACMP; counter data = sleep time, one clock = wake time.
- Q mode defines the state of WS counter data when Set/Reset signal appears Reset when active signal appears, the WS counter will reset to zero and High level signal on its output will turn on the ACMPs. When Reset signal goes out, the WS counter will go Low and turn off the ACMP until the counter counts up to the end. Set when active signal appears, the WS counter will stop and Low level signal on its output will turn off the ACMP. When Set signal goes out, the WS counter will go on counting and High level signal will turn on the ACMP while counter is counting up to the end.

Note: The OSC0 matrix power down to control ACMP WS is not supported for short wait time option.

Edge Select defines the edge for Q mode

High level Set/Reset - switches mode Set/Reset when level is High **Note:** Q mode operates only in case of "High Level Set/Reset".

Wake time selection - time required for wake signal to turn the ACMPxH on

Normal Wake Time - when WS signal is High, it takes BG/analog start up time to turn the ACMPs on. They will stay on until WS signal is Low again. Wake time is one clock period. It should be longer than BG turn on time and minimal required comparing time of the ACMP.

Short Wake Time - when WS signal is High, it takes BG/analog start up time to turn the ACMPs on. They will stay on for 1 µs and turn off regardless of WS signal. The WS signal width does not matter.

- Keep pauses counting while Keep = 1
- Up reverses counting

If Up = 1, CNT is counting up from user selected value to 65535.

If Up = 0, CNT is counting down from user selected value to 1.

a 1	2	ch	0	n1	÷ .
α	а;	511		-	

Preliminary

13 Pulse Width Modulator Macrocell (PWM)

The SLG47105 has two PWM blocks. Inputs/Outputs for the macrocells are configured from the connection matrix with specific logic functions being defined by the state of NVM bits.

PWM macrocell features:

- 8-bit (7-bit) PWM Resolution
- I²C/Matrix/Auto dynamically changeable Duty Cycle
- Changeable Period by changing PWM clock source
- Flexible OSC-integrated divider for PWM period selection
- I²C Duty cycle read/write
- Synchronous change of all PWM blocks by sequential I²C write command
- Configurable dead band option for OUT+ and OUT-
- 16 Preset Duty Cycle Registers Switching Mode (for PWM sine or other waveforms)
- Autostop at 0 % and 100 % of PWM duty cycle value
- Synchro OFF Mode (wait for PWM period end before stop block)
- Inv/non-Inv macrocell Output options
- From 0 %, 0.4 % to 99.6 %,100 % Duty cycle for 8-bit resolution.

13.1 8-BIT/7-BIT PWM RESOLUTION

When configured as PWM, this macrocell has an 8-bit resolution. It is also possible to select 7-bit PWM resolution if the higher PWM frequency is needed.

The PWM block consists of two 8-bit counters. First one, named PWM Period CNT, is used to create PWM period and the second one, named PWM Duty Cycle CNT, is used to set PWM Duty Cycle and to make dynamic changes in PWM functionality.

There is an ability to change the Duty Cycle from 0 % to 100 %. The PWM duty cycle step is 0.4 % for 8-bit resolution and 0.8 % for 7-bit resolution mode. This step is constant in the whole range. Both 0 % and 100 % are included.

13.2 PWM INPUTS

- Duty Cycle CNT Up/Down is the signal for defining the direction of duty cycle change.
- If Duty Cycle CNT Up/Down = 1, the duty cycle increases from current value up to 255.
- If Duty Cycle CNT Up/Down = 0, the duty cycle decreases from current value down to 0.
- Duty Cycle CNT Keep/Stop.
 - When Keep function is selected (register [1461] = 0 for PWM0 and register [1479] = 0 for PWM1) HIGH logic level on this input disables the change of Duty Cycle CNT (clock for Duty Cycle CNT is blocked). However, PWM block still generates PWM output with a constant duty cycle.
 - When Stop function is selected (register [1461] = 1 for PWM0 and register [1479] = 1 for PWM1) HIGH logic level on this input disables the change of both Duty Cycle CNT and PWM Period CNT. Consequently, if Stop signal is active (logic HIGH) the output of PWM block remains constant.

Note that if no other macrocells except PWM block use the internal OSC, the logic HIGH on Stop input disables the work of internal OSC that is used as a clock source for PWM Period CNT. For this case, logic LOW on this input enables OSC again.

- Duty Cycle CNT CLK is the clock signal for incrementing/decrementing duty cycle value. Keep in mind that the actual duty cycle value will be updated during the next PWM period.
- Power-down (PD) is an active high-level signal for updating Duty Cycle to default user-defined value. Keep in mind, that user can change the default Duty Cycle value via I²C. The PD signal will apply right away when Sync Off (register [1301] = 1 for PWM0 and register [1475] = 1 for PWM1) and after PWM period is completed when Sync On (register [1301] = 0 for PWM0 and register [1475] = 0 for PWM1, (Note)). HIGH logic level on PD input disables the change of all PWM internal counters and stops the internal oscillator (if internal OSC isn't used by other macrocells) (see Section 13.10 Sync On/Off setting for Power-down signal). This function is individual for each PWM block.

Note that for async mode a minimal time duration for HIGH level at PD input is 100 ns, which guarantee PWM response. A pulse shorter than 100 ns might be ignored. An input pulse will be extended internally to this minimal required time to power down the PWM block.

Ext PWM Period CNT CLK is clock input for PWM Period CNT. The clock at this input defines PWM signal frequency. PWM Period CNT CLK comes from the internal predefined clock or from the matrix for the high flexibility of PWM frequency.
Note: First DWM period will be 2.2 clocks length of the predefined clock or from the matrix for the high flexibility of PWM frequency.

Note: First PWM period will be 2-3 clocks longer after PD signal is released.

13.3 PWM OUTPUTS

- OUT+: PWM positive output
- OUT- : PWM negative output

Datasheet

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

PWM_PERIOD: PWM start period pulse (the duration of the high level is equal to one period of the PERIOD CNT CLK)

13.4 I²C/MATRIX/AUTO DYNAMICALLY CHANGEABLE DUTY CYCLE AND PERIOD

Duty Cycle in PWM macrocell can be changed in two ways:

1. PWM Duty Cycle CNT block has two parameters: Counter Data and Current Counter Value. The Current Counter Value defines PWM Duty Cycle. Counter Data of PWM Duty Cycle CNT can be changed by I²C commands with a reload into Current Counter Value. In this case, I²C Master can change PWM Duty Cycle by I²C. Therefore, Counter Data of PWM Duty Cycle CNT must support change via I²C.

2. Matrix changeable Duty Cycle. In this case "Duty Cycle CNT CLK" and "Duty Cycle CNT Up/Down" inputs are used. Rising edge at "Duty Cycle CNT CLK" changes Current Counter Value corresponding to "Duty Cycle CNT Up/Down" input state: if "Duty Cycle CNT Up/Down" is LOW then Current Counter Value decreases and vice versa.

PWM period (frequency) can be changed only by changing PWM Period CNT Clock source. There are several different clock options available for user selection. Therefore, for PWM frequency flexibility an OSC-integrated CNT divider can be used.

13.5 I²C PWM DUTY CYCLE READ/WRITE

The master I^2C should be able to reliably read and write duty cycle value into PWM block. Synchro Buffer is used for correct I^2C reading of actual PWM duty cycle. The I^2C command has some time duration. Synchro Buffer captures actual PWM duty cycle for read command and I^2C Master can read this data without errors.

The I^2C Master can change PWM duty cycle via I^2C write command. The newly written PWM duty cycle value will be loaded (but not applied) to the PWM block as the default value. The load will happen when I^2C "stop" command is issued. To apply a default value to PWM block user must set the " I^2C Trigger" bit to 1 via I^2C interface. Note, that this value will be applied after the current PWM period.

If the user wants to change both PWM blocks simultaneously, I²C sequential write command must be used.

Note: Avoid the change of PD signal during I²C read, since it causes the buffer value to update.

13.6 FLEXIBLE OSC-INTEGRATED DIVIDER

The OSC-integrated divider is built into 25 MHz OSC to configure the PWM period. This divider can be used for other chip resources. There is 8-bit Counter with the source from OSC pre-divider and output to the matrix or directly to CNT/DLY block as one possible selection. In many cases, for all PWM macrocells, the same clock frequency is used. It is possible to use this Flexible OSC divider for fine frequency tuning of PWM cells.

The counter in flexible divider can be enabled/disabled by the register bit [741] only. When the counter in flexible divider is enabled it will start to count down from the counter data till 0. That is why the frequency division is counter data + 1. Minimum frequency after Flexible OSC-integrated Divider is at least twice smaller than input Flexible OSC-integrated Divider frequency. Counter won't count with 0b0000000 counter data. There is a separate register bit selection to enable the flexible divider output to the connection matrix.

Counter flexible divider resets with POR or RESET signal.

13.7 INVERTED OUTPUT OPTION

By default, PWM output begins from HIGH logic level and after reaching duty cycle value, output changes to LOW logic level. Optionally the user can invert outputs of PWM block.

Each PWM macrocell Outputs has an inverter option enabled by registers. It is necessary for simple driving of different LED types (common Anode/common Cathode), and others. Each OUT+ and OUT- outputs has one separate register to select its inverted/non-inverted output option.

13.8 CHANGEABLE DEAD BAND OPTION FOR OUT+ AND OUT-

Dead band parameter is needed to drive external power FETs. The dead band helps to avoid short through for high power FETs. Dead band parameter is configurable for driving different external transistor. It is possible to select no dead band time or dead band equal to one, two or three PWM Period clock cycles.

Figure 69: PWM Output Waveforms and Test Circuit Example for Driving NMOS FETs

Figure 70: PWM Output Waveforms and Test Circuit Example for Driving NMOS and PMOS FETs

Note that external FETs must have Pull-up/Pull-down resistors between Gate and Source terminals to avoid unpredictable behavior of FETs when output pins of SLG47105 are in Hi-Z state (Sleep Mode).

The waveforms for Phase Correct PWM Mode are shown in Figure 71. Note that in Phase Correct PWM mode dead band delay is applied after phase correction, Figure 77.

Datasheet	Revision 2.0	9-Jun-2020
CFR0011-120-00	114 of 223	© 2020 Dialog Semiconductor

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Figure 71: PWM Output Waveforms for Phase Correct PWM Mode

13.9 INITIAL PWM VALUE

Initial PWM duty cycle value is selected by Counter Data of PWM Duty Cycle CNT for regular mode. If Preset Registers Mode is selected, the initial value of PWM Duty Cycle CNT (Counter Data) is the preset registers address. Please refer to Section 13.11.

13.10 SYNC ON/OFF SETTING FOR POWER-DOWN SIGNAL

"SYNC On/Off" registers define the behavior of Power-down signal. This is the individual setting for each PWM macrocell. If this option is disabled (register [1301] for PWM0 = 1 and register [1475] = 1 for PWM0), the PWM output goes low right away by active Power-down, Figure 72. If this option is enabled (register [1301] for PWM0 = 0 and register [1475] = 0 for PWM0), the PWM block will finish the current PWM period and then will go low, Figure 75.

SYNC On/Off has no effect on duty cycle change via I²C. In the case of duty cycle change via I²C interface, new duty cycle value will be applied to PWM macrocell only after finishing the current PWM period.

	+	h	> at
Da	la	SHE	et

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

In Figure 72 to Figure 75:

- dT = 2-3 CLK and it is the additional number of clock pulses, that make first PWM period longer, after releasing PD signal;
- DB user selected Dead Band time between OUT+ and OUT- ;
- T* means the short period of x % duty cycle (T* < 255 PERIOD_CNT_CLK), that is finished at the moment of PD signal coming.

_	-	 	 -	-	-		

Datasheet

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

13.11 REGULAR/PRESET REGISTERS MODE

In Regular Mode the value of duty cycle is changed every rising edge on Duty Cycle CNT CLK input. In Preset Registers Mode the duty cycle is changed according to 16 predefined values, named Reg File, every rising edge on Duty Cycle CNT CLK input.

Selectable Preset registers are reserved to determine 16 different PWM Duty Cycle values. In Preset Registers mode the "Up/ Down" input and "Duty Cycle CNT CLK input" change the address of Preset Register, that will be applied to PWM block at the rising edge on "Duty Cycle CNT CLK input".

Datasheet	Revision 2.0	9-Jun-2020
CFR0011-120-00	119 of 223	© 2020 Dialog Semiconductor

Preliminary

One 16-byte Preset Register is shared between two PWM macrocells.

Each PWM block can select Reg File as Duty Cycle source. When the Reg File is selected as a source, there are three options: use all 16 bytes, use less significant 8 bytes, or use most significant 8 bytes. In this case, 4-bits (when using 16-Bytes Reg File) or 3-bits (when using any of 8 bytes Reg File) LSB Current Value of PWM Duty Cycle CNT is used to select data address inside the Reg File. The counter data of the Duty Cycle CNT will define the initial starting point in the Reg file. So, each PWM block has its own initial position in the Reg File.

Table 59: Regular/Preset Mode Registers

Register Name	Mode of Operation	Register Definition	
	Regular Mode	00: from PWM Duty Cycle CNT	
DWM/W Duty Cycle source		01: 8-byte MSB of RegFile	
	Preset Registers Mode	10: 8-byte LSB of RegFile	
		11: 16-byte RegFile	

For more detailed description see Table 61 and Table 62.

13.12 PWM CONTINUOUS/AUTOSTOP MODE

"Continuous/Autostop mode" register enables Autostop mode. This mode can be used with both Preset Registers or Regular Mode.

If PWM block works in Continuous Mode (register [1302] = 0 for PWM0 or register [1476] = 0 for PWM1), PWM Duty Cycle CNT will overflow when it reaches boundaries. For example, for PWM Duty Cycle Counter counts up: $254^{th} \rightarrow 255^{th} \rightarrow 0^{th} \rightarrow 1^{st}$, and for PWM Duty Cycle Counter counts down: $1^{st} \rightarrow 0^{th} \rightarrow 255^{th} \rightarrow 254^{th} \dots$

Or in Preset Registers Mode, when Continuous Mode is selected (register [1302] = 0 for PWM0 or register [1476] = 0 for PWM1): counting up $14^{th} \rightarrow 15^{th} \rightarrow 0^{th} \rightarrow 1^{st}$, and counting down $1^{st} \rightarrow 0^{th} \rightarrow 15^{th} \rightarrow 14^{th}$...

If Autostop mode is active (register [1302] = 1 for PWM0 or register [1476] = 1 for PWM1), PWM duty cycle counter will stop when it reaches boundaries. The conditions of Autostop are the next:

- PWM Duty Cycle reaches the value 0 in Regular Mode or Least Significant Byte of Preset registers in Preset Registers Mode, and Up/Down is LOW logic level (counting Down).
- PWM Duty Cycle reaches the value 255 (127 in 7-bit submode) in Regular Mode or Most Significant Byte of Preset registers in Preset Registers Mode and Up/Down is HIGH logic level (counting Up).

13.13 INTERNAL OSCILLATOR AUTO DISABLE MODE

There is an OSC Auto Disable/Enable control, in which internal OSC is enabled only when it is required for PWM block. This Auto Disable Mode will operate only if user selects internal oscillator as a clock source for PWM Period Clock Counter ("PWM0 Period Clock Source selection" registers have a value from b0000 to b1001).

If the user selected PWM Period CNT overflow event as a clock source for Duty Cycle Counter (registers [1469:1468] = 01, or registers [1469:1468] = 10, or registers [1469:1468] = 11 for PWM0 and registers [1485:1484] = 01, or registers [1485:1484] = 11, or registers [1485:1484] = 11 for PWM1), then no clocks will be on Duty Cycle Counter Clock input when PWM enters to Autostop State (see Table 60).

The conditions, in which internal OSC will be automatically disabled, are shown in Table 60.

Table 60: Conditions for Disabling/Enabling an Internal Oscillator

N0	Disable Condition	Delay before OSC in disabled	Enable Condition
		Disable OSC immediately if SYNC On/Off register [1301] = 1 for PWM0 and register [1475] = 1 for PWM1	
1	PD signal goes HIGH	Disable OSC after current duty cycle period if SYNC On/Off register [1301] = 0 for PWM0 and register [1475] = 0 for PWM1	PD signal goes LOW

Datasheet

Table 60: Conditions for Disabling/Enabling an Internal Oscillator (Continued)

N0	Disable Condition	Delay before OSC in disabled	Enable Condition
2	Stop signal goes HIGH	Disable OSC immediately	Stop signal goes LOW
3	Up/Down is logic HIGH (counting up) and actual PWM value is 255 (127 for 7-bit submode), "PWM boundary OSC automatically disable" (register [1303] = 1 for PWM0 or register [1477] = 1 for PWM1) "Continuous/Autostop mode"(register [1302] = 1 for PWM0 or register [1476] = 1 for PWM1) Figure 76	Disable OSC after one full PWM peri- od.	Up/Down signal changes its level to logic LOW (count down) Figure 76
4	Up/Down is logic LOW (counting down) and actual PWM value is 0, "PWM boundary OSC automatically disable"(register [1303] = 1 for PWM0 or register [1477] = 1 for PWM1) and "Continuous/Autostop mode"(register [1302] = 1 for PWM0 or register [1476] = 1 for PWM1)	Disable OSC after one full PWM peri- od.	Up/Down signal changes its level to logic HIGH (count up)

Note 1 If PWM boundary OSC automatically disable register [1303] = 1 for PWM0 or register [1477] = 1 for PWM1 and PWM works with Preset Registers (registers [1467:1466] = 01 or registers [1467:1466] = 10, or registers [1467:1466] = 11 for PWM0 and registers [1483:1482] = 01 or registers [1483:1482] = 10, or registers [1483:1482] = 11 for PWM1), internal OSC will stop if Preset Registers Index = 15 (7 when LSByte mode of Preset Registers is used) the Preset Register Index remains unchanged until Up/Down signal changes. The same behavior has zero Preset Register Index (8 when MSByte mode of Preset Registers is used). When this index will be reached and OSC Auto Disable Mode is active the Preset Register Index remains unchanged until Up/Down signal changes.

Note 2 Other macrocells that use OSC, can start it or keep it enabled even if OSC Auto Disable Mode is active and condition for disabling OSC occurs.

Note 3 If dead band is different from 0, then OSC will be disabled for Dead Band Time later.

_				_				
	-	4-	-		-	-	4	
		т.я	-		0		т.	
_	C.	LCI	-		C	C	•	

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

In the example in Figure 76, Duty Cycle CLK is external to PWM block signal, Period CNT CLK is a signal from internal OSC. "PWM boundary OSC automatically disable" register [1303] = 1 for PWM0 or register [1477] = 1 for PWM1. Autostop Mode is active too ("Continuous/Autostop mode" register [1302] = 1 for PWM0 or register [1476] = 1 for PWM1). The key events of Autostop are the next:

- Event 1) after chip start-up, OSC is enabled. The clock from internal OSC is used to generate PWM period. Duty Cycle CNT counts up since Up/Down input of PWM macrocell is logic HIGH. Note that first OSC pulse is delayed when OSC becomes enabled (see Table 20).
- Event 2) the value of Duty Cycle CNT is updated every rising edge at Duty Cycle CLK input. This value becomes valid at the beginning of every PWM period.
- When the Duty Cycle value of 100 % is reached and Up/Down input is logic HIGH, PWM macrocell disables internal OSC after one full PWM period.
- Event 3) internal OSC starts working because Up/Down signal becomes LOW and Duty Cycle = 100 %. This is the scenario for starting OSC after it was automatically disabled.
- Event 4) the Up/Down signal changes the direction of Duty Cycle counting because at the moment of signals rising edge on Duty Cycle CLK input, the level of Up/Down input is logic HIGH.
- Event 5) OSC is disabled because the value of Duty Cycle is 100 % and at the beginning of the next PWM period the Up/ Down input is logic HIGH.
- Event 6) Since Up/Down goes low and Duty Cycle is equal to 100 %, this is the scenario for starting up the OSC.

Datasheet	Revision 2.0	9-Jun-2020
0550044 400 00	122 of 223	© 2020 Dialan Camiaandustan

13.14 PHASE CORRECT PWM MODE

In normal mode, PWM output is HIGH, then LOW for each PWM period. When Phase correct PWM (also called Center Align) register is active (register [1460] = 1 for PWM0 or register [1478] = 1 for PWM1), the PWM output is HIGH, then LOW for the first period, then LOW again and HIGH for the second period. So, there are less edges (or less output switches) for the Phase correct PWM mode.

13.15 PWM PERIOD OUTPUT

PWM_PERIOD output indicates the start of the new PWM period at PWM_OUT+. This output doesn't depend on the PWM duty cycle. The duration of the high level is equal to one period of the PERIOD_CNT_CLK.

Figure 78: PWM Period Waveform

Preliminary

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

13.16 PWM BLOCK DIAGRAMS

Figure 79: PWM0 Functional Diagram

D	а	ta	S	h	e	ρ	t	
-	a	ια	3		C	C	L	

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

13.17 PWM REGISTER SETTINGS

Table 61: PWM0 Register Settings

Signal Function	Register Bit Address	Register Definition
PWM0: 8-bit or 7-bit resolution	1 bit [1298] register	0: 8-bit PWM0 1: 7-bit PWM0
PWM0: OUT+ polarity selection	1 bit [1299] register	0: Non-Inverted Output 1: Inverted Output
PWM0: OUT- polarity selection	1 bit [1300] register	0: Non-Inverted Output 1: Inverted Output
PWM0: SYNC On/Off	1 bit [1301] register	0: Synchronous Power-Down 1: Asynchronous Power-Down
PWM0: Continuous/Autostop mode	1 bit [1302] register	0: Continuous mode 1: PWM Duty Cycle Counter Autostop at 0 % or 100 %
PWM0: Boundary OSC disable	1 bit [1303] register	0: OSC is always enabled at boundaries 1: Automatically Disable OSC
PWM0: Phase Correct mode	1 bit [1460] register	0: Disable 1: Enable

٦a	ata	c	h	0	0	t
	ιa	5		e	e	ι

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Table 61: PWM0 Register Settings (Continued)

Signal Function	Register Bit Address	Register Definition
PWM0: Deadband selection	2 bits [1465:1464] registers	00: No Deadband 01: 1 PWM0 clock cycles 10: 2 PWM0 clock cycles 11: 3 PWM0 clock cycles
PWM0: Keep/Stop selection	1 bit [1461] register	0: Keep 1: Stop
PWM0: I ² C trigger	1 bit [1296] register	0: Don't update duty cycle value 1: Update duty cycle value
PWM0: Duty Cycle source	2 bits [1467:1466] registers	00: from PWM Duty Cycle Cnt (Regular Mode) 01: 8-byte MSB of RegFile (Preset Registers Mode) 10: 8-byte LSB of RegFile (Preset Registers Mode) 11: 16-byte RegFile (Preset Registers Mode)
PWM0 Period Counter Clock Source selection	4 bits [1459:1456] registers	0000: CLK_OSC0 0001: CLK_OSC0/4 0010: CLK_OSC1 0011: CLK_OSC1/8 0100: CLK_OSC1/64 0101: CLK_OSC1/512 0110: CLK_OSC1/4096 0111: CLK_OSC1/32768 1000: CLK_OSC1/262144 1001: From Flexible Divider 1010: Reserved 1011: Matrix OUT [79] (external clock)
PWM0: Duty Cycle Counter Clock Source selection	2 bits [1469:1468] registers	00: Matrix output 01: PWM Period CNT overflow 10: every 2 nd pulse of PWM Period CNT overflow 11: every 8 th pulse of PWM Period CNT overflow
PWM0: Preset 16-byte Registers byte [015]	16 bytes [1455:1328] registers	Preset 16 bytes Duty Cycle values
PWM0: Initial value	8 bits [1295:1288] registers	Initial PWM0 Duty Cycle value
PWM0: Current duty cycle value	8 bits [1319:1312] registers	Current PWM0 duty cycle value for I ² C read

Table 62: PWM1 Register Settings

Signal Function	Register Bit Address	Register Definition
PWM1: Initial value	8 bits [1311:1304] registers	Initial PWM1 Duty Cycle value
PWM1: Current duty cycle value	8 bits [1327:1320] registers	Current PWM1 duty cycle value for I ² C read
PWM1: 8-bit or 7-bit resolution	1 bit [1472] register	0: 8-bit PWM1 1: 7-bit PWM1
PWM1: OUT+ output polarity selection	1 bit [1473] register	0: Non-Inverted Output 1: Inverted Output
PWM1: OUT- polarity selection	1 bit [1474] register	0: Non-Inverted Output 1: Inverted Output
PWM1: SYNC On/Off	1 bit [1475] register	0: Synchronous Power-Down 1: Asynchronous Power-Down
PWM1: Continuous/Autostop mode	1 bit [1476] register	0: Continuous mode 1: PWM Duty Cycle Counter Autostop at 0 % or 100 %

Datasheet

Revision 2.0

9-Jun-2020

Table 62: PWM1 Register Settings (Continued)

Signal Function	Register Bit Address	Register Definition
PWM1: Boundary OSC disable	1 bit [1477] register	0: OSC is always enabled at boundaries 1: Automatically Disable OSC
PWM1: Phase Correct mode	1 bit [1478] register	0: Disable 1: Enable
PWM1: Deadband selection	2 bits [1481:1480] registers	00: No Deadband 01: 1 PWM1 clock cycles 10: 2 PWM1 clock cycles 11: 3 PWM1 clock cycles
PWM1: Keep/Stop Selection	1 bit [1479] register	0: Keep 1: Stop
PWM1: I ² C trigger	1 bit [1297] register	0: Don't update duty cycle value 1: Update duty cycle value
PWM1: Duty Cycle source	2 bits [1483:1482] registers	00: from PWM Duty Cycle Cnt (Regular Mode) 01: 8-byte MSB of RegFile (Preset Registers Mode) 10: 8-byte LSB of RegFile (Preset Registers Mode) 11: 16-byte RegFile (Preset Registers Mode)
PWM1 Period Counter Clock Source selection	4 bits [1491:1488] registers	0000: CLK_OSC0 0001: CLK_OSC0/4 0010: CLK_OSC1 0011: CLK_OSC1/8 0100: CLK_OSC1/64 0101: CLK_OSC1/512 0110: CLK_OSC1/4096 0111: CLK_OSC1/262144 1000: CLK_OSC1/262144 1001: From Flexible Divider 1010: Reserved 1011: Matrix OUT [84] (external clock)
PWM1: Duty Cycle Counter Clock Source selection	2 bits [1485:1484] registers	00: Matrix output 01: PWM Period CNT overflow 10: every 2 nd pulse of PWM Period CNT overflow 11: every 8 th pulse of PWM Period CNT overflow

"Keep/Stop" register defines which function will be performed by "Duty Cycle CNT Keep/Stop" input. Keep/Stop signal is active HIGH level.

"PWM Period Clock Source selection" registers define clock source for "PWM Period CNT CLK" input: from the matrix, from OSCx and OSCx dividers, from the flexible OSC-integrated divider. Also, there is an option to select counter overflow condition as a source for PWM Period Clock.

"PWM: Duty Cycle Source selection" defines the clock source for changing the duty cycle. It can be:

- clock source from the connection matrix;
- clock pulse that is generated after the end of PWM cycle period (PWM Period Counter overflow). This pulse is generated every 255 (for 8-bit option) or 127 (for 7-bit option) PWM Period Clocks;
- clock pulse that is generated once per 2 PWM period, or every 510 (for 8-bit option) or 254 (for 7-bit option) PWM Period Clocks;
- clock pulse that is generated once per 8 PWM period, or every 2040 (for 8-bit option) or 1016 (for 7-bit option) PWM Period Clocks.

"I²C Trigger" register allows to update duty cycle value via I²C command:

When I²C_Trigger = 0, PWM duty cycle isn't updated;

When I²C_Trigger = 1, PWM duty cycle is updated from register at I²C stop pulse after the current PWM period is completed. The I²C_Trigger bit will be automatically cleared after the I²C stop pulse.

"SYNC On/Off" registers define the Power-down signal behavior on PWM block. This is the individual setting for each PWM macrocell. If this option is disabled (register [1301] = 1 for PWM0 or register [1475] = 1 for PWM1), then PWM output is changed right away by active Power-down. If this option is enabled (register [1301] = 0 for PWM0 or register [1475] = 0 for PWM1), the

Datasneet	Da	tas	he	et	
-----------	----	-----	----	----	--

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

"Continuous/Autostop mode" register enables Autostop mode. This mode can be used with both Preset Registers or Regular Mode. If PWM block works in Continuous Mode (register [1302] = 0 for PWM0 or register [1476] = 0 for PWM1), PWM Duty Cycle CNT will overflow when it reaches boundaries. For example, for PWM Duty Cycle Counter counts up: $254th \rightarrow 255th \rightarrow 0th \rightarrow 1st$, and for PWM Duty Cycle Counter counts down: $1st \rightarrow 0th \rightarrow 255th \rightarrow 254th$... If Autostop mode is active (register [1302] = 1 for PWM0 or register [1476] = 1 for PWM1), PWM duty cycle counter will stop when it reaches boundaries. Please refer to Section 13.12.

"PWMx boundary OSC disable" is the function, that allows disabling internal oscillator when there is no need for PWM to be clocked (boundary is reached in Autostop Mode only). This feature is useful for energy saving, but the user can optionally disable it and keeps the oscillator always enabled.

"Phase Correct mode". In normal mode, PWM output is HIGH, then LOW for each PWM period. When Phase correct PWM (also called Center Align) register is active (register [1460] = 1 for PWM0 or register [1478] = 1 for PWM1), then PWM output is HIGH, then LOW for the first period, then LOW again, and HIGH for the second period. So, there are less edges (or less output switches) for the Phase correct PWM mode.

"Duty Cycle source" (registers [1467:1466] for PWM0 or registers [1483:1482] for PWM1) defines the Regular Mode of operation (registers [1467:1466] = 00 for PWM0 or registers [1483:1482] = 00 for PWM1) or Preset Registers Mode (registers [1467:1466] = 01, registers [1467:1466] = 10, registers [1467:1466] = 11 for PWM0 or registers [1483:1482] = 01, registers [1483:1482] = 10, registers [1483:1482] = 11 for PWM1). In Regular Mode, the value of duty cycle is changed every rising edge on Duty Cycle CNT CLK input. In Preset Registers Mode the duty cycle is changed according to values, saved in 8-byte MSB of RegFile (registers [1467:1466] = 01 for PWM0 or registers [1483:1482] = 01 for PWM1), 8-byte LSB of RegFile (registers [1467:1466] = 10 for PWM0 or registers [1483:1482] = 10 for PWM1) or 16-byte of RegFile (registers [1467:1466] = 11 for PWM1). The address of RegFile value, that is applied to PWM block, is changed every rising edge on Duty Cycle CNT CLK input.

"OUT+ polarity selection" registers enable/disable inverted option for Output+ of PWM macrocell.

"OUT- polarity selection" registers enable/disable inverted option for Output- of PWM macrocell.

"Deadband selection" registers [1465:1464] for PWM0 and registers [1481:1480] for PWM1 chose dead band time between OUT+ and OUT- signals. It is 0, 1, 2, or 3 clock period of PWM Period CNT CLK signal.

"8-bit/7-bit PWM resolution". It is possible to select 7-bit instead of default 8-bit resolution for the PWM to increase the PWM speed. If the 7-bit resolution is selected, the maximum value of the duty cycle counter is 127.

Preliminary

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

14 Analog Comparators

There are two Rail-to-Rail General Purpose Analog Comparators (ACMP) macrocells in the SLG47105. In order for the ACMP cells to be used in a GreenPAK design, the power-up signals (ACMP0H_nPD, ACMP1H_nPD) need to be active. By connecting to signals coming from the Connection Matrix, it is possible to have each ACMP be on continuously, off continuously, or switched on periodically, based on a digital signal coming from the Connection Matrix. When ACMP is powered down, the output is low.

The General-Purpose Rail-to-Rail Analog Comparators are optimized for high-speed operation (ACMP0H and ACMP1H).

Each of the ACMP cells has a positive input signal that can be provided by a variety of external sources and can also have a selectable gain stage before connection to the analog comparator. Each of the ACMP cells has a negative input signal that is either created from an internal Vref or provided by a way of the external sources.

PWR UP = 1 => ACMP is powered up.

PWR UP = 0 => ACMP is powered down.

During power-up, the ACMP output will remain LOW, and then become valid 45 μ s (max) after power-up signal goes high for ACMP0H and ACMP1H. Input bias current < 1 nA (typ). The Gain divider is unbuffered and consists of 2 M Ω resistors. IN- voltage range: 0 - 2.016 V.

Each cell also has a hysteresis selection, to offer hysteresis of (0, 32, 64, 192) mV. The hysteresis option is available when using an internal Vref only.

ACMP0H IN+ options are GPIO5, V_{DD} ACMP1H IN+ options are GPIO6, ACMP0H IN+ MUX output, Temp Sensor OUT

DataSheet

14.1 ACMP0H BLOCK DIAGRAM

-		- 1-		
Da	aτa	sn	ee	τ

14.2 ACMP1H BLOCK DIAGRAM

Datachaa	•
Datasnee	

9-Jun-2020

14.3 ACMP TYPICAL PERFORMANCE

Vref (mV)

Figure 84: Typical Propagation Delay vs. Vref for ACMPxH at T = 25 °C, at V_{DD} = 2.3 V to 5.5 V, Gain = 1, Hysteresis = 0

Datasheet	Revision 2.0	9-Jun-2020
CFR0011-120-00	132 of 223	© 2020 Dialog Semiconductor

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Figure 85: ACMPxH Power-On Delay vs. V_{DD}

D	a	ta	s	h	e	e	t
_	-		-		-	-	•

15 Programmable Delay/Edge Detector

The SLG47105 has a programmable time delay logic cell that can generate a delay that is selectable from one of four timings (time2) configured in the GreenPAK Designer. The programmable time delay cell can generate one of four different delay patterns, rising edge detection, falling edge detection, both edge detection, and both edge delay. These four patterns can be further modified with the addition of delayed edge detection, which adds an extra unit of delay, as well as glitch rejection during the delay period. See Figure 86 for further information.

Note The input signal must be longer than the delay, otherwise it will be filtered out.

Figure 86: Programmable Delay

15.1 PROGRAMMABLE DELAY TIMING DIAGRAM - EDGE DETECTOR OUTPUT

Figure 87: Edge Detector Output

Please refer to Table 13.

Datasheet	Revision 2.0	9-Jun-2020
CFR0011-120-00	134 of 223	© 2020 Dialog Semiconductor

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

16 Additional Logic Function. Deglitch Filter

The SLG47105 has one Deglitch Filter macrocell with inverter function that is connected directly to the Connection Matrix inputs and outputs. In addition, this macrocell can be configured as an Edge Detector, with the following settings:

- Rising Edge Detector
- Falling Edge Detector
- Both Edge Detector
- Both Edge Delay

Figure 88: Deglitch Filter/Edge Detector

_							
	-	4-	-	L	-	-	4
	-			п	е	е	
_	-			_	-	-	•

17 Voltage Reference

17.1 VOLTAGE REFERENCE OVERVIEW

The SLG47105 has a Voltage Reference (Vref) macrocell to provide references to the four analog comparators. This macrocell can supply a user selection of fixed voltage references, or temperature sensor output. The macrocell also has the option to output reference voltages on GPIO0. See Table 63 for the available selections for each analog comparator.

Also, see Figure 63, which shows the reference output structure.

17.2 VREF SELECTION TABLE

Table 63: Vref Selection Table

SEL	SEL[5:0]	Vref	SEL	SEL[5:0]	Vref
0	000000	0.032	32	100000	1.056
1	000001	0.064	33	100001	1.088
2	000010	0.096	34	100010	1.12
3	000011	0.128	35	100011	1.152
4	000100	0.16	36	100100	1.184
5	000101	0.192	37	100101	1.216
6	000110	0.224	38	100110	1.248
7	000111	0.256	39	100111	1.28
8	001000	0.288	40	101000	1.312
9	001001	0.32	41	101001	1.344
10	001010	0.352	42	101010	1.376
11	001011	0.384	43	101011	1.408
12	001100	0.416	44	101100	1.44
13	001101	0.448	45	101101	1.472
14	001110	0.48	46	101110	1.504
15	001111	0.512	47	101111	1.536
16	010000	0.544	48	110000	1.568
17	010001	0.576	49	110001	1.6
18	010010	0.608	50	110010	1.632
19	010011	0.64	51	110011	1.664
20	010100	0.672	52	110100	1.696
21	010101	0.704	53	110101	1.728
22	010110	0.736	54	110110	1.76
23	010111	0.768	55	110111	1.792
24	011000	0.8	56	111000	1.824
25	011001	0.832	57	111001	1.856
26	011010	0.864	58	111010	1.888
27	011011	0.896	59	111011	1.92
28	011100	0.928	60	111100	1.952
29	011101	0.96	61	111101	1.984
30	011110	0.992	62	111110	2.016
31	011111	1.024	63	111111	External

Datasheet

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

17.3 MODE SELECTION

Table 64: Mode Selection Table

Conditions	M[2]	M[1]	M[0]	Mode
	0	0	0	Analog Power-down
	0	0	1	Analog Power-down
GPIO0 isn't config-	0	1	0	Vref_OUT to ACMP only
ured as Analog IO	0	1	1	Vref_OUT to ACMP only
≠ 11) OR GPIO0	1	0	0	Analog Power-down
OE is HIGH	1	0	1	Vts_OUT to ACMP only
	1	1	0	Vts_OUT to ACMP only
	1	1	1	Analog Power-down
	0	0	0	Analog Power-down
	0	0	1	Vref_OUT to GPIO0 only
GPIO0 is config-	0	1	0	Vref_OUT to ACMP only
ured as Analog IO	0	1	1	Vref_OUT to GPIO0 and ACMP
= 11) AND GPIO0	1	0	0	Vts_OUT to GPIO0 only
OE is LOW	1	0	1	Vts_OUT to ACMP only
	1	1	0	Vts_OUT to GPIO0 and ACMP
	1	1	1	Vref_OUT to GPIO0 bypass analog buffer

Note: Voltage Reference can be outputted to GPIO0 according to M[2:0] state when this GPIO is configured as Analog IO (registers [756:755] = 11) AND GPIO0 OE is LOW.

	-	4-	-		-	-4	
		та	S	п	е	ет	
-			-		-	υı	

17.4 VREF BLOCK DIAGRAM

Figure 89: Voltage Reference Block Diagram

Note 1: reg_ts_range_sel register, that defines voltage range of Vref Block Output, is valid for Temp Sensor source only. **Note 2:** reg_load_range_sel register should be set to 1 for better stability when the load resistance at GPIO0 is more than 100 kOhm. This option affects consumption current.

Datasheet	Revision 2.0	9-Jun-2020
CFR0011-120-00	138 of 223	© 2020 Dialog Semiconductor

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

17.5 VREF LOAD REGULATION

Note 1 It is not recommended to use Vref connected to external pin without buffer.

Figure 90: Typical Load Regulation, T = -40 °C to +85 °C, V_{DD} = 3.3 V, Buffer - Enabled

18 Clocking

18.1 OSC GENERAL DESCRIPTION

The SLG47105 has two internal oscillators to support a variety of applications:

- Oscillator0 (2.048 kHz)
- Oscillator1 (25 MHz).

There are two divider stages for each oscillator that gives the user flexibility for introducing clock signals to the connection matrix, as well as various other macrocells. The Pre-divider (first stage) for Oscillator allows the selection of /1, /2, /4 or /8, and /12 in Oscillator1(25 MHz) to divide down frequency from the fundamental. The second stage divider has an input of frequency from the Pre-divider, and outputs one of eight different frequencies divided by /1, /2, /3, /4, /8, /12, /24, or /64 on Connection Matrix Input lines [53], [54], [55], and [56]. Please see Figure 91 for more details on the SLG47105 clock scheme.

Oscillator1 (25 MHz) has an additional function of 100 ns delayed startup, which can be enabled/disabled by register [722]. This function is recommended to use when analog blocks are used along with the Oscillator.

The Matrix Power-down/Force On function allows switching off or force on the oscillator using an external pin. The Matrix Powerdown/Force-On (Connection Matrix Output [90], [91]) signal has the highest priority. The OSC operates according to the following table:

POR	External Clock Selection	Signal From Connection Matrix	Register: Power-Down or Force On by Matrix Input	Register: Auto Power-On or Force On	OSC Enable Signal from CNT/DLY Macrocells	OSC Operation Mode
0	Х	Х	Х	Х	Х	OFF
1	1	х	х	х	X	Internal OSC is OFF, logic is ON
1	0	1	0	Х	Х	OFF
1	0	1	1	Х	Х	ON
1	0	0	Х	1	Х	ON
1	0	0	х	0	CNT/DLY re- quires OSC	ON
1	0	0	х	0	CNT/DLY does not require OSC	OFF
Note T	Note The OSC will run only when any macrocell that uses OSC is powered on.					

Table 65: Oscillator Operation Mode Configuration Settings

18.2 OSCILLATOR0 (2.048 KHZ)

18.3 OSCILLATOR1 (25 MHZ)

Figure 92: Oscillator1 Block Diagram

The OSC-integrated divider is built into 25 MHz OSC for saving chip resources. Actually, this divider is created especially for PWM, but it can be used for other chip resources thanks to its output to the matrix. There is 8-bit Counter with the source from

_		
Data	cho	at
Data	SILC	51

OSC pre-divider and output to the matrix. In many cases for all PWM macrocells, the same frequency is a need. In these cases, it is possible to use this PWM divider for fine frequency tuning of PWM cells by I²C or from NVM.

18.4 CNT/DLY CLOCK SCHEME

Each CNT/DLY within Multi-Function macrocell has its own additional clock divider connected to oscillators pre-divider. Available dividers are:

- OSC0/1, OSC0/8, OSC0/64, OSC0/512, OSC0/4096, OSC0/32768, OSC0/262144
- OSC1/1, OSC1/4

It is possible also to connect input from CNT(x-1) overflow or from Connection Matrix OUT.

Figure 93: Clock Scheme

18.5 PWM CLOCK SCHEME

Each PWM macrocell has its own additional clock divider connected to oscillators pre-divider. Available dividers are:

- OSC1/1, OSC1/8, OSC1/64, OSC1/512, OSC1/4096, OSC1/32768, OSC1/262144
- OSC0/1, OSC0/4

It is possible also to connect input from Flexible Divider (OSC1 clock divider) or from Connection Matrix OUT.

Datasheet	Revision 2.0	
	1.10 (0.00	

9-Jun-2020

18.6 EXTERNAL CLOCKING

The SLG47105 supports several ways to use an external, higher accuracy clock as a reference source for internal operations. Note that the Low Voltage Digital Input PIN type can only support up to 1 MHz.

18.6.1 GPIO1 Source for Oscillator0 (2.048 kHz)

When register [725] is set to 1, an external clocking signal on GPIO1 will be routed in place of the internal oscillator derived 2.048 kHz clock source. See Figure 91. The low and high limits for external frequency that can be selected are 0 MHz and 10 MHz.

18.6.2 GPIO4 Source for Oscillator 1 (25 MHz)

When register [720] is set to 1, an external clocking signal on GPIO4 will be routed in place of the internal oscillator derived 25 MHz clock source. See Figure 92. The external frequency range is 0 MHz to 20 MHz at V_{DD} = 2.3 V, 30 MHz at V_{DD} = 3.3 V, 50 MHz at V_{DD} = 5.0 V.

18.7 OSCILLATORS POWER-ON DELAY

Figure 95: Oscillator Startup Diagram

Note 1 OSC power mode: "Auto Power-On". **Note 2** "OSC enable" signal appears when any macrocell that uses OSC is powered on

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

19 Low Power Bandgap (LP_BG)

Low Power Bandgap is the analog part, that is used by analog macrocells in HV PAK, such as 25 M OSC1, ACMPs, HV GPOs, UVLO, and others. The high efficiency low power Bangap consumes just 510 nA. However, it requires about 2 ms Start Up Time for stable functionality. For these reasons, it is recommended to keep LP_BG always on.

It is still possible to turn off the LP_BG through the connection matrix when no analog blocks are used.

Please note that OSC0 (2.048 kHz) does not use LP_BG.

Datasheet

The SLG47105 has a Power-On Reset (POR) macrocell to ensure correct device initialization and operation of all macrocells in the device. The purpose of the POR circuit is to have consistent behavior and predictable results when the V_{DD} power is first ramping to the device, and also while the V_{DD} is falling during Power-down. To accomplish this goal, the POR drives a defined sequence of internal events that trigger changes to the states of different macrocells inside the device, and finally to the state of the IOs.

20.1 GENERAL OPERATION

The SLG47105 is guaranteed to be powered down and non-operational when the V_{DD} voltage (voltage on PIN1) is less than Power-Off Threshold (see in Table 7), but not less than -0.6 V. Another essential condition for the chip to be powered down is that no voltage higher (Note) than the V_{DD} voltage is applied to any other PIN. For example, if V_{DD} voltage is 0.3 V, applying a voltage higher than 0.3 V to any other PIN is incorrect, and can lead to incorrect or unexpected device behavior.

Note There is a 0.6 V margin due to forward drop voltage of the ESD protection diodes.

To start the POR sequence in the SLG47105, the voltage applied on the V_{DD} should be higher than the Power-On Threshold (**Note**). The full operational V_{DD} range for the SLG47105 is 2.3 V to 5.5 V. This means that the V_{DD} voltage must ramp up to the operational voltage value, but the POR sequence will start earlier, as soon as the V_{DD} voltage rises to the Power-On threshold. After the POR sequence is started, the SLG47105 will have a typical period of time to go through all the steps in the sequence (noted in the datasheet for that device) and will be ready and completely operational after the POR sequence is complete.

Note The Power-On Threshold is defined in Table 7.

To power-down the chip the V_{DD} voltage should be lower than the operational and to guarantee that chip is powered down it should be less than Power-Off Threshold.

All PINs are in high impedance state when the chip is powered down and while the POR sequence is taking place. The last step in the POR sequence releases the IO structures from the high impedance state, at which time the device is operational. The pin configuration at this point in time is defined by the design programmed into the chip. Also, as it was mentioned before the voltage on PINs can't be bigger than the V_{DD} , this rule also applies to the case when the chip is powered on.

Preliminary

20.2 POR SEQUENCE

The POR system generates a sequence of signals that enable certain macrocells. The sequence is shown in Figure 96.

As can be seen from Figure 96 after the V_{DD} has started ramping up and crosses the Power-On threshold, first, the on-chip NVM memory is reset. Next, the chip reads the data from NVM and transfers this information to a CMOS LATCH, that serves to configure each macrocell, and the Connection Matrix, which routes signals between macrocells. The third stage causes the reset of the input pins, and then enables them. After that, the LUTs are reset and become active. After LUTs, the Delay cells, OSCs, DFFs, LATCHES, and Pipe Delay are initialized. Only after all macrocells are initialized internal POR signal (POR macrocell output) goes from LOW to HIGH. The last portion of the device to be initialized are the output pins, which transition from high impedance to active at this point.

The typical time that takes to complete the POR sequence varies by device type in the GreenPAK family. It also depends on many environmental factors, such as: slew rate, V_{DD} value, temperature, and even will vary from chip to chip (process influence).

Datasheet	Revision 2.0	9-Jun-2020
CFR0011-120-00	146 of 223	© 2020 Dialog Semiconductor

20.3 MACROCELLS OUTPUT STATES DURING POR SEQUENCE

To have a full picture of SLG47105 operation during powering and POR sequence, review the overview the macrocell output states during the POR sequence (Figure 97 describes the output signals states).

First, before the NVM has been reset, all macrocells have their output set to logic LOW (except the output pins which are in high impedance state). On the next step, some of the macrocells start initialization: input pins output state becomes LOW; LUTs also output LOW. Only P_DLY macrocell configured as edge detector becomes active at this time. After that input pins are enabled. Next, only LUTs are configured. Next, all other macrocells are initialized. After macrocells are initialized, internal POR matrix signal switches from LOW to HIGH. The last are output pins that become active and determined by the input signals.

Figure 97: Internal Macrocell States During POR Sequence

Datasheet

Preliminary

20.3.1 Initialization

All internal macrocells by default have initial low level. Starting from indicated power-up time of , macrocells in SLG47105 are powered on while forced to the reset state. All outputs are in Hi-Z and chip starts loading data from NVM. Then the reset signal is released for internal macrocells and they start to initialize according to the following sequence:

- Input pins, ACMP, Pull-up/down.
- LUTs.
- DFFs, Delays/Counters, Pipe Delay.
- POR output to matrix.
- Output pin corresponds to the internal logic.

The Vref output pin driving signal can precede POR output signal going high by $3 \mu s$ to $5 \mu s$. The POR signal going high indicates the mentioned power-up sequence is complete.

Note: The maximum voltage applied to any pin should not be higher than the V_{DD} level. There are ESD Diodes between pin \rightarrow V_{DD} and pin \rightarrow GND on each pin. So, if the input signal applied to pin is higher than V_{DD}, then current will sink through the diode to V_{DD}. Exceeding V_{DD} results in leakage current on the input pin, and V_{DD} will be pulled up, following the voltage on the input pin. There is no effect from input pin when input voltage is applied at the same time as V_{DD}.

20.3.2 Power-Down

Figure 98: Power-Down

During Power-down, macrocells in SLG47105 are powered off after V_{DD} falling down below Power-Off Threshold. Please note that during a slow rampdown, outputs can possibly switch state during this time.

Datasheet	Revision 2.0	9-Jun-2020
CFR0011-120-00	148 of 223	© 2020 Dialog Semiconductor

21 I²C Serial Communications Macrocell

21.1 I²C SERIAL COMMUNICATIONS MACROCELL OVERVIEW

In the standard use case for the GreenPAK devices, the configuration choices made by the user are stored as bit settings in the Non-Volatile Memory (NVM), and this information is transferred at startup time to volatile RAM registers that enable the configuration of the macrocells. Other RAM registers in the device are responsible for setting the connections in the Connection Matrix to route signals in the manner most appropriate for the user's application.

The I²C Serial Communications Macrocell in this device allows an I²C bus Master to read and write this information via a serial channel directly to the RAM registers, allowing the remote re-configuration of macrocells and remote changes to signal chains within the device.

The I^2C bus Master is also able to read and write other register bits that are not associated with NVM memory. As an example, the input lines to the Connection Matrix can be read as digital register bits. These are the signal outputs of each of the macrocells in the device, giving the I^2C bus Master the capability to remotely read the current value of any macrocell.

The user has the flexibility to control read access and write access via registers bits registers [1967:1965]. See Section 21.5.1 for more details on l^2C read/write memory protection.

Normally, when V_{DD} is not applied, the external I²C Pull-up resistors can be connected to the I²C pins of the SLG47105. It does not affect the chip functionality and doesn't increase its current consumption.

21.2 I²C SERIAL COMMUNICATIONS DEVICE ADDRESSING

Each command to the I²C Serial Communications macrocell begins with a Control Byte. The bits inside this Control Byte are shown in Figure 99. After the Start bit, the first four bits are a control code. Each bit in a control code can be sourced independently from the register or by value defined externally by GPI0, GPI06, GPI04, and GPI01. The LSB of the control code is defined by the value of GPI0, while the MSB is defined by the value of GPI01. The address source (either register bit or PIN) for each bit in the control code is defined by registers [2027:2024]. This gives the user flexibility on the chip level addressing of this device and other devices on the same I²C bus. The Block Address is the next three bits (A10, A9, A8), which will define the most significant bits in the addressing of the data to be read or written by the command. The last bit in the Control Byte is the R/ W bit, which selects whether a read command or write command is requested, with a "1" selecting for a Read command, and a "0" selecting for a Write command. This Control Byte will be followed by an Acknowledge bit (ACK), which is sent by this device to indicate successful communication of the Control Byte data.

In the I²C-bus specification and user manual, there are two groups of eight addresses (0000 xxx and 1111 xxx) that are reserved for the special functions, such as a system General Call address. If the user of this device choses to set the Control Code to either "1111" or "0000" in a system with other slave device, please consult the I²C-bus specification and user manual to understand the addressing and implementation of these special functions, to ensure reliable operation.

In the read and write command address structure, there are a total of 11 bits of addressing, each pointing to a unique byte of information, resulting in a total address space of 2K bytes. Of this 2K byte address space, the valid addresses accessible to the I²C Macrocell on the SLG47105 are in the range from 0 (0x00) to 255 (0xFF). The MSB address bits (A10, A9, and A8) will be "0" for all commands to the SLG47105.

With the exception of the Current Address Read command, all commands will have the Control Byte followed by the Word Address. Figure 99 shows this basic command structure.

n	-	ta	~	h	~	~	6
	α	ια	5		e	e	L

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Figure 99: Basic Command Structure

21.3 I²C SERIAL GENERAL TIMING

General timing characteristics for the I²C Serial Communications macrocell are shown in Figure 100. Timing specifications can be found in the AC Characteristics section.

Figure 100: I²C General Timing Characteristics

21.4 I²C SERIAL COMMUNICATIONS COMMANDS

21.4.1 Byte Write Command

Following the Start condition from the Master, the Control Code [4 bits], the Block Address [3 bits], and the R/W bit (set to "0") are placed onto the I²C bus by the Master. After the SLG47105 sends an Acknowledge bit (ACK), the next byte transmitted by the Master is the Word Address. The Block Address (A10, A9, A8), combined with the Word Address (A7 through A0), together set the internal address pointer in the SLG47105, where the data byte is to be written. After the SLG47105 sends another Acknowledge bit, the Master will transmit the data byte to be written into the addressed memory location. The SLG47105 again provides an Acknowledge bit and then the Master generates a Stop condition. The internal write cycle for the data will take place at the time that the SLG47105 generates the Acknowledge bit.

Datasheet	Revision 2.0	9-Jun-2020
CFR0011-120-00	150 of 223	© 2020 Dialog Semiconductor

It is possible to LATCH all IOs during I^2C write command, register [1961] = 1 - Enable. It means that IOs will remain their state until the write command is done.

Figure 101: Byte Write Command, R/W = 0

21.4.2 Sequential Write Command

The write Control Byte, Word Address, and the first data byte are transmitted to the SLG47105 in the same way as in a Byte Write command. However, instead of generating a Stop condition, the Bus Master continues to transmit data bytes to the SLG47105. Each subsequent data byte will increment the internal address counter, and will be written into the next higher byte in the command addressing. As in the case of the Byte Write command, the internal write cycle will take place at the time that the SLG47105 generates the Acknowledge bit.

21.4.3 Current Address Read Command

The Current Address Read Command reads from the current pointer address location. The address pointer is incremented at the first STOP bit following any write control byte. For example, if a Sequential Read command (which contains a write control byte) reads data up to address n, the address pointer would get incremented to n + 1 upon the STOP of that command. Subsequently, a Current Address Read that follows would start reading data at n + 1. The Current Address Read Command contains the Control Byte sent by the Master, with the R/W bit = "1". The SLG47105 will issue an Acknowledge bit, and then transmit eight data bits for the requested byte. The Master will not issue an Acknowledge bit, and follow immediately with a Stop condition.

Datasheet	Revision 2.0	9-Jun-2020
CFR0011-120-00	151 of 223	© 2020 Dialog Semiconductor

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Figure 103: Current Address Read Command, R/W = 1

21.4.4 Random Read Command

The Random Read command starts with a Control Byte (with R/W bit set to "0", indicating a write command) and Word Address to set the internal byte address, followed by a Start bit, and then the Control Byte for the read (exactly the same as the Byte Write command). The Start bit in the middle of the command will halt the decoding of a Write command, but will set the internal address counter in preparation for the second half of the command. After the Start bit, the Bus Master issues a second control byte with the R/W bit set to "1", after which the SLG47105 issues an Acknowledge bit, followed by the requested eight data bits.

21.4.5 Sequential Read Command

The Sequential Read command is initiated in the same way as a Random Read command, except that, once the SLG47105 transmits the first data byte, the Bus Master issues an Acknowledge bit as opposed to a Stop condition in a random read. The Bus Master can continue reading sequential bytes of data, and will terminate the command with a Stop condition.

Figure 105: Sequential Read Command

Datasheet	Revision 2.0	9-Jun-2020	
CFR0011-120-00	152 of 223	© 2020 Dialog Semiconductor	

21.5 I²C SERIAL COMMAND REGISTER MAP

21.5.1 Register Read/Write Protection

There are seven read/write protect modes for the design sequence from being corrupted or copied. See Table 66 for details.

Table 66: Read/Write Protection Options

Configurations	Unlocked	Partly Lock Read1	Partly Lock Read2	Partly Lock Read2/ Write	Lock Read	Lock Write	Lock Read/ Write	Data Output From	Register Address
	(Mode 0)	(Mode 1)	(Mode 2)	(Mode 3)	(Mode 4)	(Mode 5)	(Mode 6)		
I ² C Byte Write Bit Masking (section 21.5.5)	R/W	R/W	R/W	R/W	W	R	-	Memory	F6
l ² C Serial Reset Command (section 21.5.2)	R/W	R/W	R/W	R/W	W	R	-	Memory	F5,b'0
Outputs LATCHing During I ² C Write	R/W	R/W	R/W	R/W	W	R	-	Memory	F5,b'1
Connection Matrix Virtual Inputs (section 10.3)	R/W	R/W	R/W	R/W	W	R	-	Macrocell	4C
Configuration Bits for All Macrocells (IO Pins, ACMPs, Combination Function Macrocells, and others)	R/W	R/W	W	-	W	R	-	Memory	
Macrocells Inputs Configuration (Connection Matrix Outputs, section 10.2)	R/W	W	W	-	W	R	-	Memory	0~47
Protection Mode Enable	R	R	R	R	R	R	R	Memory	F5,b'4
Protection Mode Selection	R/W	R	R	R	R	R	R	Memory	F5,b'7~5
Macrocells Output Values (Connection Matrix Inputs, section 10.1)	R	R	R	R	-	R	-	Macrocell	48~4B; 4D~4F
Counter Current Value (for 16-bit CNT)	R	R	R	R	-	R	-	Macrocell	89, 8A
Counter Current Value (for 8-bit CNT)	R	R	R	R	-	R	-	Macrocell	8B, A4, A5
I ² C Control Code (section 21.2)	R	R	R	R	R	R	R	Memory	FD,b'3~0
Pin Slave Address Select	R	R	R	R	R	R	R	Memory	FD,b'7~4

Preliminary

Table 66: Read/Write Protection Options(Continued)

	Protection Modes Configuration									
Configurations	Unlocked	Partly Lock Read1	Partly Lock Read2	Partly Lock Read2/ Write	Lock Read	Lock Write	Lock Read/ Write	Data Output From	Register Address	
	(Mode 0)	(Mode 1)	(Mode 2)	(Mode 3)	(Mode 4)	(Mode 5)	(Mode 6)			
l ² C Disable/Enable	R	R	R	R	R	R	R	Memory	FE,b'0	

R/W	Allow Read and Write Data
W	Allow Write Data Only
R	Allow Read Data Only
-	The Data is protected for Read and Write

It is possible to read some data from macrocells, such as counter current value, connection matrix, and connection matrix virtual inputs. The I²C write will not have any impact on data in case data comes from macrocell output, except Connection Matrix Virtual Inputs. The silicon identification service bits allows identifying silicon family, its revision, and others.

See Section 23 for detailed information on all registers.

21.5.2 I²C Serial Reset Command

If I²C serial communication is established with the device, it is possible to reset the device to initial power up conditions, including configuration of all macrocells, and all connections provided by the Connection Matrix. This is implemented by setting register [1960] I²C reset bit to "1", which causes the device to re-enable the Power-On Reset (POR) sequence, including the reload of all register data from NVM. During the POR sequence, the outputs of the device will be in tri-state. After the reset has taken place, the contents of register [1960] will be set to "0" automatically. Figure 106 illustrates the sequence of events for this reset function.

21.5.3 I²C Additional Options

When Output latching during I^2C write, register [1960] = 1 allows all PINs output value to be latched until I^2C write is done. It will protect the output change due to configuration process during I^2C write in case multiple register bytes are changed. Inputs and internal macrocells retain their status during I^2C write.

If the user sets GPIO3 and GPIO2 function to a selection other than SDA and SCL, all access via I²C will be disabled.

Note: Any write commands that come to the device via I^2C that are not blocked, based on the protection bits, will change the contents of the RAM register bits that mirror the NVM bits. These write commands will not change the NVM bits themselves, and a POR event will restore the register bits to original programmed contents of the NVM.

See Section 23 for detailed information on all registers.

21.5.4 Reading Current Counter Data via I²C

The current counter value in two counters in the device can be read via I^2C . The counters that have this additional functionality are 16-bit CNT0 and 8-bit CNT4.

21.5.5 I²C Byte Write Bit Masking

The I^2C macrocell inside SLG47105 supports masking of individual bits within a byte that is written to the RAM memory space. This function is supported across the entire RAM memory space. To implement this function, the user performs a Byte Write Command (see Section 21.4.1 for details) on the I^2C Byte Write Mask Register (address 0F6H) with the desired bit mask pattern. This sets a bit mask pattern for the target memory location that will take effect on the next Byte Write Command to this register byte. Any bit in the mask that is set to "1" in the I^2C Byte Write Mask Register will mask the effect of changing that particular bit in the target register, during the next Byte Write Command. The contents of the I^2C Byte Write Mask Register are reset (set to 00h) after valid Byte Write Command. If the next command received by the device is not a Byte Write Command, the effect of the

bit masking function will be aborted, and the I²C Byte Write Mask Register will be reset with no effect. Figure 107 shows an example of this function.

Figure 107: Example of I²C Byte Write Bit Masking

Preliminary

22 Analog Temperature Sensor

The SLG47105 has an Analog Temperature sensor (TS) with an output voltage linearly-proportional to the Centigrade temperature. The TS cell shares buffer with Vref0, so it is impossible to use both cells simultaneously, its output can be connected directly to the ACMP1_H positive input. The TS is rated to operate over a -40 °C to 150 °C junction temperature range. The error in the whole temperature range does not exceed ±1.7 %. For more details refer to Section 3.14.

The equation below calculates the typical analog voltage passed from the TS to the ACMPs' IN+ source input. It is important to note that there will be a chip to chip variation of about ±2 °C.

 $V_{TS1} = -2.4 \text{ x T} + 912.3$

V_{TS2} = -2.9 x T + 1101.3

where:

V_{TS1} (mV) - TS Output Voltage, range 1

V_{TS2} (mV) - TS Output Voltage, range 2

T (°C) - Temperature

Temperature hysteresis can be setup by enabling the GreenPAK's internal ACMP hysteresis.

Figure 108: Analog Temperature Sensor Structure Diagram

D	а	ta	s	h	e	e	ť	
-	u		-		•	•	•	

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Figure 109: TS Output vs. Temperature, V_{DD} = 2.3 V to 5.5 V

_							
	-	+-	-	h	~	~*	
					е	eı	
_	-				-	-	

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

23 Register Definitions

23.1 REGISTER MAP

Table 67: Register Map

Address		Signal Eurotion	Pagiotor Bit Definition	I ² C Interface	
Byte	Register Bit			Read	Write
Matri	x Output				
0	5:0	Matrix OUT0	GPIO0 Digital Output		
0	11.0				
1	11.0				
1	47.40	Matrix OLIT2			
2	17:12				
2	23:18	Matrix OUT3	GPIO1 Digital Output OE		
3	29:24	Matrix OUT4	GPIO2 Digital Output		
3	25.20	Matrix OLITE	CPIO2 Digital Output		
4	35.50				
4	41.26	Matrix OLITE	CPIQ4 Digital Output		
5	41.50				
5	47:42	Matrix OUT7	GPIO4 Digital Output OE		
6	53:48	Matrix OUT8	GPIO5 Digital Output		
6	50.54	Matrix OLITO			
7	, 59.54				
7	65:60	Matrix OLIT10	CPIO6 Digital Output		
8					
8	71:66	Matrix OUT11	GPIO6 Digital Output OE		
9	77:72	Matrix OUT12	HV GPO0 Digital Output		
9	92.79	Matrix OLIT13			
А	03.70				
А	00.04	Matrix OLIT14			
В	09.04				
В	95:90	Matrix OUT15	HV GPO1 Digital Output OE		
С	101:96	Matrix OUT16	HV GPO2 Digital Output		
С	107.102	Matrix OLIT17	HV GRO2 Digital Output OF		
D	107.102				
D	112.100	Matrix OLIT18			
Е	113.100				
Е	119:114	Matrix OUT19	HV GPO3Digital Output OE		
F	125:120	Matrix OUT20	Reserved		
F	121.100	Matrix OLIT21	Beconved		
10	131:126		Reserved		
10	107.400	Matrix OLIT22	Beconved		
11	137:132		Reserved		

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

	Address	Signal Function	Desister Bit Definition	I ² C Int	erface
Byte	Register Bit	Signal Function	Register bit Demition	Read	Write
11	143:138	Matrix OUT23	HV GPO0 SLEEP or Power-up Current Sense Comparator A		
12	149:144	Matrix OUT24	HV GPO1 SLEEP or Power-up Current Sense Comparator A		
12 13	155:150	Matrix OUT25	HV GPO2 SLEEP or Power-up Current Sense Comparator B		
13 14	161:156	Matrix OUT26	HV GPO3 SLEEP or Power-up Current Sense Comparator B		
14	167:162	Matrix OUT27	IN0 of LUT2_0 or Clock Input of DFF0		
15	173:168	Matrix OUT28	IN1 of LUT2_0 or Data Input of DFF0		
15 16	179:174	Matrix OUT29	IN0 of LUT2_3 or Clock Input of PGen		
16 17	185:180	Matrix OUT30	IN1 of LUT2_3 or nRST of PGen		
17	191:186	Matrix OUT31	IN0 of LUT2_1 or Clock Input of DFF1		
18	197:192	Matrix OUT32	IN1 of LUT2_1 or Data Input of DFF1		
18 19	203:198	Matrix OUT33	IN0 of LUT2_2 or Clock Input of DFF2		
19 1A	209:204	Matrix OUT34	IN1 of LUT2_2 or Data Input of DFF2		
1A	215:210	Matrix OUT35	IN0 of LUT3_0 or Clock Input of DFF3		
1B	221:216	Matrix OUT36	IN1 of LUT3_0 or Data Input of DFF3		
1B 1C	227:222	Matrix OUT37	IN2 of LUT3_0 or nRST(nSET) of DFF3		
1C 1D	233:228	Matrix OUT38	IN0 of LUT3_1 or Clock Input of DFF4 or Blanking of Chopper0		
1D	239:234	Matrix OUT39	IN1 of LUT3_1 or Data Input of DFF4 or Chop of Chopper0		
1E	245:240	Matrix OUT40	IN2 of LUT3_1 or nRST(nSET) of DFF4 of PWM of Chopper0		
1E 1F	251:246	Matrix OUT41	IN0 of LUT3_2 or Clock Input of DFF5 or Blanking of Chopper1		
1F 20	257:252	Matrix OUT42	IN1 of LUT3_2 or Data Input of DFF5 or Chop of Chopper1		
20	263:258	Matrix OUT43	IN2 of LUT3_2 or nRST(nSET) of DFF5 of PWM of Chopper1		
21	269:264	Matrix OUT44	IN0 of LUT3_3 or Clock Input of DFF6		
21 22	275:270	Matrix OUT45	IN1 of LUT3_3 or Data Input of DFF6		

Datasheet

Revision 2.0

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

dial

	Address	Qianal Function	Register Bit Definition		I ² C Int		erface
Byte	Register Bit	Signal Function	Register Bit Definition	Read	Write		
22 23	281:276	Matrix OUT46	IN2 of LUT3_3 or nRST(nSET) of DFF6				
23	287:282	Matrix OUT47	IN0 of LUT3 4 or Clock Input of DFF7				
24	293:288	Matrix OUT48	IN1 of LUT3 4 or Data Input of DFF7				
24 25	299:294	Matrix OUT49	IN2 of LUT3_4 or nRST(nSET) of DFF7				
25	305:300	Matrix OUT50	IN0 of LUT3 5 or Clock Input of DEF8				
26							
26	311:306	Matrix OUT51	IN1 of LUT3_5 or Data Input of DFF8				
27	317:312	Matrix OUT52	IN2 of LUT3_5 or nRST(nSET) of DFF8				
27 28	323:318	Matrix OUT53	IN0 of LUT3_6 or Input of Pipe Delay or UP Signal of RIPP CNT				
28			IN1 of LUT3 6 or nBST of Pine Delay				
29	329:324	Matrix OUT54	or nSET of RIPP CNT				
29	335:330	Matrix OUT55	IN2 of LUT3_6 or Clock of Pipe Delay/ RIPP_CNT				
2A	341:336	Matrix OUT56	IN0 of LUT4_0 or Clock Input of DFF9				
2A 2B	347:342	Matrix OUT57	IN1 of LUT4_0 or Data Input of DFF9				
2B	353:348	Matrix OUT58	IN2 of LUT4_0 or nRST(nSET) of DFF9				
20	359:354	Matrix OUT59	IN3 of LUT4_0				
2D	365:360	Matrix OUT60	MULTFUNC_8BIT_1: IN0 of LUT3_7 or Clock Input of DFF10; Delay1 Input(or Counter1 nRST input)				
2D 2E	371:366	Matrix OUT61	MULTFUNC_8BIT_1: IN1 of LUT3_7 or nRST (nSET) of DFF10; Delay1 Input (or Counter1 nRST Input) or Delay/Counter1 External Clock Source				
2E			MULTFUNC_8BIT_1: IN2 of LUT3_7				
2F	377:372	Matrix OUT62	or Data Input of DFF10; Delay1 Input (or Counter1 nRST Input)				
2F	383:378	Matrix OUT63	MULTFUNC_8BIT_2: IN0 of LUT3_8 or Clock Input of DFF11; Delay2 Input (or Counter2 nRST Input)				
30	389:384	Matrix OUT64	MULTFUNC_8BIT_2: IN1 of LUT3_8 or nRST (nSET) of DFF11; Delay2 Input (or Counter2 nRST Input) or Delay/Counter2 External Clock Source				

Datasheet

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

dial **Preliminary**

	Address	Signal Function	Desister Bit Definition	I ² C Int	erface
Byte	Register Bit	Signal Function Register Bit Definition		Read	Write
30 31	395:390	Matrix OUT65	MULTFUNC_8BIT_2: IN2 of LUT3_8 or Data Input of DFF11; Delay2 Input (or Counter2 nRST Input)		
31	401:396	Matrix OUT66	MULTFUNC_8BIT_3: IN0 of LUT3_9 or Clock Input of DFF12; Delay3 Input (or Counter3 nRST Input)		
32	407:402	Matrix OUT67	MULTFUNC_8BIT_3: IN1 of LUT3_9 or nRST (nSET) of DFF12; Delay3 Input (or Counter3 nRST Input) or Delay/Counter3 External Clock Source		
33	413:408	Matrix OUT68	MULTFUNC_8BIT_3: IN2 of LUT3_9 or Data Input of DFF12; Delay3 Input (or Counter3 nRST Input)		
33 34	419:414	Matrix OUT69	MULTFUNC_8BIT_4: IN0 of LUT3_10 or Clock Input of DFF13; Delay4 Input (or Counter4 nRST Input)		
34 35	425:420	Matrix OUT70	MULTFUNC_8BIT_4: IN1 of LUT3_10 or nRST (nSET) of DFF13; Delay4 Input (or Counter4 nRST Input) or Delay/Counter4 External Clock Source		
35	431:426	Matrix OUT71	MULTFUNC_8BIT_4: IN2 of LUT3_10 or Data Input of DFF13; Delay4 Input (or Counter4 nRST Input)		
36	437:432	Matrix OUT72	MULTFUNC_16BIT_0: IN0 of LUT4_1 or Clock Input of DFF14; Delay0 Input (or Counter0 RST/SET Input)		
36			MULTFUNC_16BIT_0: IN1 of LUT4_1		
37	443:438	Matrix OUT73	or nRST of DFF14; Delay0 Input (or Counter0 nRST Input) or Delay/Counter0 External Clock Source		
37			MULTFUNC_16BIT_0: IN2 of LUT4_1		
38	449:444	Matrix OUT74	or nSET of DFF14 or KEEP Input of FSM0 or External Clock Input of Delay0 (or Counter0)		
38	455:450	Matrix OUT75	MULTFUNC_16BIT_0: IN3 of LUT4_1 or Data Input of DFF14; Delay0 Input (or Counter0 nRST Input) or UP Input of FSM0		
39	461:456	Matrix OUT76	PWM0_UP/DOWN		
39 3A	467:462	Matrix OUT77	PWM0_KEEP/STOP		
3A 3B	473:468	Matrix OUT78	PWM0_DUTY_CYCLE_CNT		

- 4-		 4
 ата	п	т
uu	 	

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Semiconductor Preliminary

Address			Devictor Di Definition	I ² C Interface	
Byte	Register Bit	Signal Function	Register Bit Definition	Read	Write
3B	479:474	Matrix OUT79	PWM0_EXT_CLK		
3C	485:480	Matrix OUT80	PWM0_Power-down		
3C	401.496	Matrix OLIT81			
3D	491.400				
3D	407.400	Matrix OLITRO			
3E	497.492		PVMI_KEEP/STOP		
3E	503:498	Matrix OUT83	PWM1_DUTY_CYCLE_CNT		
3F	509:504	Matrix OUT84	PWM1_EXT_CLK		
3F	E1E.E10	Matrix OLITRE			
40	515.510				
40	E01.E16	Matrix OLITRE	PD of ACMPOLI from the matrix		
41	521.510		TIPD OF ACMPORTION THE MALLX		
41	527:522	Matrix OUT87	nPD of ACMP1H from the matrix		
42	533:528	Matrix OUT88	Filter/Edge detect input		
42	F20.F24	Matrix OLITED	Programmable delaw/adge detect input		
43	559.554				
43	E4E.E40	Matrix OLITOO	OSCO Enable from matrix		
44	545:540		OSCO Enable from matrix		
44	551:546	Matrix OUT91	OSC1 Enable from matrix		
45	557:552	Matrix OUT92	Vref Output and Temp sensor nPD from matrix		
45	500.550		DC Device device frame the meetric		
46	503:558	Matrix OU 193	BG Power-down from the matrix		
46	500.504				
47	569:564	Matrix OU 194	Diff_Amp_integrator_En		
47	575:570	Matrix OUT95	Reserved		
Matri	x Input				
	576	Matrix Input 0	GND		
	577	Matrix Input 1	LUT2_0/DFF0 output		
	578	Matrix Input 2	LUT2_1/DFF1 output		
10	579	Matrix Input 3	LUT2_2/DFF2 output		
40	580	Matrix Input 4	LUT2_3/PGen output		
	581	Matrix Input 5	LUT3_0/DFF3 output		
	582	Matrix Input 6	LUT3_1/DFF4/Chopper0 output		
	583	Matrix Input 7	LUT3 2/DFF5/Chopper1 output		

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Table 67: Register Map (Continued)

	Address	Signal Eurotian	De sister Dit De finitien	I ² C Interface	
Byte	Register Bit	Signal Function	unction Register Bit Definition		Write
	584	Matrix Input 8	LUT3_3/DFF6 output		
	585	Matrix Input 9	LUT3_4/DFF7 output		
	586	Matrix Input 10	LUT3_5/DFF8 output		
40	587	Matrix Input 11	LUT4_0/DFF9 output		
49	588	Matrix Input 12	LUT3_6/PD/RIPP CNT output0		
	589	Matrix Input 13	LUT3_6/PD/RIPP CNT output1		
	590	Matrix Input 14	LUT3_6/PD/RIPP CNT output2		
	591	Matrix Input 15	PROG_DLY_EDET_OUT		
	592	Matrix Input 16	MULTFUNC_8BIT_1: DLY_CNT_OUT		
	593	Matrix Input 17	MULTFUNC_8BIT_2: DLY_CNT_OUT		
	594	Matrix Input 18	MULTFUNC_8BIT_3: DLY_CNT_OUT		
	595	Matrix Input 19	MULTFUNC_8BIT_4: DLY_CNT_OUT		
4A	596	Matrix Input 20	MULTFUNC_8BIT_1: LUT3_DFF_OUT		
	597	Matrix Input 21	MULTFUNC_8BIT_2: LUT3_DFF_OUT		
	598	Matrix Input 22	MULTFUNC_8BIT_3: LUT3_DFF_OUT		
	599	Matrix Input 23	MULTFUNC_8BIT_4: LUT3_DFF_OUT		
	600	Matrix Input 24	MULTFUNC_16BIT_0: DLY_CNT_OUT		
	601	Matrix Input 25	MULTFUNC_16BIT_0: LUT4_DFF_OUT		
	602	Matrix Input 26	GPIO0 0 Digital Input		
4B	603	Matrix Input 27	GPI Digital Input		
	604	Matrix Input 28	GPIO1 Digital Input		
	605	Matrix Input 29	GPIO4 Digital Input		
	606	Matrix Input 30	GPIO5 Digital Input		
	607	Matrix Input 31	GPIO6 Digital Input		
	608	Matrix Input 32	GPIO2 digital input or I ² C_virtual_0 Input		
	609	Matrix Input 33	GPIO3 digital input or I ² C_virtual_1 Input		
	610	Matrix Input 34	I ² C virtual 2 Input		
4C	611	Matrix Input 35	I ² C virtual 3 Input		
	612	Matrix Input 36	1^2 C virtual 4 Input		
	613	Matrix Input 37			
	614	Matrix Input 29			
	014				
	615	Matrix Input 39	I [∠] C_virtual_7 Input		

Datasheet

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

Table	67:	Register	Мар	(Continued)
-------	-----	----------	-----	-------------

	Address	Signal Function	Pogistor Bit Definition	I ² C Interface	
Byte	Register Bit			Read	Write
	616	Matrix Input 40	PWM0_OUT+		
	617	Matrix Input 41	PWM0_OUT-		
	618	Matrix Input 42	PWM1_OUT+		
40	619	Matrix Input 43	PWM1_OUT-		
4D	620	Matrix Input 44	Diff. Amp +Integrator UPWARD		
	621	Matrix Input 45	Diff. Amp +Integrator EQUAL		
	622	Matrix Input 46	ACMP0H_OUT		
	623	Matrix Input 47	ACMP1H_OUT		
	624	Matrix Input 48	CurrentSenseComp0_OUT		
	625	Matrix Input 49	CurrentSenseComp1_OUT		
	626	Matrix Input 50	Fault_A		
	627	Matrix Input 51	Fault_B		
4E	628	Matrix Input 52	EDET_FILTER_OUT		
	629	Matrix Input 53	Oscillator1(Ring_osc) output/Flex- Divider		
	630	Matrix Input 54	Flex-Divider output		
	631	Matrix Input 55	Oscillator0(LF_OSC) output 0		
	632	Matrix Input 56	Oscillator0(LF_OSC) output 1		
	633	Matrix Input 57	POR OUT		
	634	Matrix Input 58	PWM0_PERIOD		
	635	Matrix Input 59	PWM1_PERIOD		
4⊦	636	Matrix Input 60	OCP_FAULT_A		
	637	Matrix Input 61	OCP_FAULT_B		
	638	Matrix Input 62	TSD_FAULT		
	639	Matrix Input 63	V _{DD}		

Table 67: Register Map (Continued)

Address		Signal Eurotion	Pogistor Bit Definition	I ² C Int	erface
Byte	Register Bit	Signal Function	Register Bit Definition	Read	Write
ACM	P Vref				
			1. With registers [756:755] ≠ 11 or GPIO0 OE = 1:		
			000: Analog Power-down		
			001: Analog Power-down		
			010: Vref_OUT to ACMP only by analog buffer		
			011: Vref_OUT to ACMP only by analog buffer		
			100: Analog Power-down		
			101: Vts_OUT to ACMP only by analog buffer		
		Vref OUT (to GPIO0) Mode Selection	110: Vts_OUT to ACMP only by analog buffer		
			111: Analog Power-down.		
	642:640		2. With registers [756:755] = 11 and GPIO0 OE = 0:		
			000: Analog Power-down;		
			001: Vref_OUT to GPIO0 only by analog buffer		
50			010: Vref_OUT to ACMP only by analog buffer		
			011: Vref_OUT to GPIO0 and ACMP by analog buffer		
			100: Vts_OUT to GPIO0 only by analog buffer		
			101: Vts_OUT to ACMP only by analog buffer		
			110: Vts_OUT to GPIO0 and ACMP by analog buffer		
			111: Vref_OUT to GPIO0 bypass analog buffer		
	643	Vref OUT (to GPIO0) register Power-On/Off	1: On 0: Off		
	644	Vref OUT (to GPIO0) Power-down selection	0: Come from register [643] 1: Come from Matrix OUT 92		
	645	Vref OUT Buffer sink current selection	0: 2 uA 1: 12 uA		
	646:647	Vref OUT (to GPIO0) input selection	00: None; 01: ACMP0_H vref, 10: ACMP1_H vref; 11: Temp sensor		

Datasheet

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Address		Signal Europian	Pogiotor Bit Definition	I ² C Interface	
Byte	Register Bit	Signal Function	Register Bit Definition	Read	Write
	648	Temp sensor register Power-down control	0: Power-down 1: Power-On		
	649	Temp sensor register Power-down select	0: Come from register [648] 1: Come Matrix OUT 92		
51	650	Temp sensor range select	0: 0.62V ~ 0.99V (TYP), 1: 0.75V ~ 1.2V (TYP)		
	652:651	ACMP0_H hysteresis	00: 0 mV 01: 32 mV 10: 64 mV 11: 192 mV		
	653	Reserved			
	654	Reserved			
	655	ACMP0_H input tie to V _{DD} enable	0: Disable 1: Enable		
	656	ACMP1_H input come from Temp sensor output enable	0: Disable 1: Enable		
	657	ACMP1_H positive input come from ACMP0_H's input mux output enable	0: Disable 1: Enable		
	658	Reserved			
52	659	Reserved			
	661:660	ACMP1_H hysteresis	00: 0 mV 01: 32 mV 10: 64 mV 11: 192 mV		
51	663:662	Reserved			
53	669:664	Integrator Vref select	Integrator Vref select: 000000: 32 mV ~ 111110: 2.016 V step = 32 mV 111111: External Vref		
	671:670	Reserved			
	672	ACMP0_H Wake/sleep enable	0: Disable 1: Enable		
	673	ACMP1_H Wake/sleep enable	0: Disable 1: Enable		
54	674	ACMP wake/sleep time selection	0: Short time 1: Normal w/s		
51	675	Reserved			
	676	Reserved			
	679:677	Reserved			

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

	Address	Signal Function	Register Bit Definition	I ² C Interface	
Byte	Register Bit	Register bit Definition Re 00: 1x		Read	Write
55	681:680	ACMP0_H Gain divider select	00: 1x 01: 0.5x 10: 0.33x 11: 0.25x		
	687:682	ACMP0_H Vref select	000000: 32 mV ~ 111110: 2.016 V/ step = 32 mV; 111111: External Vref		
56	689:688	ACMP1_H Gain divider select	00: 1x 01: 0.5x 10: 0.33x 11: 0.25x		
	695:690	ACMP1_H Vref select	000000: 32 mV ~ 111110: 2.016 V/ step = 32 mV; 111111: External Vref		
	701:696	Current Sense Vref select	000000: 32 mV ~ 111110: 2.016 V/ step = 32 mV; 111111: External Vref		
57	702	Current Sense A Vref registers [5:0] source selection	0: Select static from current sense A Vref registers [701:696] 1: Select dynamic from PWM0		
	703	Reserved			
	709:704	Current Sense B Vref select	000000: 32 mV ~ 111110: 2.016 V/ step = 32 mV; 111111: External Vref		
58	710	Current Sense B Vref registers [5:0] source selection	0: Select static from Current Sense AVref registers [709:704]1: Select dynamic from PWM1		
	711	Reserved			
OSC'	1 (25 MHz)				
	712	Turn on by register	When matrix output enable/PD control signal = 0: 0: Auto on by delay cells 1: Always on		
59	713	Matrix Power-down/on select	0: Matrix down 1: Matrix on		
59	716:714	Pre-divider ratio control	000: div 1 001: div 2 010: div 4 011: div 8 100: div 12		

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

 \cap

dial

	Address	Signal Function Register Bit Definition	Pagister Bit Definition	I ² C Interface	
Byte	Register Bit		Read	Write	
	719:717	Second stage divider ratio control	000: /1 001: /2 010: /4 011: /3 100: /8 101: /12 110: /24 111: /64		
	720	External clock source enable	0: Internal OSC1 1: External clock from GPIO4		
5A	721	Matrix OUT enable	0: Disable 1: Enable		
	722	Startup delay with 100ns	0: Enable 1: Disable		
OSCO) (2.048 kHz)				
	723	Turn on by register	When matrix output enable/pd control signal = 0: 0: Auto on by delay cells 1: Always on		
5A	724	Matrix Power-down/on select	0: Matrix down 1: Matrix on		
	725	External clock source enable	0: Internal OSC0 1: External clock from GPIO1		
	726	Matrix OUT enable	0: Disable 1: Enable		
	727	Reserved			
	729:728	Pre-divider ratio control	00: div 1 01: div 2 10: div 4 11: div 8		
5B	732:730	Second stage divider ratio control	000: /1 001: /2 010: /4 011: /3 100: /8 101: /12 110: /24 111: /64		
	735:733	Reserved			
OSCO) second Out	put control			

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

Table 67: Register Map (Continued)

	Address	Signal Function	Desister Bit Definition	I ² C Int	erface
Byte	Register Bit	Signal Function	Register Bit Definition	Read	Write
5C	738:736	Matrix divider ratio control	000: /1 001: /2 010: /4 011: /3 100: /8 101: /12 110: /24 111: /64		
	739	Second output to matrix enable	0: Disable 1: Enable		
OSC'	I matrix OUT	enable for flexible divider	1	0	0
	740	OSC1 Matrix OUT enable for flexible divider	0: Disable 1: Enable		
5C	741	OSC1 Enable for flexible divider	0: Disable 1: Enable		
	743:742	Reserved			
Flexi	ble divider for	r OSC1			
5D	751:744	Flexible divider for OSC1 (8-b counter)	Data[7:0] Equation: divider number = Data[7:0] + 1 (exclude Data[7:0] = 0000 0000)		
HV_G	PO_HD Com	mon			
	752	Reserved			
5E	753	Differential amplifier with integrator output duty cycle vs input duty cycle of H-bridge drivers: invert_UPWARD	0: IN \rightarrow OUT 1: IN \rightarrow nOUT		
10 Co	ommon				
5E	754	IO fast Pull-up/down enable at V _{DD} start	0: Disable 1: Enable		
GPIO	0				
65	756:755	Input mode configuration	00: Digital without Schmitt trigger 01: Digital with Schmitt trigger 10: Low voltage digital in 11: Analog IO		
ΣE	758:757	Output mode configuration	00: Push-Pull 1x 01: Push-Pull 2x 10: Open-Drain 1x 11: Open-Drain 2x		
5E			00: Floating		
5F	760:759	Pull-up/down resistance selection	01: 10 k 10: 100 k 11: 1 M		
5F	761	Pull-up/down selection	0: Pull-down 1: Pull-up		
	762	Reserved			
GPI					

Datasheet

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

 \cap

dial

	Address	Signal Eurotian	Desister Bit Definition	I ² C Int	erface
Byte	Register Bit	Inal Function Register Bit Definition 00: Digital without smitt trigger 04: Digital without smitt trigger	Read	Write	
5F	764:763	Input mode configuration	00: Digital without smitt trigger 01: Digital with smitt trigger 10: Low voltage digital in 11: Analog IO		
	766:765	Pull-up/down resistance selection	00: Floating 01: 10 k 10: 100 k 11: 1 M.		
	767	Pull-up/down selection	0: Pull-down 1: Pull-up		
Rese	rved				
60	775:768	Reserved			
HV_G	PO0_HD				
61	777:776	Output mode configuration	00: Hi-Z 01: NMOS Open-Drain LOW side on 10: NMOS HIGH side on 11: NMOS HIGH side and LOW side on		
	780:778	Control delay of OCP0 retry	000: Delay 492 us 001: Delay 656 us 010: Delay 824 us 011: Delay 988 us 100: Delay 1152 us 101: Delay 1316 us 110: Delay 1480 us 111: Delay 1640 us		
	781	HV_GP00/HV_GP01 Slew rate control	0: Slow slew rate for motor driver 1: Fast slew rate for pre-driver mode		
	782	HV_GPO0/HV_GPO1 H-bridge/Half-bridge mode select	0: Half-bridge mode 1: H-bridge.		
	783	Reserved			
HV_G	PO1_HD				
	785:784	Output mode configuration	00: Hi-Z 01: NMOS Open-Drain LOW side on 10: NMOS HIGH side on 11: NMOS HIGH side and LOW side on		
62	788:786	Control delay of OCP1 retry	000: Delay 492 us 001: Delay 656 us 010: Delay 824 us 011: Delay 988 us 100: Delay 1152 us 101: Delay 1316 us 110: Delay 1480 us 111: Delay 1640 us		

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

dial

	Address	Signal Eurotian	Register Bit Definition	I ² C Int	erface
Byte	Register Bit	Signal Function	Register bit Definition	Read	Write
	789	Reserved			
62	790	Reserved			
	791	Reserved			
HV_G	PO2_HD		·		
63	793:792	Output mode configuration	00: Hi-Z 01: NMOS Open-Drain LOW side on 10: NMOS HIGH side on 11: NMOS HIGH side and LOW side on		
	796:794	Control delay of OCP2 retry	000: Delay 492 us 001: Delay 656 us 010: Delay 824 us 011: Delay 988 us 100: Delay 1152 us 101: Delay 1316 us 110: Delay 1480 us 111: Delay 1640 us		
	797	HV_GPO2/HV_GPO3 slew rate control	0: Slow slew rate for motor driver 1: Fast slew rate for pre-driver mode.		
	798	HV_GPO2/HV_GPO3 H-bridge/Half-bridge mode select	0: Half-bridge mode 1: H-bridge.		
	799	Reserved			
HV_G	PO3_HD				
	801:800	Output mode configuration	00: HiZ 01: NMOS Open-Drain LOW side on 10: NMOS HIGH side on 11: NMOS HIGH side and LOW side on		
64	804:802	Control delay of OCP3 retry	000: Delay 492 us 001: Delay 656 us 010: Delay 824 us 011: Delay 988 us 100: Delay 1152 us 101: Delay 1316 us 110: Delay 1480 us 111: Delay 1640 us		
	807:805	Reserved			
Rese	rved		1	Γ	
65	815:808	Reserved			

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Table 67: Register Map (Continued)

	Address	Oirmal Function	De sieten Dit Definitien	I ² C Inte	erface
Byte	Register Bit	Signal Function	Register Bit Definition	Read	Write
GPIO	1 (LED)		•		
66	817:816	Input mode configuration	00: Digital without Schmitt trigger 01: Digital with Schmitt trigger 10: Low voltage digital in 11: Analog IO		
	819:818	Output mode configuration	00: Push-Pull 1x 01: Push-Pull 2x 10: Open-Drain 1x 11: Open-Drain 2x		
	821:820	Pull-up/down resistance selection	00: Floating 01: 10 k 10: 100 k 11: 1 M		
	822	Pull-up/down selection	0: Pull-down 1: Pull-up		
	823	Reserved			
67	824	Reserved			
GPIO	2/SCL			1 1	
	826:825	Input mode configuration	00: Digital without Schmitt trigger 01: Digital with Schmitt trigger 10: Low voltage digital in 11: Reserved		
67	828:827	Pull-up/down resistance selection	00: Floating 01: 10 k 10: 100 k 11: 1 M		
	829	Pull-up/down selection	0: Pull-down 1: Pull-up		
	830	I ² C mode selection (only GPIO3 SDA)	0: I ² C Fast Mode + 1: I ² C Standard/Fast Mode.		
	831	Open-Drain output enable (3.2x drivability)	0: Disable 1: Enable (3.2x)		
GPIO	3/SDA				
	833:832	Input mode configuration	00: Digital without Schmitt trigger 01: Digital with Schmitt trigger 10: Low voltage digital in 11: Reserved		
68	835:834	Pull-up/down resistance selection	00: Floating 01: 10 k 10: 100 k 11: 1 M		
	836	Pull-up/down selection	0: Pull-down 1: Pull-up		
	837	Open-Drain output enable (3.2x drivability)	0: Disable 1: Enable (3.2x)		
	838	Reserved			

Datasheet

Revision 2.0

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

dial

Table 67: Register Map (Continued)

Address		Signal Function	Pagiatar Bit Definition	I ² C Interface	
Byte	Register Bit	Signal Function	Register Bit Definition	Read	Write
68	839	Reserved			
GPIO	4		· ·		
69	841:840	Input mode configuration	00: Digital without Schmitt trigger 01: Digital with Schmitt trigger 10: Low voltage digital in 11: Analog IO		
	843:842	Output mode configuration	00: Push-Pull 1x 01: Push-Pull 2x 10: Open-Drain 1x 11: Open-Drain 2x		
	845:844	Pull-up/down resistance selection	00: Floating 01: 10 k 10: 100 k 11: 1 M		
	846	Pull-up/down selection	0: Pull-down 1: Pull-up		
	847	Reserved			
GPIO	95 (LED)				
	849:848	Input mode configuration	00: Digital without Schmitt trigger01: Digital with Schmitt trigger10: Low voltage digital in11: Analog IO		
64	851:850	Output mode configuration	00: Push-Pull 1x 01: Push-Pull 2x 10: Open-Drain 1x 11: Open-Drain 2x		
0,1	853:852	Pull-up/down resistance selection	00: Floating 01: 10 k 10: 100 k 11: 1 M		
	854	Pull-up/down selection	0: Pull-down 1: Pull-up		
	855	Reserved			
GPIO	6				
	857:856	Input mode configuration	00: Digital without Schmitt trigger01: Digital with Schmitt trigger10: Low voltage digital in11: Analog IO		
6B	859:858	Output mode configuration	00: Push-Pull 1x 01: Push-Pull 2x 10: Open-Drain 1x 11: Open-Drain 2x		
	861:860	Pull-up/down selection	00: Floating 01: 10 k 10: 100 k 11: 1 M		

Datasheet

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

	Address	Signal Function	Degister Bit Definition	I ² C Int	erface
Byte	Register Bit	Signal Function	Register bit Definition	Read	Write
6B	862	Pull-up/down selection	0: Pull-down 1: Pull-up		
	863	Reserved			
	864	V _{DD2_A} UVLO0 register enable/disable	0: Disable 1: Enable		
	865	V _{DD2_B} UVLO1 register enable/disable	0: Disable 1: Enable		
	866	Current sense A amplifier gain selection	0: x8 1: x4		
60	867	Current sense comparator A output polarity	0: OUT 1: Inverted OUT		
60	868	Current sense B amplifier gain selection	0: x8 1: x4		
	869	Current sense comparator B output polarity	0: OUT 1: Inverted OUT		
	870	Current sense A register enable/disable	0: Disable 1: Enable		
	871	Current sense B register enable/disable	0: Disable 1: Enable		
6D	872	Reserved			
Mode	control for H	IV GPO0/1			
60	873	OCP deglitch time enable for HV GPO0/1	0: Without deglitch time 1: With deglitch time		
00	874	Control selection for HV_GPO0/1	0: IN-IN mode 1: PH-EN mode		
Mode	e control for H	IV GPO2/3	·		
	875	OCP deglitch time enable for HV GPO2/3	0: Without deglitch time 1: With deglitch time		
6D	876	Control selection for HV_GPO2/3	0: IN-IN mode 1: PH-EN mode		
	877	Reserved			
Rese	rved				
6D	879:878	Reserved			
6E	887:880	Reserved			
6F	895:888	Reserved			

dial **Preliminary**

	Address		De vieter Bit Definition	I ² C Int	erface
Byte	Register Bit	Signal Function	Register Bit Definition	Read	Write
Multi	function0 (LU	T4_DFF)			
70		Single 4-bit LUT	0000000: Matrix A - In3 Matrix B - In2 Matrix C - In1 Matrix D - In0 DLY_IN - LOW		
	5	Single DFF nRST and SET	0010000: Matrix A - D Matrix B - nSET Matrix C - nRST Matrix D - CLK DLY_IN - LOW		
	902:896	Single CNT/DLY	0000001: Matrix A - UP (CNT) Matrix B - KEEP (CNT) Matrix C - EXT_CLK (CNT) Matrix D - DLY_IN (CNT) DLY_OUT connected to LUT/DFF		
		$CNT/DLY \rightarrow LUT$	0000010: Matrix A - DLY_IN Matrix B - In2 Matrix C - In1 Matrix D - In0 DLY_OUT connected to In3		
		$CNT/DLY \rightarrow DFF$	0010010: Matrix A - DLY_IN Matrix B - nSET Matrix C - nRST Matrix D - CLK DLY_OUT connected to D		

Address		Qianal Function	Devieter Dit Definition	I ² C Interface	
Byte	Register Bit	Signal Function	Register Bit Definition	Read	Write
70		CNT/DLY → LUT	0100010: Matrix A - DLY_IN Matrix B - EXT_CLK (CNT) Matrix C - In1 Matrix D - In0 DLY_OUT connected to In3, In2 tied LOW		
		$CNT/DLY \rightarrow DFF$	0110010: Matrix A - DLY_IN Matrix B - EXT_CLK (CNT) Matrix C - nRST Matrix D - CLK DLY_OUT connected to D, nSET tied HIGH		
	902:896	$P2:896 \qquad \qquad$	1000010: Matrix A - DLY_IN Matrix B - In2 Matrix C - EXT_CLK (CNT) Matrix D - In0 DLY_OUT connected to In3, In1 tied LOW		
	$\begin{array}{c c} & \text{In1 tr} \\ & 1010 \\ \text{Matr} \\ \text{Matr} \\ \text{Matr} \\ \text{Matr} \\ \text{Matr} \\ \text{Matr} \\ \text{DLY} \\ \text{nRS} \\ \end{array}$	1010010: Matrix A - DLY_IN Matrix B - nSET Matrix C - EXT_CLK (CNT) Matrix D - CLK DLY_OUT connected to D, nRST tied HIGH			
		CNT/DLY → LUT	0000110: Matrix A - In3 Matrix B - DLY_IN Matrix C - In1 Matrix D - In0 DLY_OUT connected to In2		

Table 67: Register Map (Continued)

Address Byte Register Bit	Signal Function	Pagistar Bit Definition	I ² C Interface		
Byte	Register Bit	Signal Function	Register bit Definition	Read	Write
	$CNT/DLY \rightarrow DFF$ $O010110:$ $Matrix A - D$ $Matrix B - DLY_IN$ $Matrix C - nRST$ $Matrix D - CLK$ $DLY_OUT connected f$ $1000110:$ $Matrix A - In3$ $Matrix B - DLY_IN$ $Matrix C - EXT_CLK (C)$ $Matrix D - In0$ $DLY_OUT connected f$ $In1 first D - In0$ $DLY_OUT connected f$	$CNT/DLY \rightarrow DFF$	0010110: Matrix A - D Matrix B - DLY_IN Matrix C - nRST Matrix D - CLK DLY OUT connected to nSET		
		1000110: Matrix A - In3 Matrix B - DLY_IN Matrix C - EXT_CLK (CNT) Matrix D - In0 DLY_OUT connected to In2, In1 tied LOW			
		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
70	902:896	$CNT/DLY \rightarrow LUT$	0001010: Matrix A - In3 Matrix B - In2 Matrix C - DLY_IN Matrix D - In0 DLY_OUT connected to In1		
		$CNT/DLY \rightarrow DFF$	0011010: Matrix A - D Matrix B - nSET Matrix C - DLY_IN Matrix D - CLK DLY_OUT connected to nRST		
		$CNT/DLY \rightarrow LUT$	0101010: Matrix A - In3 Matrix B - EXT_CLK (CNT) Matrix C - DLY_IN Matrix D - In0 DLY_OUT connected to In1, In2 tied LOW		
		$CNT/DLY \rightarrow DFF$	0111010: Matrix A - D Matrix B - EXT_CLK (CNT) Matrix C - DLY_IN Matrix D - CLK DLY_OUT connected to nRST, nSET tied HIGH		

Datasheet

Table 67: Register Map (Continued)

Address		Signal Function	Periotor Pit Definition	I ² C Interface		
Byte	Register Bit	Signal Function	Register Bit Definition	Read	Write	
70		CNT/DLY → LUT	0001110: Matrix A - In3 Matrix B - In2 Matrix C - In1 Matrix D - DLY_IN DLY OUT connected to In0			
		$CNT/DLY \rightarrow DFF$	0011110: Matrix A - D Matrix B - nSET Matrix C - nRST Matrix D - DLY_IN DLY_OUT connected to CLK			
		$CNT/DLY \rightarrow LUT$ $CNT/DLY \rightarrow LUT$ $CNT/DLY \rightarrow LUT$ $DL'I_OUT connected to OLK$ $O101110:$ $Matrix A - In3$ $Matrix B - EXT_CLK (CNT)$ $Matrix C - In1$ $Matrix D - DLY_IN$ $DLY_OUT connected to In0,$ $In2 tied LOW$	0101110: Matrix A - In3 Matrix B - EXT_CLK (CNT) Matrix C - In1 Matrix D - DLY_IN DLY_OUT connected to In0, In2 tied LOW			
	902:896	$CNT/DLY \rightarrow DFF$	0111110: Matrix A - D Matrix B - EXT_CLK (CNT) Matrix C - nRST Matrix D - DLY_IN DLY_OUT connected to CLK, nSET tied HIGH			
			CNT/DLY → LUT	1001110: Matrix A - In3 Matrix B - In2 Matrix C - EXT_CLK (CNT) Matrix D - DLY_IN DLY_OUT connected to In0, In1 tied LOW		
		$CNT/DLY \rightarrow DFF$	1011110: Matrix A - D Matrix B - nSET Matrix C - EXT_CLK (CNT) Matrix D - DLY_IN DLY_OUT connected to CLK, nRST tied HIGH			
		LUT \rightarrow CNT/DLY	0000011: Matrix A - In3 Matrix B - In2 Matrix C - In1 Matrix D - In0 LUT_OUT connected to DLY_IN			

Datasheet

Preliminary

 \cap

dial

	Address	Signal Function	Bagiatar Bit Dafinitian	I ² C Int	erface
Byte	Register Bit		Register bit Demition	Read	Write
70	$0 902:896 DFF \rightarrow CNT/DLY$ $UT \rightarrow CNT/DLY$ $LUT \rightarrow CNT/DLY$ $LUT \rightarrow CNT/DLY$ $DFF \rightarrow CNT/DLY$	$DFF \to CNT/DLY$	0010011: Matrix A - D Matrix B - nSET Matrix C - nRST Matrix D - CLK DEF_OUT connected to DLY_IN		
		LUT \rightarrow CNT/DLY	0100011: Matrix A - In3 Matrix B - EXT_CLK (CNT) Matrix C - In1 Matrix D - In0 LUT_OUT connected to DLY_IN, In2 tied LOW		
		902:896 DFF \rightarrow CNT/DLY LUT \rightarrow CNT/DLY DFF \rightarrow CNT/DLY	0110011: Matrix A - D Matrix B - EXT_CLK (CNT) Matrix C - nRST Matrix D - CLK DFF_OUT connected to DLY_IN, nSET tied LOW		
			1000011: Matrix A - In3 Matrix B - In2 Matrix C - EXT_CLK (CNT) Matrix D - In0 LUT_OUT connected to DLY_IN, In1 tied LOW		
			1010011: Matrix A - D Matrix B - nSET Matrix C - EXT_CLK (CNT) Matrix D - CLK DFF_OUT connected to DLY_IN, nRST tied HIGH		
70 71	904:903	DLY/CNT0 Mode Selection	00: DLY 01: One Shoot 10: Frequency Detection 11: CNT register [912] = 0		

Table 67: Register Map (Continued)

	Address	Signal Eurotian	Pagiatar Bit Definition	I ² C Interface	
Byte	Register Bit	Signal Function	Register Bit Definition	Read	Write
	906:905	DLY/CNT0 Edge Mode Selection	00: Both edge 01: Falling edge 10: Rising edge; 11: HIGH Level Reset (only in CNT mode)		
71	910:907	DLY/CNT0 Clock Source Select	Clock source sel[3:0] 0000: 25 MHz(OSC1) 0001: 25 MHz/4 0010: Not used 0101: Not used 0100: Not used 0101: Not used 0110: 2.048 kHz(OSC0) 0111: 2.048 kHz/8 1000: 2.048 kHz/64 1001: 2.048 kHz/4096 1011: 2.048 kHz/32768 1100: 2.048 kHz/262144 1101: CNT4_END 1110: External 1111: Not used		
	911	FSM0 SET/RST Selection	0: Reset to 0 1: Set to data		
	912	CNT0 DLY EDET FUNCTION Selection	0: Normal 1: DLY function edge detection (registers [904:903] = 00)		
	913	UP signal SYNC selection	0: Bypass 1: After two DFF		
	914	Keep signal SYNC selection	0: Bypass 1: After two DFF		
72	916:915	CNT0 initial value selection	00: Bypass the initial 01: Initial 0 10: Initial 1 11: Initial 1		
	917	Wake/sleep Power-down state selection	0: LOW 1: HIGH		
	918	Wake/sleep mode selection	0: Default Mode 1: Wake/Sleep Mode (registers [904:903] = 11)		
	919	CNT0 output polarity selection	0: Default Output 1: Inverted Output		
73	920	CNT0 CNT mode SYNC selection	0: Bypass 1: After two DFF		

Multifunction1

Datasheet

Revision 2.0

Preliminary

	Address	Signal Eurotion	Register Bit Definition	I ² C Interface		
Byte	Register Bit	Signal Function		Read	Write	
	925:921	Single 3-bit LUT	00000: Matrix A - In2 Matrix B - In1 Matrix C - In0			
		Single DFF with nRST/nSET	10000: Matrix A - D Matrix B - nSET/nRST Matrix C - CLK DLY IN - LOW			
		Single CNT/DLY	00001: Matrix A - DLY_IN (CNT) Matrix B - EXT_CLK (CNT) Matrix C - NC DLY_OUT connected to LUT/DFF			
		CNT/DLY → LUT	00010: Matrix A - DLY_IN Matrix B - In1 Matrix C - In0 DLY_OUT connected to In2			
75		CNT	$CNT/DLY \rightarrow DFF$	10010: Matrix A - DLY_IN Matrix B - nSET/nRST Matrix C - CLK DLY_OUT connected to D		
		CNT/DLY → LUT	00110: Matrix A - In2 Matrix B - DLY_IN Matrix C - In0 DLY_OUT connected to In1			
		$CNT/DLY \rightarrow DFF$	10110: Matrix A - D Matrix B - DLY_IN Matrix C - CLK DLY_OUT connected to nSET/nRST			
		CNT/DLY → LUT	01010: Matrix A - In2 Matrix B - In1 Matrix C - DLY_IN DLY_OUT connected to In0			

Preliminary

Address		Signal Eurotion	Periotor Pit Definition	I ² C Interface	
Byte	Register Bit	Signal Function	Register Bit Definition	Read	Write
73	925:921	$CNT/DLY \rightarrow DFF$	11010: Matrix A - D Matrix B - nSET/nRST Matrix C - DLY_IN DLY_OUT connected to CLK		
		$LUT \rightarrow CNT/DLY$	00011: Matrix A - In2 Matrix B - In1 Matrix C - In0 LUT_OUT connected to DLY_IN		
		$DFF \to CNT/DLY$	10011: Matrix A - D Matrix B - nSET/nRST Matrix C - CLK DLY_OUT connected to DLY_IN		
73			0000: Both edge Delay		
74	929:926	CNT1 function and edge mode selection	0001: Falling edge delay 0010: Rising edge delay 0011: Both edge One Shot 0100: Falling edge One Shot 0101: Rising edge One Shot 0110: Both edge freq detect 0111: Falling edge freq. detect 1000: Rising edge freq. detect 1001: Both edge detect 1010: Falling edge detect 1011: Rising edge detect 1100: Both edge reset CNT 1101: Falling edge reset CNT 1110: Rising edge reset CNT 1111: HIGH level reset CNT		
74	931:930	CNT1 initial value selection	00: Bypass the initial 01: Initial 0 10: Initial 1 11: Initial 1		

	Address	Signal Eurotion	Perinter Pit Definition	I ² C Interface	
Byte	Register Bit	Signal Function	Register Bit Definition	Read	Write
74	935:932	DLY/CNT1 Clock Source Select	Clock source sel[3:0] 0000: 25 MHz(OSC1) 0001: 25 MHz/4 0010: Not used 0011: Not used 0100: Not used 0101: Not used 0110: 2.048 kHz(OSC0) 0111: 2.048 kHz/8 1000: 2.048 kHz/64 1001: 2.048 kHz/512 1010: 2.048 kHz/4096 1011: 2.048 kHz/32768 1100: 2.048 kHz/262144 1101: CNT0_END 1110: External 1111: Not used		
	936	CNT1 output polarity selection	0: Default Output 1: Inverted Output		
75	937	CNT1 CNT mode SYNC selection	0: Bypass 1: After two DFF		
	938	CNT1 DLY EDET FUNCTION Selection	0: Normal 1: DLY function edge detection (registers [929:926] = 0000/0001/0010)		
Multi	function2				
		Single 3-bit LUT	00000: Matrix A - In2 Matrix B - In1 Matrix C - In0 DLY_IN - LOW		
	0.40.000	Single DFF w RST and SET	10000: Matrix A - D Matrix B - nSET/nRST Matrix C - CLK DLY_IN - LOW		
75	943:939	Single CNT/DLY	00001: Matrix A - DLY_IN (CNT) Matrix B - EXT_CLK (CNT) Matrix C - NC DLY_OUT connected to LUT/DFF		
		$CNT/DLY \rightarrow LUT$	00010: Matrix A - DLY_IN Matrix B - In1 Matrix C - In0 DLY_OUT connected to In2		

Preliminary

	Address	Signal Function	Register Bit Definition	I ² C Interface	
Byte	Register Bit			Read	Write
75		$CNT/DLY \rightarrow DFF$	10010: Matrix A - DLY_IN Matrix B - nSET/nRST Matrix C - CLK DLY_OUT connected to D		
		$CNT/DLY \rightarrow LUT$	00110: Matrix A - In2 Matrix B - DLY_IN Matrix C - In0 DLY_OUT connected to In1		
		$CNT/DLY \rightarrow DFF$	10110: Matrix A - D Matrix B - DLY_IN Matrix C - CLK DLY_OUT connected to nSET/nRST		
	943:939	CNT/DLY → LUT	01010: Matrix A - In2 Matrix B - In1 Matrix C - DLY_IN DLY_OUT connected to In0		
		$CNT/DLY \rightarrow DFF$	11010: Matrix A - D Matrix B - nSET/nRST Matrix C - DLY_IN DLY_OUT connected to CLK		
		$LUT \rightarrow CNT/DLY$	00011: Matrix A - In2 Matrix B - In1 Matrix C - In0 LUT_OUT connected to DLY_IN		
		$DFF \rightarrow CNT/DLY$	10011: Matrix A - D Matrix B - nSET/nRST Matrix C - CLK DFF_OUT connected to DLY_IN		
76	945:944	CNT2 initial value selection	00: Bypass the initial 01: Initial 0 10: Initial 1 11: Initial 1		
76	949:946	CNT2 function and edge mode selection	0000: Both edge Delay 0001: Falling edge delay 0010: Rising edge delay 0011: Both edge One Shot 0100: Falling edge One Shot 0101: Rising edge One Shot 0101: Rising edge freq detect 0111: Falling edge freq detect 1000: Rising edge freq detect 1001: Both edge detect 1011: Rising edge detect 1010: Falling edge detect 1000: Both edge reset CNT 1101: Falling edge reset CNT 1111: Rising edge reset CNT 1111: HIGH level reset CNT		

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

dial

	Address	Signal Function	Pagister Bit Definition	I ² C Interface	
Byte	Register Bit			Read	Write
76	953:950	DLY/CNT2 Clock Source Select	Clock source sel[3:0] 0000: 25 MHz(OSC1) 0001: 25 MHz/4 0010: Not used 0011: Not used 0100: Not used 0101: Not used 0110: 2.048 kHz(OSC0) 0111: 2.048 kHz/64 1000: 2.048 kHz/512 1010: 2.048 kHz/512 1010: 2.048 kHz/32768 1100: 2.048 kHz/262144 1101: CNT1_END 1110: External 1111: Not used		
	954	CNT2 output polarity selection	0: Default Output 1: Inverted Output		
	955	CNT2 CNT mode SYNC selection	0: Bypass 1: After two DFF		
	956	CNT2 DLY EDET Function Selection	0: Normal 1: DLY function edge detection (registers [949:946] = 0000/0001/ 0010)		
Multi	function3				
77	958:957	CNT3 initial value selection	00: Bypass the initial 01: Initial 0 10: Initial 1 11: Initial 1		
	959	Multi3 register configure	Refer table in register [967:964]		
78	963:960	CNT3 function and edge mode selection	0000: Both edge Delay 0001: Falling edge delay 0010: Rising edge delay 0011: Both edge One Shot 0100: Falling edge One Shot 0101: Rising edge One Shot 0101: Rising edge freq detect 0111: Falling edge freq detect 1000: Rising edge freq detect 1001: Both edge detect 1010: Falling edge detect 1010: Falling edge detect 1100: Both edge reset CNT 1101: Falling edge reset CNT 1110: Rising edge reset CNT 1111: HIGH level reset CNT		

Preliminary

	Address	Signal Function	Register Bit Definition	I ² C Interface		
Byte	Register Bit	Signal Function	Register bit Demition	Read	Write	
	959 967:964	Single 3-bit LUT	00000: Matrix A - In2 Matrix B - In1 Matrix C - In0 DLY_IN - LOW			
		Single DFF w RST and SET	10000: Matrix A - D Matrix B - nSET/nRST Matrix C - CLK DLY_IN - LOW			
		Single CNT/DLY	00100: Matrix A - DLY_IN (CNT) Matrix B - EXT_CLK (CNT) Matrix C - NC DLY_OUT connected to LUT/DFF			
		CNT/DLY → LUT	01000: Matrix A - DLY_IN Matrix B - In1 Matrix C - In0 DLY_OUT connected to In2			
		959 967:964	$CNT/DLY \rightarrow DFF$	11000: Matrix A - DLY_IN Matrix B - nSET/nRST Matrix C - CLK DLY_OUT connected to D		
78			$CNT/DLY \rightarrow LUT$	01001: Matrix A - In2 Matrix B - DLY_IN Matrix C - In0 DLY_OUT connected to In1		
		$CNT/DLY \rightarrow DFF$	11001: Matrix A - D Matrix B - DLY_IN Matrix C - CLK DLY_OUT connected to nSET/nRST			
		$CNT/DLY \rightarrow LUT$	01010: Matrix A - In2 Matrix B - In1 Matrix C - DLY_IN DLY_OUT connected to In0			
		$CNT/DLY \rightarrow DFF$	11010: Matrix A - D Matrix B - nSET/nRST Matrix C - DLY_IN DLY_OUT connected to CLK			
		$LUT \rightarrow CNT/DLY$	01100: Matrix A - In2 Matrix B - In1 Matrix C - In0 LUT_OUT connected to DLY_IN			
		$DFF \to CNT/DLY$	11100: Matrix A - D Matrix B - nSET/nRST Matrix C - CLK (DFF_OUT connected to DLY_IN)			

Da	ta	sh	e	ət
		311		

Preliminary

dial

	Address	Signal Eurotion	Register Bit Definition	I ² C Interface	
Byte	Register Bit	Signal Function		Read	Write
79	971:968	DLY/CNT3 Clock Source Select	Clock source sel[3:0] 0000: 25 MHz(OSC1) 0001: 25 MHz/4 0010: Not used 0011: Not used 0100: Not used 0101: Not used 0110: 2.048 kHz(OSC0) 0111: 2.048 kHz/8 1000: 2.048 kHz/64 1001: 2.048 kHz/512 1010: 2.048 kHz/32768 1100: 2.048 kHz/32768 1100: 2.048 kHz/262144 1101: CNT2_END 1110: External 1111: Not used		
	972	CNT3 output polarity selection	0: Default Output 1: Inverted Output		
	973	CNT3 CNT mode SYNC selection	0: Bypass 1: After two DFF		
	974	CNT3 DLY EDET FUNCTION Selection	0: normal 1: DLY function edge detection (registers [963:960] = 0000/0001/ 0010)		
Multi	function4				
79	975	CNT4 CNT mode SYNC selection	0: Bypass 1: After two DFF		
	977:976	CNT4 initial value selection	00: bypass the initial 01: Initial 0 10: Initial 1 11: Initial 1		
	978	CNT4 DLY EDET FUNCTION Selection	0: Normal 1: DLY function edge detection (registers [991:988] = 0000/0001/ 0010)		
7A	979	Single 3-bit LUT	00000: Matrix A - In2 Matrix B - In1 Matrix C - In0 DLY_IN - LOW		
	979 983:980	Single DFF with RST and SET	10000: Matrix A - D Matrix B - nSET/nRST Matrix C - CLK DLY_IN - LOW		

Preliminary

Address		Signal Function	Pagister Bit Definition	I ² C Interface	
Byte	Register Bit	Signal Function	Register bit Definition	Read	Write
		Single CNT/DLY	00001: Matrix A - DLY_IN (CNT) Matrix B - EXT_CLK (CNT) Matrix C - NC DLY_OUT connected to LUT/DFF		
		$CNT/DLY \rightarrow LUT$	00010: Matrix A - DLY_IN Matrix B - In1 Matrix C - In0 DLY_OUT connected to In2		
		$CNT/DLY \rightarrow DFF$	10010: Matrix A - DLY_IN Matrix B - nSET/nRST Matrix C - CLK DLY_OUT connected to D		
		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
7A	979 983:980	$CNT/DLY \rightarrow DFF$	10110: Matrix A - D Matrix B - DLY_IN Matrix C - CLK DLY_OUT connected to nSET/nRST		
		CNT/DLY → LUT	01010: Matrix A - In2 Matrix B - In1 Matrix C - DLY_IN DLY_OUT connected to In0		
		$CNT/DLY \rightarrow DFF$	11010: Matrix A - D Matrix B - nSET/nRST Matrix C - DLY_IN DLY_OUT connected to CLK		
		LUT \rightarrow CNT/DLY	00011: Matrix A - In2 Matrix B - In1 Matrix C - In0 LUT_OUT connected to DLY_IN		
		$DFF \to CNT/DLY$	10011: Matrix A - D Matrix B - nSET/nRST Matrix C - CLK DFF_OUT connected to DLY_IN		

	Address	Signal Eurotion	Periotor Pit Definition	I ² C Int	terface
Byte	Register Bit		Clock source sel[3:0]	Read	Write
78	987;984	DLY/CNT4 Clock Source Select	Clock source sel[3:0] 0000: 25 MHz(OSC1) 0001: 25 MHz/4 0010: Not used 0101: Not used 0101: Not used 0101: Not used 0110: 2.048 kHz(OSC0) 0111: 2.048 kHz/8 1000: 2.048 kHz/8 1000: 2.048 kHz/512 1010: 2.048 kHz/4096 1011: 2.048 kHz/32768 1100: 2.048 kHz/262144 1101: CNT3_END 1110: External 1111: Not used		
	991:988	CNT4 function and edge mode selection	0000: Both edge Delay 0001: Falling edge delay 0010: Rising edge delay: 0011: Both edge One Shot 0100: Falling edge One Shot 0101: Rising edge One Shot 0101: Rising edge freq detect 0111: Falling edge freq detect 1000: Rising edge freq detect 1001: Both edge detect 1010: Falling edge detect 1011: Rising edge detect 1100: Both edge Reset CNT 1101: Falling edge Reset CNT 1110: Rising edge Reset CNT 1111: HIGH level Reset CNT		
70	992	CNT4 output polarity selection	0: Default Output 1: Inverted Output		
	999:993	Reserved			
7D 7E	1015:1000	Multi0_LUT4_DFF setting	 [15]:LUT4_1 [15]/DFF14 or LATCH Select 0: DFF function 1: LATCH function [14]:LUT4_1 [14]/DFF14 Output Select 0: Q output 1: nQ output [13]:LUT4_1 [13]/DFF14 Initial Polarity Select 0: LOW 1: HIGH [12:0]:LUT4_1 [12:0] 		
7F 80	1031:1016	REG_CNT0_D [15:0]	Data[15:0]		

Preliminary

	Address	Signal Europian	Register Bit Definition	I ² C Int	erface
Byte	Register Bit	Signal Function	Register Bit Definition	Read	Write
81	1039:1032	Multi1_LUT3_DFF setting	[7]:LUT3_7 [7]/DFF10 or LATCH Se- lect 0: DFF function 1: LATCH function [6]:LUT3_7 [6]/DFF10 Output Select 0: Q output 1: nQ output [5]:LUT3_7 [5]/DFF10 0: nRST from Matrix Output 1: nSET from Matrix Output [4]:LUT3_7 [4]/DFF10 Initial Polarity Select 0: LOW 1: HIGH [3:0]:LUT3_7 [3:0]		
82	1047:1040	REG_CNT1_D[7:0]	Data[7:0]		
83	1055:1048	Multi2_LUT3_DFF setting	 [7]:LUT3_8 [7]/DFF11 or LATCH Select 0: DFF function 1: LATCH function [6]:LUT3_8 [6]/DFF11 Output Select 0: Q output 1: nQ output [5]:LUT3_8 [5]/DFF11 0: nRST from Matrix Output [5]:LUT3_8 [4]/DFF11 Initial Polarity Select 0: LOW 1: HIGH [3:0]:LUT3_8 [3:0] 		
84	1063:1056	REG_CNT2_D [7:0]	Data [7:0]		
85	1071:1064	Multi3_LUT3_DFF setting	 [7]:LUT3_9 [7]/DFF12 or LATCH Select 0: DFF function 1: LATCH function [6]:LUT3_9[6]/DFF12 Output Select 0: Q output 1: nQ output [5]:LUT3_9 [5]/DFF12 0: nRST from Matrix Output 1: nSET from Matrix Output [4]:LUT3_9 [4]/DFF12 Initial Polarity Select 0: LOW 1: HIGH [3:0]:LUT3_9 [3:0] 		
86	1079:1072	REG CNT3 D [7:0]	Data[7:0]		1

Preliminary

Address		Signal Function	Register Bit Definition	I ² C Interface	
Byte	Register Bit	Signal Function	Register bit Demittion	Read	Write
87			 [7]: LUT3_10 [7]/DFF13 or LATCH Select 0: DFF function 1: LATCH function 		
			[6]:LUT3_10[6]/DFF13 Output Select 0: Q output 1: nQ output		
	1087:1080	Multi4_LUT3_DFF setting	[5]:LUT3_10 [5]/DFF13 0: nRST from Matrix Output 1: nSET from Matrix Output		
		[4]:LUT3_10 [4]/DFF13 Initial Polarity Select 0: LOW 1: HIGH			
88	1005-1088		Data[7:0]		
80	1095.1000				
8A	1111:1096	CNT0 (16bits) Counted Value	Virtual Input		
8B	1119:1112	CNT4 (8bits) Counted Value	Virtual Input		
8C	1127:1120	Reserved			
8D	1135:1128	Reserved			
Com	pinational Log	jic			
			 [7]:LUT3_1 [7]/DFF4 or LATCH Select 0: DFF function 1: LATCH function [6]:LUT3_1 [6]/DFF4 Output Select 0: Q output 1: nQ output 		
8E	1143:1136	LUT3_1_DFF4 or Chopper0 setting	[5]:LUT3_1 [5]/DFF4 Initial Polarity Select 0: LOW 1: HIGH		
			[4]:LUT3_1 [4]/DFF4 0: nRST from Matrix Output 1: nSET from Matrix Output		
		[3]:LUT3_1 [3]/DFF4 Active level selection for RST/SET 0: Active LOW-level reset/set 1: Active HIGH-level reset/set			
			[2:0]: LUT3_1 [2:0]		

Address		Signal Eurotion	Pagister Bit Definition	I ² C Interface	
Byte	Register Bit			Read	Write
8F			 [7]:LUT3_2 [7]/DFF5 or LATCH Select 0: DFF function 1: LATCH function [6]:LUT3_2 [6]/DFF5 Output Select 0: Q output 1: nQ output 		
	1151:1144	LUT3_2_DFF5 or Chopper1 setting	[5]:LUT3_2 [5]/DFF5 Initial Polarity Select 0: LOW 1: HIGH		
			[4]:LUT3_2 [4]/DFF5 0: nRST from Matrix Output 1: nSET from Matrix Output		
			 [3]:LUT3_2 [3]/DFF5 Active level selection for RST/SET 0: Active LOW-level reset/set 1: Active HIGH level reset/set 		
			[2:0]: LUT3_2 [2:0]		
			[7]:LUT3_3 [7]/DFF6 or LATCH Select 0: DFF function 1: LATCH function		
			[6]:LUT3_3 [6]/DFF6 Output Select 0: Q output 1: nQ output		
90	1159:1152	LUT3_3_DFF6 setting	[5]:LUT3_3 [5]/DFF6 Initial Polarity Select 0: LOW 1: HIGH		
			[4]:LUT3_3 [4]/DFF6 0: nRST from Matrix Output 1: nSET from Matrix Output		
			 [3]:LUT3_3 [3]/DFF6 Active level selection for RST/SET 0: Active LOW-level reset/set 1: Active HIGH level reset/set 		
			[2:0]: LUT3_3 [2:0]		

Preliminary

Table 67: Register Map (Continued)

	Address	Circul Francisco	De vieten Bit Definition	I ² C Int	erface
Byte	Register Bit	Signal Function Register Bit Definition [7]:LUT3_4 [7]/DFF7 or LATCH Select 0: DFF function	Read	Write	
			[7]:LUT3_4 [7]/DFF7 or LATCH Select 0: DFF function 1: LATCH function		
			[6]:LUT3_4 [6]/DFF7 Output Select 0: Q output 1: nQ output		
91	1167:1160	LUT3_4_DFF7 setting	[5]:LUT3_4 [5]/DFF7 Initial Polarity Select 0: LOW 1: HIGH		
			[4]:LUT3_4 [4]/DFF7 0: nRST from Matrix Output 1: nSET from Matrix Output		
			 [3]:LUT3_4 [3]/DFF7 Active level selection for RST/SET 0: Active LOW-Level reset/set 1: Active HIGH-Level reset/set 		
			[2:0]: LUT3_4 [2:0]		L
	1171:1168	LUT2_3 VAL or PGen Size	LUT2_3[3:0] or PGen pattern size[3:0]		
	1172	LUT3_1 or DFF4 Select or Chopper 0 registers [1265:1264]	0: LUT3_1 1: DFF4		
92	1173	LUT3_2 or DFF5 Select or Chopper 1 registers [1267:1266]	0: LUT3_2 1: DFF5		
	1174	LUT3_3 or DFF6 Select	0: LUT3_3 1: DFF6		
	1175	LUT3_4 or DFF7 Select	0: LUT3_4 1: DFF7		
93 94	1191:1176	PGen data	PGen Data[15:0]		
	1192	LUT2_3 or PGen Select	0: LUT2_3 1: PGen		
	1193	LUT2_3 or PGen Active level selection for RST/SET	0: Active LOW-Level reset/set 1: Active HIGH-Level reset/set		
	1194	LUT3_6 or Pipe Delay/RIPP CNT Active level selection for RST/SET	0: Active LOW-Level reset/set 1: Active HIGH-Level reset/set		
05	1195	OUT of LUT3_6 or Out0 of Pipe Delay/RIPP CNT Select	0: LUT3_6 1: OUT0 of Pipe Delay or RIPP CNT		
30	1196	Pipe Delay or RIPP CNT Selection	0: Pipe delay mode selection 1: Ripple Counter mode selection		
	1197	Pipe Delay OUT1 Polarity Select	0: Non-inverted 1: Inverted		
	1198	LUT4_0 or DFF9 Select	0: LUT4_0 1: DFF9		
	1199	LUT3_0 or DFF3 Select	0: LUT3_0 1: DFF3		

Datasheet

Revision 2.0

	Address	Cinnel Function	De minten Dit Definition	I ² C Int	erface
Byte	Register Bit	Signal Function	Register Bit Definition	Read	Write
96	1207:1200	7:1200 LUT value or Pipe Delay OUT sel or nSET/ END value	[7:4]: LUT3_6 [7:4]/REG_S1[3:0] Pipe Delay OUT1 sel [3:0]: LUT3_6 [3:0]/REG_S0[3:0] Pipe Delay OUT0 sel at RIPP CNT mode: bits[1202:1200] is the nSET value. bits[1205:1203] is the END value.		
			bit[1206] is the range control: 0: Full cycle 1: Range cycle		
			bit[1207]: Not used		
97	1223:1208	223:1208 LUT4_0_DFF9 setting	 [15]:LUT4_0 [15]/DFF9 or LATCH Select 0: DFF function 1: LATCH function [14]:LUT4_0 [14]/DFF9 Output Select 0: Q output 1: nQ output [13]:LUT4_0 [13]/DFF9 Initial Polarity Select 0: LOW 1: HIGH 		
			 [12]:LUT4_0 [12]/DFF9 stage selection 0: Q of first DFF 1: Q of second DFF [11]:LUT4_0 [11]/DFF9 0: nRST from Matrix Output 1: nSET from Matrix Output [10]:LUT4_0 [10]/DFF9 Active level selection for RST/SET 0: Active LOW-Level reset/set 1: Active HIGH-Level reset/set [9:0]: LUT4_0 [9:0] 		

Preliminary

Address		Signal Eurotion	Pogistor Bit Dofinition	I ² C Interface	
Byte	Register Bit			Read	Write
			 [7]:LUT3_0 [7]/DFF3 or LATCH Select 0: DFF function 1: LATCH function [6]:LUT3_0 [6]/DFF3 Output Select 0: O output 		
			1: nQ output		
			[5]:LUT3_0 [5]/DFF3 Initial Polarity Select 0: LOW 1: HIGH		
99	1231:1224	231:1224 LUT3_0_DFF3 setting	[4]:LUT3_0 [4]/DFF3stage selection0: Q of first DFF1: Q of second DFF		
			[3]:LUT3_0 [3]/DFF3 0: nRST from Matrix Output 1: nSET from Matrix Output		
			 [2]:LUT3_0 [2]/DFF3 Active level selection for RST/SET 0: Active LOW-Level reset/set 1: Active HIGH-Level reset/set 		
			[1:0]: LUT3_0 [1:0]		
	1232	Filter or Edge Detector selection	0: Filter 1: Edge Det.		
	1233	Filter or Edge Detector Output Polarity Select	0: Non-inverted output 1: Inverted output		
9A	1235:1234	Filter or Edge Detector Select the edge mode	00: Rising Edges Det. 01: Falling Edge Det. 10: Both Edge Det. 11: Both Edge Delay		
	1237:1236	Delay Value Select for Programmable Delay or Edge Detector	00: 125 ns 01: 250 ns 10: 375 ns 11: 500 ns		
	1239:1238	Select the Edge Mode of Programmable Delay or Edge Detector	00: Rising Edge Detector 01: Falling Edge Detector 10: Both Edge Detector 11: Both Edge Delay		

Preliminary

Address		Signal Function	Pagister Bit Definition	I ² C Interface	
Byte	Register Bit	[7]:LUT3 5 [7]/DFF8 or LATCH Select	Read	Write	
			 [7]:LUT3_5 [7]/DFF8 or LATCH Select 0: DFF function 1: LATCH function [6]:LUT3_5 [6]/DFF8 Output Select 0: Q output 1: nQ output 		
9B	1247:1240	LUT3_5_DFF8 setting	[5]:LUT3_5 [5]/DFF8 Initial Polarity Select 0: LOW 1: HIGH		
			[4]:LUT3_5 [4]/DFF8 0: nRST from Matrix Output 1: nSET from Matrix Output		
			 [3]:LUT3_5 [3]/DFF8 Active level selection for RST/SET 0: Active LOW level reset/set 1: Active HIGH level reset/set 		
			[2:0]: LUT3_5 [2:0]		
	1051 1010	LUT2_0/DFF0 setting	 [3]:LUT2_0 [3]/DFF0 or LATCH Select 0: DFF function 1: LATCH function [2]:LUT2_0 [2]/DFF0 Output Select 0: Q output 1: nQ output 		
			[1]:LUT2_0 [1]/DFF0 Initial Polarity Select 0: LOW 1: HIGH		
			[0]:LUT2_0 [0]		
90			[3]:LUT2_1 [3]/DFF1 or LATCH Select0: DFF function1: LATCH function		
	1255:1252	LUT2 1/DFF1 setting	[2]:LUT2_1 [2]/DFF1 Output Select 0: Q output 1: nQ output		
			[1]:LUT2_1 [1]/DFF1 Initial Polarity Select 0: LOW 1: HIGH		
			[0]:LUT2_1 [0]		

dia

Preliminary

Address	Signal Function	Register Bit Definition	I ² C Int	erface	
Byte	Register Bit		Register Bit Definition	Read	Write
			[3]:LUT2_2 [3]/DFF2 or LATCH Select 0: DFF function 1: LATCH function		
	1259:1256	LUT2_2/DFF2 setting	[2]:LUT2_2 [2]/DFF2 Output Select 0: Q output 1: nQ output		
			[1]:LUT2_2 [1]/DFF2 Initial Polarity Select 0: LOW 1: HIGH		
90			[0]:LUT2_2 [0]		
	1260	LUT2_0 or DFF0 Select	0: LUT2_0 1: DFF0		
	1261	LUT2_1 or DFF1 Select	0: LUT2_1 1: DFF1		
	1262	LUT2_2 or DFF2 Select	0: LUT2_2 1: DFF2		
	1263	LUT3_5 or DFF8 Select	0: LUT3_5 1: DFF8		
	1264	LUT3_1/DFF4 or Chopper0 Select	0: LUT3_1/DFF_4 1: Chopper 0		
	1265	Chopper0 polarity Select	0: Q 1: nQ		
9E	1266	LUT3_2/DFF5 or Chopper1 Select	0: LUT3_2/DFF_5 1: Chopper 1		
	1267	Chopper1 polarity Select	0: Q 1: nQ		
	1271:1268	Reserved			
9F	1272	Reserved			
9F	1279:1273	Reserved			
PWM	Macrocell				
A0	1287:1280	Reserved			
A1	1295:1288	Initial PWM0 Duty Cycle value	PWM0 Initial Duty Cycle value [7:0]		

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Table 67: Register Map (Continued)

	Address	Signal Eurotion	Pagister Bit Definition	I ² C Int	erface
Byte	te Register Bit	Signal Function	Register bit Definition	Read	Write
	1296	I ² C trigger for PWM0	0: Don't update duty cycle value 1: Update duty cycle value		
	1297	I ² C trigger for PWM1	0: Don't update duty cycle value 1: Update duty cycle value		
۸2	1298	PWM0 8-bit or 7-bit resolution	0: 8-bit PWM0 1: 7-bit PWM0		
AZ	1299	PWM0 OUT+ output polarity selection	0: Non-Inverted Output 1: Inverted Output		
	1300	PWM0 OUT- output polarity selection	0: Non-Inverted Output 1: Inverted Output		
	1301	PWM0 SYNC On/Off for PWM0	0: Synchronous Power-Down 1: Asynchronous Power-Down		
• •	1302	PWM0 Continuous/Autostop mode	0: Continuous mode 1: PWM Duty Cycle Counter Autostop at 0 % or 100 %		
AZ	1303	PWM0 Boundary OSC disable	0: OSC is always enabled at boundaries 1: Automatically Disable OSC		
A3	1311:1304	Initial PWM1 Duty Cycle value	PWM1 Initial Duty Cycle value [7:0]		
A4	1319:1312	Current PWM0 Duty Cycle value for I ² C read	PWM0 Current Duty Cycle value for I ² C read [7:0]		
A5	1327:1320	Current PWM1 Duty Cycle value for I ² C read	PWM1 Current Duty Cycle value for I ² C read [7:0]		
A6	1335:1328	PWM0 Preset 16 bytes Duty Cycle/CCMP Vref values \rightarrow byte0	Byte0 [7:0]		
A7	1343:1336	PWM0 Preset 16 bytes Duty Cycle/CCMP Vref values \rightarrow byte1	Byte1 [15:8]		
A8	1351:1344	PWM0 Preset 16 bytes Duty Cycle/CCMP Vref values \rightarrow byte2	Byte2 [23:16]		
A9	1359:1352	PWM0 Preset 16 bytes Duty Cycle/CCMP Vref values \rightarrow byte3	Byte3 [31:24]		
AA	1367:1360	PWM0 Preset 16 bytes Duty Cycle/CCMP Vref values \rightarrow byte4	Byte4 [39:32]		
AB	1375:1368	PWM0 Preset 16 bytes Duty Cycle/CCMP Vref values \rightarrow byte5	Byte5 [47:40]		
AC	1383:1376	PWM0 Preset 16 bytes Duty Cycle/CCMP Vref values \rightarrow byte6	Byte6 [55:48]		
AD	1391:1384	PWM0 Preset 16 bytes Duty Cycle/CCMP Vref values \rightarrow byte7	Byte7 [63:56]		
AE	1399:1392	PWM0 Preset 16 bytes Duty Cycle/CCMP Vref values \rightarrow byte8	Byte8 [71:64]		
AF	1407:1400	PWM0 Preset 16 bytes Duty Cycle/CCMP Vref values → byte9	Byte9 [79:72]		
B0	1415:1408	PWM0 Preset 16 bytes Duty Cycle/CCMP Vref values → byte10	Byte10 [87:80]		

Datasheet

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

	Address	Circul Francisco	De vieten Bit Definitien	I ² C Int	erface
Byte	Register Bit	Signal Function Register Bit Demittion PWM0 Preset 16 bytes Duty Cycle/CCMP Byte11 [95:88]	Read	Write	
B1	1423:1416	PWM0 Preset 16 bytes Duty Cycle/CCMP Vref values \rightarrow byte11	Byte11 [95:88]		
B2	1431:1424	PWM0 Preset 16 bytes Duty Cycle/CCMP Vref values→ byte12	Byte12 [103:96]		
В3	1439:1432	PWM0 Preset 16 bytes Duty Cycle/CCMP Vref values \rightarrow byte13	Byte13 [111:104]		
В4	1447:1440	PWM0 Preset 16 bytes Duty Cycle/CCMP Vref values \rightarrow byte14	Byte14 [119:112]		
В5	1455:1448	PWM0 Preset 16 bytes Duty Cycle/CCMP Vref values \rightarrow byte15	Byte15 [127:120]		
B6	1459:1456	PWM0 Period Counter Clock Source selection	0000: CLK_OSC0 0001: CLK_OSC0/4 0010: CLK_OSC1/ 0011: CLK_OSC1/8 0100: CLK_OSC1/64 0101: CLK_OSC1/512 0110: CLK_OSC1/4096 0111: CLK_OSC1/32768 1000: CLK_OSC1/262144 1001: From Flexible Divider 1010: Reserved 1011: External clock through matrix (Matrix OUT [79])		
	1460	PWM0 Phase Correct mode	0: Disable 1: Enable		
	1461	PWM0 Keep/Stop selection	0: Keep 1: Stop		
	1463:1462	Reserved			

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

	Address	Signal Europian	Pogiotor Bit Definition	I ² C Int	erface
Byte	Register Bit	Signal Function	Register bit Definition	Read	Write
B7	1465:1464	PWM0 Deadband selection	00: No Deadband 01: 1PWM0 clock cycles 10: 2PWM0 clock cycles 11: 3PWM0 clock cycles		
	1467:1466	PWM0 Duty Cycle source	Regular Mode: 00: from PWM Duty Cycle CNT Preset Registers Modes: 01: 8-byte MSB of RegFile 10: 8-byte LSB of RegFile 11: 16-byte RegFile		
	1469:1468	PWM0 Duty Cycle Counter Clock Source selection	00: Matrix output 01: PWM Period CNT overflow 10: Every 2 nd pulse of PWM Period CNT overflow 11: Every 8 th pulse of PWM Period CNT overflow		
	1471:1470	Reserved			
	1472	PWM1 8-bit or 7-bit resolution	0: 8-bit PWM1 1: 7-bit PWM1		
	1473	PWM1 OUT+ output polarity selection	0: Non-Inverted Output 1: Inverted Output		
	1474	PWM1 OUT- output polarity selection	0: Non-Inverted Output 1: Inverted Output		
B8	1475	PWM1 SYNC On/Off	0: Synchronous Power-Down 1: Asynchronous Power-Down		
	1476	PWM1 Continuous/Autostop mode	0: Continuous mode 1: PWM Duty Cycle Counter Autostop at 0 % or 100 %		
	1477	PWM1 Boundary OSC disable	0: OSC is always enabled at boundaries 1: Automatically Disable OSC		
Bo	1478	PWM1 Phase Correct mode	0: Disable 1: Enable		
DO	1479	PWM1 Keep/Stop selection	0: Keep 1: Stop		

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

Address		Signal Function	Projector Bit Definition	I ² C Interface	
Byte	Register Bit	Signal Function	Register Bit Definition	Read	Write
В9	1481:1480	PWM1 Deadband selection	00: No Deadband 01: 1PWM1 clock cycles 10: 2PWM1 clock cycles 11: 3PWM1 clock cycles		
	1483:1482	PWM1 Duty Cycle source	Regular Mode: 00: from PWM Duty Cycle Cnt Preset Registers Mode: 01: 8-byte MSB of RegFile 10: 8-byte LSB of RegFile 11: 16-byte RegFile		
	1485:1484	PWM1 Duty Cycle Counter Clock Source selection	00: Matrix output 01: PWM Period CNT overflow 10: Every 2nd pulse of PWM Period CNT overflow 11: Every 8th pulse of PWM Period CNT overflow		
	1487:1486	Reserved			
ВА	1491:1488	PWM1 Period Counter Clock Source selection	0000: CLK_OSC0 0001: CLK_OSC0/4 0010: CLK_OSC1 0011: CLK_OSC1/8 0100: CLK_OSC1/64 0101: CLK_OSC1/512 0110: CLK_OSC1/4096 0111: CLK_OSC1/32768 1000: CLK_OSC1/262144 1001: From Flexible Divider 1010: Reserved 1011: External clock through matrix (Matrix OUT [84])		
	1495:1492	Reserved			
BB	1503:1496	Reserved			
BC	1511:1504	Reserved			
BD	1519:1512	Reserved			
Rese	rved				
	1520	Reserved			
БГ	1521	Reserved			
DE	1522	Reserved			
	1523	Reserved			
BE	1527:1524	Reserved			
	1531:1528	Reserved			
БГ	1532	Reserved			
DF	1533	Reserved			
	1535:1534	Reserved			

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

	Address			I ² C Int	erface
Byte	Register Bit	Signal Function	Register bit Definition	Read	Write
	1539:1536	Reserved			
00	1540	Reserved			
CU	1541	Reserved			
C1	1543:1542	Reserved			
C1	1551:1544	Reserved			
C2	1559:1552	Reserved			
C3	1567:1560	Reserved			
C4	1575:1568	Reserved			
C5	1583:1576	Reserved			
C6	1591:1584	Reserved			
C7	1599:1592	Reserved			
C8	1607:1600	Reserved			
C9	1615:1608	Reserved			
CA	1623:1616	Reserved			
СВ	1631:1624	Reserved			
CC	1639:1632	Reserved			
CD	1647:1640	Reserved			
CE	1655:1648	Reserved			
CF	1663:1656	Reserved			
D0	1671:1664	Reserved			
D1	1679:1672	Reserved			
D2	1687:1680	Reserved			
D3	1695:1688	Reserved			
D4	1703:1696	Reserved			
D5	1711:1704	Reserved			
D6	1719:1712	Reserved			
D7	1727:1720	Reserved			
D8	1735:1728	Reserved			
D9	1743:1736	Reserved			
DA	1751:1744	Reserved			
DB	1759:1752	Reserved			
DC	1767:1760	Reserved			
DD	1775:1768	Reserved			
Rese	rved				
	1776	Reserved			
	1777	Reserved			
DE	1778	Reserved			
	1779	Reserved			
	1780	Reserved			

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

dial **Preliminary**

Address		Signal Eurotian	De sietes Dit Definities	I ² C Interface	
Byte	Register Bit	Signal Function	Register Bit Definition	Read	Write
	1781	Reserved			
DE	1782	Reserved			
	1783	Reserved			
	1784	Reserved			
	1785	Reserved			
	1786	Reserved			
DE	1787	Reserved			
DF	1788	Reserved			
	1789	Reserved			
	1790	Reserved			
	1791	Reserved			
	1792	Reserved			
	1793	Reserved			
	1794	Reserved			
50	1795	Reserved			
EU	1796	Reserved			
	1797	Reserved			
	1798	Reserved			
	1799	Reserved			
	1800	Reserved			
	1801	Reserved			
	1802	Reserved			
F 1	1803	Reserved			
	1804	Reserved			
	1805	Reserved			
	1806	Reserved			
	1807	Reserved			
	1808	Reserved			
	1809	Reserved			
	1810	Reserved			
E2	1811	Reserved			
	1812	Reserved			
	1813	Reserved			
	1814	Reserved			
	1815	Reserved			

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

dial

Address		Signal Eurotian	Desister Bit Definition	I ² C Interface		
Byte	Register Bit	Signal Function	Register bit Demition	Read	Write	
	1816	Reserved				
	1817	Reserved				
	1818	Reserved				
E2	1819	Reserved				
ES	1820	Reserved				
	1821	Reserved				
	1822	Reserved				
	1823	Reserved				
	1824	Reserved				
	1825	Reserved				
	1826	Reserved				
	1827	Reserved				
E4	1828	Reserved				
	1829	Reserved				
	1830	Reserved				
	1831	Reserved				
	1832	Reserved				
	1833	Reserved				
	1834	Reserved				
F 5	1835	Reserved				
ED	1836	Reserved				
	1837	Reserved				
	1838	Reserved				
	1839	Reserved				
	1840	Reserved				
	1841	Reserved				
	1842	Reserved				
E6	1843	Reserved				
	1844	Reserved				
	1845	Reserved				
	1846	Reserved				
E6	1847	Reserved				

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

 \cap

dial

Address		Signal Eurotian	Desister Bit Definition	I ² C Interface	
Byte	Register Bit	Signal Function	Register bit Demition	Read	Write
	1848	Reserved			
	1849	Reserved			
	1850	Reserved			
E7	1851	Reserved			
	1852	Reserved			
	1853	Reserved			
	1854	Reserved			
	1855	Reserved			
	1856	Reserved			
	1857	Reserved			
	1858	Reserved			
E 0	1859	Reserved			
	1860	Reserved			
	1861	Reserved			
	1862	Reserved			
	1863	Reserved			
	1864	Reserved			
	1865	Reserved			
	1866	Reserved			
EO	1867	Reserved			
E9	1868	Reserved			
	1869	Reserved			
	1870	Reserved			
	1871	Reserved			
	1872	Reserved			
	1873	Reserved			
	1874	Reserved			
E v	1875	Reserved			
	1876	Reserved			
	1877	Reserved			
	1878	Reserved			
	1879	Reserved			

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

 \cap

dial

Address		Signal Eurotian	Desister Bit Definition	I ² C Interface		
Byte	Register Bit	Signal Function	Register bit Demition	Read	Write	
	1880	Reserved				
	1881	Reserved				
	1882	Reserved				
гр	1883	Reserved				
ED	1884	Reserved				
	1885	Reserved				
	1886	Reserved				
	1887	Reserved				
	1888	Reserved				
	1889	Reserved				
	1890	Reserved				
ГС	1891	Reserved				
EC	1892	Reserved				
	1893	Reserved				
	1894	Reserved				
	1895	Reserved				
	1896	Reserved				
	1897	Reserved				
	1898	Reserved				
ED	1899	Reserved				
	1900	Reserved				
	1902:1901	Reserved				
	1903	Reserved				
	1904	Reserved				
	1905	Reserved				
	1906	Reserved				
	1907	Reserved				
	1910:1908	Reserved				
	1911	Reserved				
	1912	Reserved				
	1913	Reserved				
	1914	Reserved				
	1915	Reserved				
	1918:1916	Reserved				
	1919	Reserved				

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Preliminary

 \cap

dial

Address		Signal Eurotian	Pagiotor Bit Dofinition	I ² C Interface	
Byte	Register Bit		Register bit Demitton	Read	Write
	1920	Reserved			
	1921	Reserved			
FO	1922	Reserved			
FU	1923	Reserved			
	1926:1924	Reserved			
	1927	Reserved			
	1928	Reserved			
	1929	Reserved			
E 1	1930	Reserved			
	1931	Reserved			
	1934:1932	Reserved			
	1935	Reserved			
	1936	Reserved			
	1937	Reserved			
E2	1938	Reserved			
ΓZ	1939	Reserved			
	1942:1940	Reserved			
	1943	Reserved			
F3	1947:1944	Reserved			
	1948	Reserved			
	1951:1949	Reserved			
	1952	Reserved			
	1953	Reserved			
E4	1954	Reserved			
Г 4	1955	Reserved			
	1958:1956	Reserved			
	1959	Reserved			

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Address		Oliveral Exception	Devictor Di Definition	I ² C Interface			
Byte	Register Bit	Signal Function	Register Bit Definition	Read	Write		
	1960	I ² C reset bit with reloading NVM into Data register (soft reset)	0: Keep existing condition 1: Reset execution				
	1961	IO Latching Enable During I ² C Write Interface	IO Latching Enable During I ² C Write Interface 0: Disable 1: Enable				
	1963:1962	Reserved					
	1964	Protect mode enable	0: Disable 1: Enable				
F5	1965 Register protection mode bit 0 0 0 1		000: All open read/write (mode 0) 001: Partly lock read (mode 1) 010: Partly lock read2 (mode 2) 011: Partly lock read2/write (mode 3) 100: All lock read (mode 4) 101: All lock write (mode 5)				
	1966 Register protection mode bit 1 1		110: All lock read/write (mode 6)				
	1967	Register protection mode bit 2					
F6	1975:1968	l ² C write mask bits	1: Mask 0: Overwrite				
F7	1983:1976	Reserved					
F8	1991:1984	Reserved					
F9	1992	Reserved					
	1993	Reserved					
F9	1995:1994	Reserved					
	1999:1996	Reserved					
FA	2007:2000	Reserved					
FB	2015:2008	Reserved					
FC	2023:2016	Reserved					
	2027:2024	I ² C slave address					
	2028	Slave address selection bit0	0: From register [2024] 1: From GPI				
FD	2029	Slave address selection bit1	0: From register [2025] 1: From GPIO1				
	2030	Slave address selection bit2	0: From register [2026] 1: From GPIO4				
	2031	Slave address selection bit3	0: From register [2027] 1: From GPIO6				

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Address		Signal Eurotian	Perinter Pit Definition	I ² C Interface	
Byte	Register Bit		Register bit Demittion	Read	Write
FE	2032	I ² C operation disable bit	0: I ² C operation enable; matrix in 32/33 select I ² C_virtual_0/1 Input 1: I ² C operation disable; matrix in 32/ 33 select GPIO2/3 digital input		
	2033	Reserved			
	2034	Reserved			
	2039:2035	Reserved			
FF	2047:2040	Reserved			

24 Package Top Marking Definitions

24.1 STQFN 20L 2 MM X 3 MM 0.4P FCD GREEN

Notes:

Symbol

Α

A1

A3

D

D1

E1

Dá

E2

D3

E3 S1

22

S3 S4

\$5

S6

S7

1. All dimensions are in millimeters.

be measured in that radius area.

sink slug as well as the terminal.

MILLIMETER

MAX

0.050

0.20

2.05

3.05

1.25

2.05

1.05

0.49

1.01

0.50

1.20

0.71

0.55

0.57

NDM.

0.55

0.020

0.15

2.00 3.00

1.20

2.00

1.00

0.44

0.96

0.45

1.15

0.66

0.50

0.52

0.208 REF

0.180 REF

0.300 REF

Controlling dimension: mm

MIN

0.50

0.000

0.10

1.95

2.95

1.15

1.95

0.95

0.39

0.91

0,40

1.10

0.61

0.45

0.47

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

25 **Package Information**

25.1 PACKAGE OUTLINES FOR STQFN 20L 2 MM X 3 MM 0.4P FCD GREEN PACKAGE

2. Dimension "b" applies to metalized terminal and is

measured between 0.15 mm and 0.30 mm from the

terminal tip. If the terminal has the optional radius on the

other end of the terminal, the dimension "b" should not

3. Bilateral coplanarity zone applies to the exposed heat

MIN.

0.020

0.000

0.004

0.077

0.116

0.045

0.077

0.037

0.015

0.036

0.016

0.043

0.024

0.018

0.018

INCH

NDM.

0.022

0.001

0.006

0.079

0.118

0.047

0.079

0.039

0.017

0.038

0.018

0.045

0.026

0.020

0.020

0.008 REF

0.007 REF

0.012 REF

MAX.

0.024

0.002

0.008

0.02

0.081		AT T	iax ie	ad co	planarii	y 0.0:	o mm			
0.120	Standard tolerance: ±0.05									
0.049			Ν	4ILLIME TE	R		INCH			
0.081		SYMBOL	MIN.	NDM.	MAX.	MIN.	NDM.	MAX		
0.041		e		0.40 BSC	;	(0.016 BSC	2		
0.019		L	0.175	0.225	0.275	0.007	0.009	0.01		
0.040		L1	0.250	0.300	0.350	0.010	0.012	0.01		
0.020		L2	0.300	0.350	0.400	0.012	0.014	0.01		
0.047		L3	0.330	0.380	0.430	0.013	0.015	0.01		
0.028		b	0.130	0.180	0.230	0.005	0.007	0.00		
0.022		۵۵۵		0.07			0.003			
0.022		bbb		0.07			0.003			
		CCC		0.1			0.004			
- ddd		0.05			0.002					
-		eee		0.08		0.003				

Figure 110: STQFN 20L 2x3mm 0.4P FCD Package

dialo

2	in	00
U		UU
SEMI	CONDI	JCTOR

Datasheet

Revision 2.0

CFR0011-120-00

© 2020 Dialog Semiconductor

The Moisture Sensitivity Level (MSL) is an indicator for the maximum allowable time period (floor lifetime) in which a moisture sensitive plastic device, once removed from the dry bag, can be exposed to an environment with a specified maximum temperature and a maximum relative humidity before the solder reflow process. The MSL classification is defined in Table 68.

For detailed information on MSL levels refer to the IPC/JEDEC standard J-STD-020, which can be downloaded from http://www.jedec.org.

The [PACKAGE_NAME] package is qualified for MSL [n].

Table 68: MSL Classification

MSL Level	Floor Lifetime	Conditions
MSL 4	72 hours	30 °C / 60 % RH
MSL 3	168 hours	30 °C / 60 % RH
MSL 2A	4 weeks	30 °C / 60 % RH
MSL 2	1 year	30 °C / 60 % RH
MSL 1	Unlimited	30 °C / 60 % RH

25.3 SOLDERING INFORMATION

Refer to the IPC/JEDEC standard J-STD-020 for relevant soldering information. This document can be downloaded from www.jedec.org.

26 Ordering Information

Table 69: Ordering Information

Part Number	Туре
SLG47105V	20-pin STQFN
SLG47105VTR	20-pin STQFN - Tape and Reel (3k units)

26.1 TAPE AND REEL SPECIFICATIONS

	# of	# of Package Size (mm)	Max Units		Reel &	Leader (min)		Trailer (min)		Таре	Part
Package Type	# of Pins		per Reel	per Box	Hub Size (mm)	Pockets	Length (mm)	Pockets	Length (mm)	Width P (mm) (r	Pitch (mm)
STQFN 20L 2 mm x 3 mm 0.4P FCD Green	20	2.0x3.0x0.55	3000	3000	178/60	100	400	100	400	8	4

26.2 CARRIER TAPE DRAWING AND DIMENSIONS

Package Type	PocketBTM Length (mm)	PocketBTM Width (mm)	Pocket Depth (mm)	Index Hole Pitch (mm)	Pocket Pitch (mm)	Index Hole Diameter (mm)	Index Hole to Tape Edge (mm)	Index Hole to Pocket Center (mm)	Tape Width (mm)
	A0	В0	K0	P0	P1	D0	E	F	W
STQFN 20L 2 mm x 3 mm 0.4P FCD Green	2.2	3.15	0.76	4	4	1.5	1.75	3.5	8

Preliminary

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

27 Thermal Guidelines

Actual thermal characteristics will depend on number and position of vias, PCB type, copper layers, and other factors. Operating temperature range is from -40 °C to 85 °C. To guarantee reliable operation, the junction temperature of the SLG47105 must not exceed 150 °C.

To avoid overheating of the power MOSFETs (as shown in Figure 109), a good thermal design of the PCB layout must be implemented, especially when device operates near its maximum thermal limits. Refer to Section 3.4 to find max value of Thermal Resistance.

Figure 111: Die Temperature when HV OUTs are Active

Datasheet	Revision 2.0

28 Layout consideration

PCB should have enough ground plane to dissipate heat. SLG47105 has two additional pads which provide enhanced thermal dissipation. Thermal vias are used to transfer heat from chip to other layers of the PCB.

The sense resistors and power capacitors should be placed as close as possible to the chip for reducing parasitic parameters. Typical Application Circuit is shown in Figure 112.

Figure 112: Typical Application Circuit

Dat	tae	ho	ot
Ja	la S	IIC	σι

Preliminary

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Figure 113: PCB Layout Example

D	a	ta	S	h	ρ	e	F .
-	~		-		-	-	

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

29 Layout Guidelines

29.1 STQFN 20L 2 MM X 3.0 MM X 0.55 MM 0.4P FCD PACKAGE

It's highly recommended to place low-ESR capacitor between V_{DD2_A} , V_{DD2_B} , and GND pin to keep input voltage stable and reduce ripple. This capacitor should be placed as close to the pins as possible. Also, the capacitor must have the low input impedance at the switching frequency. The recommended value of this capacitor is 1-10 μ F for most applications. Motors with larger armature inductors require larger input capacitors.

Also, it's highly recommended to place 0.1 μ F ceramic capacitor between V_{DD} and GND.

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Glossary

Α	
ACK	Acknowledge bit
ACMP	Analog Comparator
ACMPH	Analog Comparator High Speed
В	
BG	Bandgap
С	
CLK	Clock
CMO	Connection matrix output
CNT	Counter
D	
DFF	D Flip-Flop
DLY	Delay
E	
ESD	Electrostatic discharge
EV	End Value
F	
FSM	Finite State Machine
G	
GPI	General Purpose Input
GPIO	General Purpose Input/Output
GPO	General Purpose Output
н	
HV	High Voltage
	Innut
IU	Input/Output

Datasheet	Revision 2.0	
CER0011 120 00	219 of 223	

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

L

LP_BG	Low Power Bandgap
LPF	Low Pass Filter
LS	Level Shifter

- LSB Least Significant Bit
- LUT Look Up Table LV Low Voltage

Μ

MSB	Most Significant Bit
MUX	Multiplexer

Ν

NPR	Non-Volatile Memory Read/Write/Erase Protection
nRST	Reset
NVM	Non-Volatile Memory

0

OCP	Overcurrent Protection
OD	Open-Drain
OE	Output Enable
OSC	Oscillator
OTP	One Time Programmable
OUT	Output

Ρ

PD	Power-Down
PGen	Pattern Generator
POR	Power-On Reset
PP	Push-Pull
PWM	Pulse Width Modulator
PWR	Power
P DLY	Programmable Delay

R

R/W Read/Write

S

SCL I²C Clock Input

Datasheet

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

SDA	I ² C Data Input/Outpu

- SLA Slave Address
- SMT With Schmitt Trigger
- SV nSET Value

т

TSD Thermal Shutdown TS Temperature Sensor

U

UVLO Undervoltage-Lockout

v

Vref Voltage Reference

W

WOSMTWithout Schmitt TriggerWSWake and Sleep Controller

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Revision History

Revision	Date	Description
2.0	9-June-2020	Preliminary version

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

Status Definitions

Revision	Datasheet Status	Product Status	Definition
1. <n></n>	Target	Development	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
2. <n></n>	Preliminary	Qualification	This datasheet contains the specifications and preliminary characterization data for products in pre-production. Specifications may be changed at any time without notice in order to improve the design.
3. <n></n>	Final	Production	This datasheet contains the final specifications for products in volume production. The specifications may be changed at any time in order to improve the design, manufacturing and supply. Major specification changes are communicated via Customer Product Notifications. Datasheet changes are communicated via www.dialog-semiconductor.com.
4. <n></n>	Obsolete	Archived	This datasheet contains the specifications for discontinued products. The information is provided for reference only.

Disclaimer

Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product (or associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device, Dialog Semiconductor reserves the right to change the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications, in accordance with its standard automotive change notification process.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document is subject to Dialog Semiconductor's Standard Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are the property of their respective owners.

© 2020 Dialog <\$year. All rights reserved.

RoHS Compliance

Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.

Contacting Dialog Semiconductor

United Kingdom (Headquarters) Dialog Semiconductor (UK) LTD Phone: +44 1793 757700

Germany Dialog Semiconductor GmbH Phone: +49 7021 805-0

The Netherlands Dialog Semiconductor B.V. Phone: +31 73 640 8822

Email: enquiry@diasemi.com North America Dialog Semiconductor Inc. Phone: +1 408 845 8500

Japan Dialog Semiconductor K. K. Phone: +81 3 5769 5100

Taiwan Dialog Semiconductor Taiwan Phone: +886 281 786 222 Web site: www.dialog-semiconductor.com Hong Kong Dialog Semiconductor Hong Kong Phone: +852 2607 4271

Korea Dialog Semiconductor Korea Phone: +82 2 3469 8200 China (Shenzhen) Dialog Semiconductor China Phone: +86 755 2981 3669

China (Shanghai) Dialog Semiconductor China Phone: +86 21 5424 9058

Revision 2.0

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SPLD - Simple Programmable Logic Devices category:

Click to view products by Dialog Semiconductor manufacturer:

Other Similar products are found below :

GAL22LV10C-7LJ 5962-8984102LA 5962-8871310RA 5962-89839022A 5962-89839032A PALCE16V8-15JC GAL16V8D-10LJ GAL16V8D-10LP GAL16V8D-10LJNI GAL16V8D-10LPN GAL20V8C-10LJN GAL20V8C-10LJNI GAL20V8C-10LJI GAL16V8D-7LJNI GAL22V10D-25QJ ATF16LV8C-10JU ATF16V8C-5JX ATF16V8C-7PU ATF16V8CZ-15PU ATF16V8CZ-15SU ATF16V8CZ-15XU ATF22LV10C-10XU ATF22LV10CQZ-30PU ATF22LV10CQZ-30SU 403506G 403557G GAL20RA10B-15LP PALCE22V10-5PC GAL16V8D-10QP 515061D 403803X 403501F TIBPAL20L8-15CNL ATF22LV10CZ-25PC GAL16V8D-10LPI GAL16V8D-15LJN GAL18V10B-20LJ ATF22LV10CZ-25SC 530030A GAL20V8B-15LJ PALCE16V8H-7PC PALCE16V8Q-15JC 403506GB