

MODEL: Fusion 7 P/N: F07A-0102

PRODUCT SPECIFICATION

Version 1.4

Version #	Implemented By	Revision Date	Approved By	Approval Date	Reason
1.0	Alan Dragon	October 6, 2010	Mark Hamblin	October 6, 2010	Rev 1.0 Release
1.1	Alan Dragon	October 7, 2010	Mark Hamblin	October 7, 2010	Update Reliability and Testing
1.2	Alan Dragon	October 21, 2010	Mark Hamblin	October 21, 2010	Define signals on touch panel connector
1.3	Chris Graham	May 25, 2011			Updated Mechanical DWG / Doc Cosmetic changes
1.4	Chris Graham	August 25, 2011	Bob Mitton	October 24, 2011	Revised document and DWG

Touch Revolution is committed to continuous improvement of its product designs and performance. This specification is therefore subject to change without notice. Please contact a customer support representative to insure that you have the most current specification. Products are not intended for use in safety-critical or military/aerospace applications, and customer is responsible for all legal and regulatory requirements associated with use in such applications.

While this specification is intended to assist customers in identifying an appropriate product for their intended application, it does not constitute a warranty that the product is suitable for any specific use. It is the customer's responsibility to determine that the product is suitable for its intended application

(c) Copyright 2010 TPK U.S.A. LLC All Rights Reserved

TPK USA LLC Confidential

TABLE OF CONTENTS

1	INTR	ODUC	TION	1
2	του	СН МС	DULE	2
	2.1	Ge	eneral Specifications	2
	2.2	El	ectrical – Touch Panel	2
	2.3	Er	ivironmental	3
	2.4	Op	otical Performance	4
	2.5	M	echanical Dimensions	4
	2.6	FF	PC Specification	5
3	СОМ	IMUNIC	CATIONS INTERFACE	6
	3.1	Int	roduction	6
	3.2	120	C interface Specification	6
	3.3	To	ouch Panel Connector	6
	3.4	Si	gnal Definitions	7
	3.5	Co	ommunications Protocol	7
	3.6	Re	egister Mapped Interface	7
		3.6.1	Description	7
			Register Map	
	3.7		egister Definitions	
			Touch Coordinate registers	
			Control Registers	
			Scan Complete Register (0x11)	
			Reserved (0x12 – 0x13)	
		3.7.5	Firmware Update Control Register (0x14)	.13
4	LCD	INTER	FACE	.14
	4.1	Ge	eneral Description	.14
		4.1.1	Introduction	.14
		4.1.2	Features	
		4.1.3	General Specifications	.14
	4.2	Ab	osolute Maximum Ratings	.15
	4.3	El	ectrical Characteristics	.15
		4.3.1	Recommended Operating Conditions	.15
		4.3.2	LED Driving Conditions	.16
		4.3.3	TFT-LCD Current Consumption	.16
	4.4		erface	
		4.4.1	Timing Signal Characteristics	.17
		4.4.2	Controller Timing Chart	.18

	4	.4.3 Data Input Format	
	4	.4.4 Power ON/OFF Sequence	19
	4	.4.5 Power ON/OFF timing values	19
	4	.4.6 LCD Signal Cable Definition	20
	4	.4.7 Backlight Signal Cable Definition	21
	4.5	LCD internal Block Diagram	22
	4.6	Optical Performance	22
5	RELIA	BILITY AND TESTING	23
	5.1	Reliability Test Specifications	23
	5.2	Packaging Specifications	23
6	BARCO	ODE	24
	6.1	Description	24
	6.2	Location	24
	6.3	Contents	24
7	HANDI	LING AND PRECAUTIONS	25
	7.1	Disassembly or Modification	25
	7.2	UV Exposure	25
	7.3	Cleaning	25
	7.4	Static Electricity	25
	7.5	Absolute Maximum Ratings	25
	7.6	Breakage	25
	7.7	Input Voltages	25
	7.8	Static Images	25
	7.9	Outgassing	

1 INTRODUCTION

The Fusion 7 is an integrated projected capacitive touch display incorporating a 7", 800 x 480 (WVGA) LCD with a LED backlight. The touch portion of the module consists of a glass sensor optically bonded to 1.0 mm cover glass with an FPC (Flexible Printed Circuit) attached for communicating with the touch panel. The touch panel assembly (sensor plus cover glass) is bonded to the LCD frame.

Interfacing to the touch panel is done through an I2C protocol communicating with the controller incorporated onto the FPC. The touch panel can provide accurate and responsive touch performance capable of sensing two unambiguous points. The integrated configuration of the Fusion touch display gives the user the ability to develop a touch product with a minimum of time and design effort.

2 TOUCH MODULE

2.1 GENERAL SPECIFICATIONS

Table 1 - Touch Performance Specification

Parameter		Value	Unit	Remarks
	Center	1		Note 1,
Linearity	Within 5mm of the edge	2	mm	Appendix A
Touch Senso	or Resolution	1550 x 950	Detectable Resolution	
Report Rate	Single Touch	100	Serviced Interrupts/	Note 2,
	Dual Touch	50	Second	Appendix A
First Touch Response Time		30·10 ⁻³	sec	Note 3, Appendix A
Minimum Touch Diameter		7	mm	Note 4, Appendix A
Minimum Detectable Separation		15	mm	
detectable	of unique concurrent ches	2		

2.2 ELECTRICAL – TOUCH PANEL

Table 2 - Electrical Specification

Parameter	Symbol	Value		Unit	
		Min.	Тур.	Max	
Supply voltage	Vcc	3.15	3.3	3.45	V
Current (no touch)	ICC	-	5.2	10.0	mA
Current (1 touch)	ICC1	-	5.1	10.0	mA
Current (2 touch)	ICC2	-	5.0	10.0	mA

2.3 ENVIRONMENTAL

Table 3 - Environmental Specification	n
---------------------------------------	---

Parameter	Value	Unit
Operating Temperature	-20 to +60	°C
Storage Temperature	-30 to +70	°C

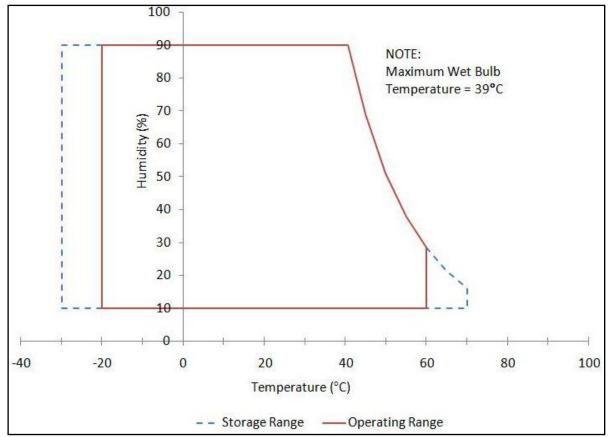


Figure 1 - Operating Temperature and Humidity Range

2.4 **OPTICAL PERFORMANCE**

Parameter			Value		Unit	Remarks
Optical Transmittance of Touch Panel			>	89	%	Note 5, Appendix A
Light Output witho	Min.=300	Тур.=350	cd/m²	Center of the Panel		
Light Output with Touch Panel			Min.=265	Тур.=310	cd/m²	Center of the Panel
	Hor.	ΘL	Min.=60	Тур.=70	Deg.	Note 6, Appendix A
Viewing Angle		Θr	Min.=60	Тур.=70		
	Фт	Фт	Min.=50	Тур.=60		
	Vert.	Фв	Min.=60	Тур.=70	Deg.	

2.5 MECHANICAL DIMENSIONS

Table 5 - Mechanical Specification

Parameter	Value	Unit	Remarks
Outline Dimension	179.96 x 119.00 x 7.50	mm	Appendix B
Active Area	152.40(H) x 91.44(V)	mm	LCD, Touch Sensor
Weight	210.5 (Тур.)	grams	
Cover Glass Surface Hardness	>9H	Pencil Hardness	See Note 7, Appendix A

2.6 FPC SPECIFICATION

The flexible segment (any portion without a stiffener) of the signal FPC from the touch panel has a minimum bend radius \geq 1.0mm. The image below shows the FPC with the stiff areas outlined in red. Stiff areas are not designed to be bent or deformed.

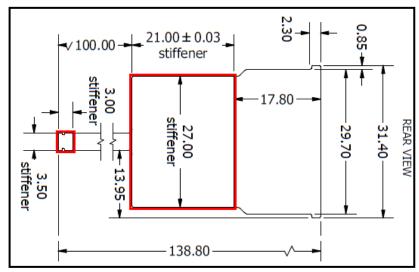


Figure 2 - FPC Stiffener Areas

3 COMMUNICATIONS INTERFACE

3.1 **INTRODUCTION**

The touch panel communicates with a host processor through an I2C interface. An edge sensitive interrupt output indicates when new touch points have been detected. In a normal system setup the rising edge of the interrupt will cause the host processor to read the coordinate data through the I2C bus. The coordinate data is stored in a register mapped array that is defined section 3.6.2.

3.2 I2C INTERFACE SPECIFICATION

The touch panel supports a NXP compliant I2C interface¹. The slave address for the touch controller is 7 bit 0x10, followed by the R/W bit. The I2C bus supports the standard bus speed of 100 kHz and fast 400 kHz.

External pull up resisters are required on the I2C clock and data lines. Refer to UM10204 I2C-Bus Specification and User Manual when selecting pull-up resistor values to ensure proper operation.

3.3 TOUCH PANEL CONNECTOR

The recommended touch panel connector is: Kyocera-Elco 6-pin P/N 04-6298-006000883. The pin out for the Kyocera connector is as noted in the following table.

Chematon					
Pin No.	Symbol	Description			
1	VCC	Power supply			
2	RST	Reset			
3	INT	Interrupt			
4	SDA	I2C data line			
5	SCL	I2C clock line			
6	GND	Ground			

Table 6 - Touch Panel Connector Pinout – Refer to Mechanical Drawings for Pin 1
Orientation

¹ The specification for the NXP compliant I2C interface is *UM10204 I2C-Bus Specification and User Manual, Rev. 03—19 June 2007.* It is available from NXP Semiconductor at http://www.nxp.com/documents/user_manual/UM10204.pdf.

3.4 SIGNAL DEFINITIONS

- VCC Power supply for the touch controller.
- RST Reset for the touch controller. Should be connected to a reset line. This reset is asserted low (0V). When not asserted it should be raised to VCC.
- INT Interrupt from the touch controller. This should be connected to an interrupt enabled IO. This output is asserted high to VCC when touch data is ready. This interrupt should be treated as an edge sensitive signal.
- SDA Data line of I2C connection. This signal should be connected to the data line of an I2C bus. This I2C bus should have pull-up resistors to VCC. The touch controller does not contain pull-ups resistors
- SCL Clock line of I2C connection. This signal should be connected to the clock line of an I2C bus. This I2C bus should have pull-up resistors to VCC. The touch controller does not contain pull-ups resistors.
- GND Digital Ground.

3.5 **COMMUNICATIONS PROTOCOL**

The Touch controller is designed to work in an interrupt driven protocol. When the Touch panel is touched and data is ready for the host processor it asserts the interrupt line to the processor. The processor should then read the data registers and once it is finished it must clear the interrupt in the controller by writing a 0 to the scan complete bit of the Handshaking control register.

The I2C data will not change until the scan complete bit is cleared by the host processor. Once the scan complete bit is cleared the controller will resume scanning the sensor.

3.6 **REGISTER MAPPED INTERFACE**

3.6.1 **Description**

A set of logical registers is defined and exposed by the touch panel controller. The host communicates with the controller by reading and writing the exposed registers via physical I2C transactions. All registers are 8 bits in length. Multibyte data words are spread across multiple registers. An 8-bit I2C address is used to uniquely identify each register.

3.6.2 Register Map

The following table defines the location of each value in the register map.

Table 7 – Register Map

Address	Purpose	Accessibility
0x00 – 0x00	Data Information Register	R
0x01 - 0x06	First Touch Point Information Registers	R
0x07 – 0x0C	Second Touch Point Information Registers	R
0x0D – 0x0D	Register Map Version	R
0x0E – 0x0F	Firmware Version Register	R
0x10 – 0x10	Reset Control Register	W
0x11 – 0x11	Scan Complete Register	R/W
0x12 – 0x13	Reserved	R
0x14 – 0x14	Firmware Update Control Register	W

3.7 **REGISTER DEFINITIONS**

3.7.1 Touch Coordinate registers

3.7.1.1 Data Information Register (0x00)

	7	6	5	4	3	2	1	0
0x00	-	-	-	-	-	-	Numb Finge	

- Bits [1:0] indicate the number of fingers touching the panel at the time of the last interrupt.
 - {00} = 0 fingers
 - {01} = 1 finger
 - {10} = 2 fingers
 - {11} = not defined

Note: After the first touch, this register does not indicate when there are no fingers touching the sensor because interrupts are not triggered on the fingerup or '0 finger' event. The data remaining in this register is the number of fingers touching the sensor at the time of the most recent interrupt. It will always be 1 or 2 after the first interrupt after power-up or reset. To determine if there are no fingers touching the sensor use the tip switch value in register 0x06.

3.7.1.2 First Touch Point Information Registers (0x01 – 0x06)

	7	6	5	4	3	2	1	0			
0x01		X0 Position (bits 15:8)									
0x02			Х	0 Position	(bits 7:0)						
0x03			YC) Position	(bits 15:8)						
0x04			Y	0 Position	(bits 7:0)						
0x05		First Touch Point Pressure Value									
0x06		Touch ID Tip Switch									

All touch point information registers are read only.

- \circ Registers 0x01 0x04
 - $\circ~$ The coordinates for the first touch point are in registers 0x01 0x04 as defined above.
 - The value is reported as a 16 bit value with the maximum value equal to the resolution of the sensor.
- o Register 0x05
 - This register returns a pressure value for the touch point. The pressure value is representative of the diameter of the contact area touching the sensor.
 - This value is an 8 bit number. The value is not normalized so it should be interpreted as a relative number.
- o Register 0x06

	7	6	5	4	3	2	1	0
0x06		Touc	h ID			Tip Sw	vitch	

- Bits 3:0 indicate if the current touch point is touching the screen. This field should be used to determine when a touch point is detected and also when it is lifted from the screen.
 - {0000} = This value indicates the finger is not touching the screen for the current coordinate point.
 - {0001} = This value indicates the finger is touching the screen for the current coordinate point.
 - All other combinations are not defined.
- Bits 7:4 represent a unique ID to differentiate between 2 different fingers under the case where the data for the fingers switches

between the first touch point and the second touch point. This can be used to maintain tracking information between 2 different fingers.

3.7.1.3 Second Touch Point Information Registers (0x07 – 0x0C)

	7	6	5	4	3	2	1	0				
0x07		X1 Position (bits 15:8)										
0x08			Х	1 Position	(bits 7:0)							
0x09			Y1	Position	(bits 15:8)							
0x0A			Y	1 Position	(bits 7:0)							
0x0B		Second Touch Point Pressure Value										
0x0C		Touch ID Tip Switch										

The coordinates of the second touch point are reported via registers 0x07 to 0x0C. These registers are Read-Only and only valid when more than one finger is reported in the Data Information Register and the Tip Switch is asserted.

- \circ Registers 0x07 0x0A
 - The coordinates for the second touch point are in registers 0x07 – 0x0A as defined above.
 - The value is reported as a 16 bit value with the maximum value equal to the resolution of the sensor.
- o Registers 0x0B
 - This register returns a pressure value for the touch point. The pressure value is representative of the diameter of the contact area touching the sensor.
 - This value is an 8 bit number. The value is not normalized so it should be interpreted as a relative number.
- Registers 0x0C

	7	6	5	4	3	2	1	0
0x0C		Touc	:h ID			Tip Sw	/itch	

- Bits 3:0 indicate if the current touch point is touching the screen. This field should be used to determine when a touch point is detected and also when it is lifted from the screen.
 - {0000} = This value indicates the finger is not touching the screen for the current coordinate point.

- {0001} = This value indicates the finger is touching the screen for the current coordinate point.
- All other combinations are not defined.
- Bits 7:4 represent a unique ID to differentiate between 2 different fingers under the case where the data for the fingers switches between the first touch point and the second touch point. This can be used to maintain tracking information between 2 different fingers.

3.7.1.4 Register map version (0x0D)

	7	6	5	4	3	2	1	0
0x0D			Regi	ster map	version (7	7:0)		

This register dictates the register map. This register can be queried by the host to determine which register values are located at which register offsets. For the register map corresponding to this document the value will be 0x02.

3.7.1.5 Firmware Version Register (0x0E - 0x0F)

	7	6	5	4	3	2	1	0	
0x0E	Produc	ct Info	Ye	ear		Month			
0x0F			Day				ware sion	Release	

Firmware releases are numbered by the following format: yyyymmddx where yyyymmdd is the date of release and x is the running number of the release in case there are multiple releases on a given day.

To store the version information, two registers (0x0D - 0X0E) are used and defined as follows:

• Register 0x0E

Bits 7:6 represent Product Information (Read Only)

- {00} = 43Z6 = 4.3" Panel
- {01} = 70Z7 = 7" Panel
- {10} = 10Z8 = 10.1" Panel
- {11} = Reserved

Bits 5:4 represent the Year (Read Only)

• {00} = 2010

- {01} = 2011
- {10} = 2012
- {11} = 2013

Bits 3:0 represent the Month (Read Only)

- $\{0x1\} = January$
- $\{0x2\}$ = February
- {0x.} =
- {0x.} =
- {0xC} = December
- o Register 0x0F

Bits 7:3 represent the Day (Read Only)

- $\{0x01\} = 1$
- $\{0x02\} = 2$
- {0x.} =
- {0x.} =
- $\{0x1F\} = 31$

Bits 2:1 represent the Firmware Version (Read Only)

- {00} = v1.0 Firmware Architecture
- {01} = v1.4 Firmware Architecture

Bit 0 represents the Release (Read Only)

- $\{00\}$ = First release of the day.
- {11} = Second release of the day.

Note: More than 2 releases are not expected in one day.

3.7.2 Control Registers

3.7.2.1 Reset Control Register (0x10)

	7	6	5	4	3	2	1	0
0x10	Reset	I	-	-	-	-	-	-

This register can be used to trigger a software initiated reset. This reset will clear out all data in the sensor. The busy register will be reset to 0x00. During a software initiated reset the device will not be available on the I2C bus and the interrupt pin will stay low. The system will be available 125 ms after the reset is triggered.

o Register 0x10

- Bit 7 = reset bit. This bit is write only. Writing a 1 to this bit initiates the reset.
- Bits 6:0 = reserved.

3.7.3 Scan Complete Register (0x11)

	7	6	5	4	3	2	1	0
0x11	-	-	-	-	-	-	-	Scan Complete

This register is used to indicate that data is ready for the Host processor to read. When data is ready to be read the touch controller will not update the data until the host processor indicates it has completed gathering all data for this interrupt.

- Registers 0x11
 - Bit 0 represents Scan Complete(Read and Write)
 - {0} indicates that there is no new data for the Host processor. When this bit is {0} the touch controller is continually scanning the touch panel for new touch events.
 - {1} indicates current scan cycle has been completed and new data is ready for the Host processor.
 - This bit will mimic the interrupt output of the touch controller.
 - The Host should clear this bit (Write "0") to indicate that a data transfer has been completed and subsequent scan can be started.

3.7.4 Reserved (0x12 – 0x13)

3.7.5 Firmware Update Control Register (0x14)

	7	6	5	4	3	2	1	0
0x14			Ente	er Firmwa	are Upda	ite-		

• Register 0x14

• Bits 7:0 represents Enter Firmware Update (Write Only)

Host should write 0x4C to register 0x14 set a flag which will force the controller to boot into firmware update mode on its next power cycle, soft reset or hard reset.

4 LCD INTERFACE

4.1 GENERAL DESCRIPTION

4.1.1 Introduction

The Fusion 7 incorporates a color active matrix thin film transistor (TFT) liquid crystal display (LCD) that uses amorphous silicon TFT switching device. The LCD assembly is composed of a TFT LCD panel, a driving circuit, and LED backlight system. The display has a 7.0 inch diagonally measured active display area with an 800H x 480V (WVGA) display format that can display 262,144 colors.

4.1.2 Features

- 7.0" (16:9) inch diagonal configuration
- 800H x 480V (WVGA) Pixel Format
- 3.3V TTL Interface
- 262K colors using a 18 bit R.G.B. signal input

4.1.3 General Specifications

Parameter	Specifications(LCD Only)	Unit
Screen Size	7.0" (Diagonal)	
Display Format	800 RGB(H)X 480(V) (WVGA)	pixels
Pixel Configuration	RGB Vertical Stripe	
Active Area	152.40 x 91.44	mm
Pixel Pitch	0.1905 x 0.1905	mm
Outline Dimension	165.00(W) x 104.44(H) x 5.20(D)	mm
Backlight	White LED	
Power Consumption	0.66W(Logic)/ 1.6W(Backlight)	Watt
Operating Temperature	-20 ~ 70	°C
Storage Temperature	-30 ~ 80	°C
Bits per pixel	18	

Table 8 - LCD Specifications

4.2 ABSOLUTE MAXIMUM RATINGS

 Table 9 - LCD Maximum Ratings (GND=0V)

ltem	Symbol	Condition	Min.	Max.	Unit	Remark
Power Voltage	Vcc	GND=0	-0.3	6	V	-
Input Logic Voltage	Vi	GND=0	-0.3	Vcc+0.3	V	Note 1

Note 1: DCLK, DE, R0 ~ R5, G0 ~ G5, B0 ~ B5

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 Recommended Operating Conditions

Table 10 - LCD Recommended Operating Conditions (GND=0V, Ta=25°C)

Parameter		Symbol		Unit	Condition		
			Min.	Тур.	Max.		
Power S Volta		Vcc	3.0	3.3	3.6	V	
Input Logic	High Level	Vih	0.7Vcc	-	Vcc	V	Note 1
Voltage	Low Level	VIL	0	-	0.3VCC	V	Note1

Note 1: DCLK, DE, R0 ~ R5, G0 ~ G5, B0 ~ B5

4.3.2 LED Driving Conditions

3 • • • • • • • • • • • • • • • • • • •						
Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED Current	ILED	-	160	-	mA	Note 1
LED Voltage	Vled	-	9.9	-	V	
LED Life	-	10,000	20,000	-	Hr.	Note 2

Note 1: There are 8 groups of LEDs as shown below, VLED=9.9V, ILED=160mA. Note 2: Light output is decreased to 50% of the initial value.

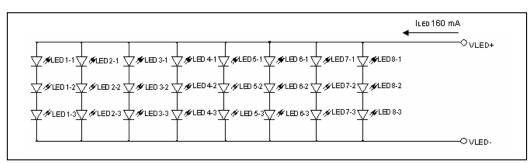


Figure 3 - LED Configuration

4.3.3 TFT-LCD Current Consumption

Table 12 - LCD Current Consumption	1
------------------------------------	---

Parameter	Symbol	Rating			Unit	Condition
		Min.	Тур.	Max.		
LCD Power Current	ICC	-	200	260	mA	Black Pattern
LED Power Current	ILED	-	160	200	mA	

4.4 INTERFACE

4.4.1 Timing Signal Characteristics

Parameter	Symbol		Rating	Unit	
		Min.	Тур.	Max.	
Data Setup Time	Tdsu	6	-	-	ns
Data Hold Time	Tdhd	6	-	-	ns
DE Setup Time	Tesu	6	-	-	ns
CLK Frequency	FCPH	29.40	33.26	42.48	MHz
CLK Period	ТСРН	23.54	30.06	34.01	ns
CLK Pulse Duty	TCWH	40	50	60	%
CLK Pulse Duty	TCWL	40	50	60	%
DE Period	TDEH+TDEL	1000	1056	1200	ТСРН
DE Pulse Width	TDEH	-	800	-	ТСРН
DE Frame Blanking	TDEB	10	45	110	TDEH+TDEL
DE Frame Width	TDE	-	480	-	TDEH+TDEL

Table 13 - LCD Signal Timing Characteristics

Note: Using the typical values will give better performance.

4.4.2 Controller Timing Chart

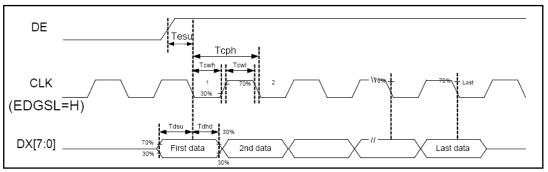
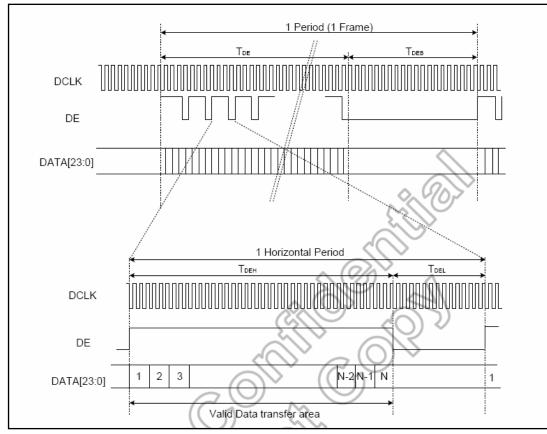



Figure 4 - LCD Interface Waveform

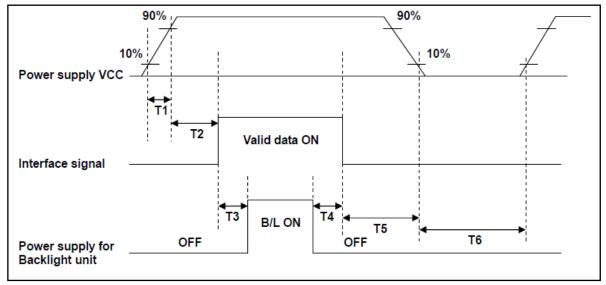

4.4.3 Data Input Format

Figure 5 - LCD Data Format

4.4.4 Power ON/OFF Sequence

Figure 6 – Power Sequence

4.4.5	Power ON/OFF timing values
	Table 14 - Power ON/OFF Timing Values

Parameter		Unit		
	Min.	Тур.	Max.	
T1	1		2	ms
T2	0	60		ms
Т3	200			ms
T4	200			ms
T5	1			ms
Т6	1000			ms

4.4.6 LCD Sign	al Cable Definition
----------------	---------------------

Table 15 - LCD Signal Definition

Pin No.	Symbol	Description	Pin No.	Symbol	Description		
1	GND	Power Ground	21	G5	Green Data 5 (MSB)		
2	GND	Power Ground	22	G4	Green Data 4		
3	NC	No Connect	23	G3	Green Data 3		
4	Vcc	Digital Power Supply	24	GND	Power Ground		
5	Vcc	Digital Power Supply	25	G2	Green Data 2		
6	Vcc	Digital Power Supply	26	G1	Green Data 1		
7	Vcc	Digital Power Supply	27	G0	Green Data 0 (LSB)		
8	NC	No Connect	28	GND	Power Ground		
9	DE	Data Enable	29	R5	Red Data 5 (MSB)		
10	GND	Power Ground	30	R4	Red Data 4		
11	GND	Power Ground	31	R3	Red Data 3		
12	GND	Power Ground	32	GND	Power Ground		
13	B5	Blue Data 5 (MSB)	33	R2	Red Data 2		
14	B4	Blue Data 4	34	R1	Red Data 1		
15	B3	Blue Data 3	35	R0	Red Data 0 (LSB)		
16	GND	Power Ground	36	GND	Power Ground		
17	B2	Blue Data 2	37	GND	Power Ground		
18	B1	Blue Data 1	38	DCLK	Clock Signal- Note1		
19	B0	Blue Data 0 (LSB)	39	GND	Power Ground		
20	GND	Power Ground	40	GND	Power Ground		

Note1 - Latch Data at the Falling Edge

4.4.6.1 LCD Signal Mating Cable

Mating FFC is **MT-FP430N-2FR** manufactured by UJU or equivalent. (0.5mm pitch 40 pin FFC)

4.4.7 Backlight Signal Cable Definition

Pin No.	Symbol	Description
1	VLED+	Red, LED Anode
2	VLED-	White, LED Cathode

Note: Backlight socket is **SM02B-BHSS-1-TB** manufactured by JST. The connector on the backlight cable is **BHSR-02VS-1** manufactured by JST.

Backlight pin ordering of the cable attached to the LCD is shown below.

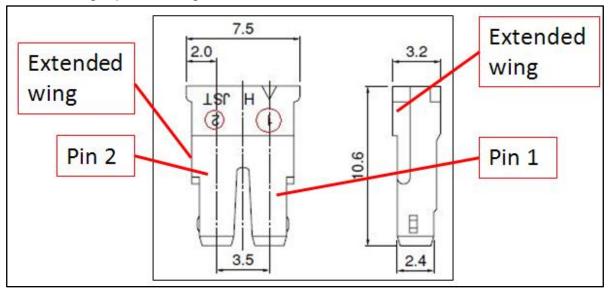


Figure 7 - Backlight Pin Ordering

Note: Top of connector has wide wings that extend out.

4.5 LCD INTERNAL BLOCK DIAGRAM

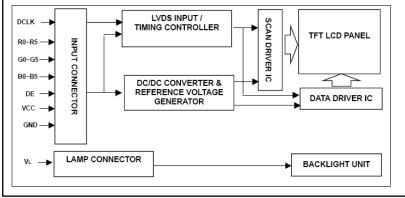


Figure 8 - LCD Block Diagram

4.6 **OPTICAL PERFORMANCE**

Parame	ter	Symbol	Cond'n	Min.	Тур.	Max.	Unit	Remark
Brightne	ess	-	Viewing Normal Angle	300	350	-	cd/ m²	Center of Display
Response	Time	Tr	Φ=θ=0	-	5	10	ms	
		Tf		-	11	16	ms	
Contrast F	Ratio	CR		250	400		-	
Color	White	Wx		0.249	0.299	0.349	-	
Chromaticity		Wy		0.278	0.328	0.378		
Viewing	Hor.	θR	CR <u>></u> 10	60	70		Deg	
Angle		θL		60	70			
	Ver.	ΦΤ		50	60			
		ΦВ		60	70			

Table 17 - LCD Optical Performance

Note: Parameters in above table are for LCD only.

5 RELIABILITY AND TESTING

5.1 RELIABILITY TEST SPECIFICATIONS

Table 18 - Reliability Test Specifications

Item	Condition	
High Temperature Storage	T _A = +70°C, 240 hrs	
Low Temperature Storage	T _A = -30°C, 240 hrs	
High Temperature Operation	T _A = +60°C, 240 hrs	
Low Temperature Operation	T _A = -20°C, 240 hrs	
Thermal Cycling	-20°C (30 min) · +60°C (30 Min), 100 cycles (DRY)	
Electrostatic Discharge	<u>+</u> 8kV (Contact) / <u>+</u> 10kV (air)	

5.2 **PACKAGING SPECIFICATIONS**

Table 19 - Packaging	Specifications
----------------------	----------------

ltem	Condition
Drop Test	1) Drop Sequence: 1 corner, 3 edges, and 6 surfaces.
	 Drop height according to the weight of the package.
	3) Inspection: sampling check, check each layer of upper and lower, 2 layers in center, total 4 layers.
Non-Operating Random Vibration	1) Truck Spectrum: (0.52G rms) and Air Spectrum: (PSD=1.46G rms), 3 axis (X/Y/Z), 20 min per axis per test.
	2) Inspection: sampling check, check each layer of upper and lower, 2 layers in center, total 4 layers.

6 BARCODE

6.1 **DESCRIPTION**

Every Fusion touch panel contains a unique 2 dimensional barcode. This barcode is used for serial number identification and part specification.

6.2 LOCATION

The barcode is located on the flex tail as pictured below.

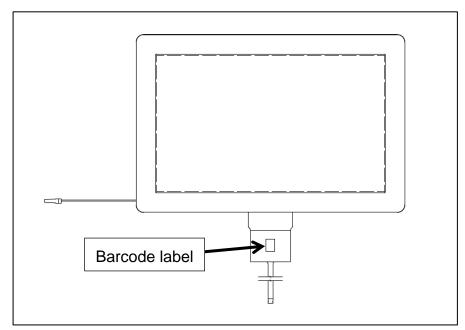


Figure 9 – Barcode Label Area (Front View of Module Shown)

6.3 **CONTENTS**

The barcode contains the serial number, Touch Revolution part number, project name (if applicable), and touch firmware release version.

7 HANDLING AND PRECAUTIONS

7.1 DISASSEMBLY OR MODIFICATION

Do not disassemble or modify the touch display. This may cause damage to sensitive components and may cause dust or scratches between the touch sensor and LCD. Touch Revolution's warranty will be void if the unit has been disassembled or modified.

7.2 UV EXPOSURE

Long term exposure to sunlight can affect the optical performance of the LCD.

7.3 **CLEANING**

The cover glass should be cleaned using a soft, lint free cloth. It is recommended that either an ammonia based glass cleaner (e.g. Windex) or a 50:50 solution of isopropyl alcohol and water be used for cleaning the sensor. Apply the cleaning solution to the cloth and gently wipe the surface of the sensor. To help minimize streaking, wipe in a circular motion starting in the center and working outwards.

7.4 **STATIC ELECTRICITY**

Since the LCD and Touch panel use CMOS ICs, the device is susceptible to electrostatic discharge. Please use appropriate grounding when handling these modules.

7.5 **ABSOLUTE MAXIMUM RATINGS**

Do not exceed the absolute maximum rating values for the supply voltages and environmental conditions to prevent damage to the touch display.

7.6 BREAKAGE

If the LCD panel breaks be careful not to touch any liquid crystal material that may spill. Immediately rinse with water if liquid crystal material comes in contact with skin.

7.7 INPUT VOLTAGES

Turn off the power supply before handling and/or inserting signal or power cables to the touch module.

7.8 **STATIC IMAGES**

If fixed images are displayed for a long period of time, an afterimage is likely to occur.

7.9 **OUTGASSING**

Do not store or use the touch module in an environment where caustic materials such as reagents, solvents, adhesives, and resins are present. Outgassing of these materials can damage the polarizer and ACF connections.

APPENDIX A

Note 1: Linearity Test Definition

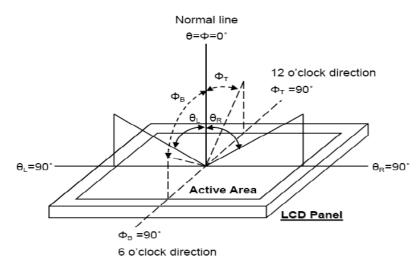
The linearity of the sensor is tested by dragging a 6mm diameter copper slug in a line across the first surface of the touch sensor. The distance between the actual location of the center of the slug and the reported location shall be less than or equal to the maximum specified error.

Note 2: Report Rate

Report rate is the maximum rate at which touch data is returned to the host PC. The report rate may drop to 30 interrupts/second for some unique two finger touch combinations.

Note 3: Response Time

Response time is the time elapsed between first touch and interrupt assuming touch is in active mode

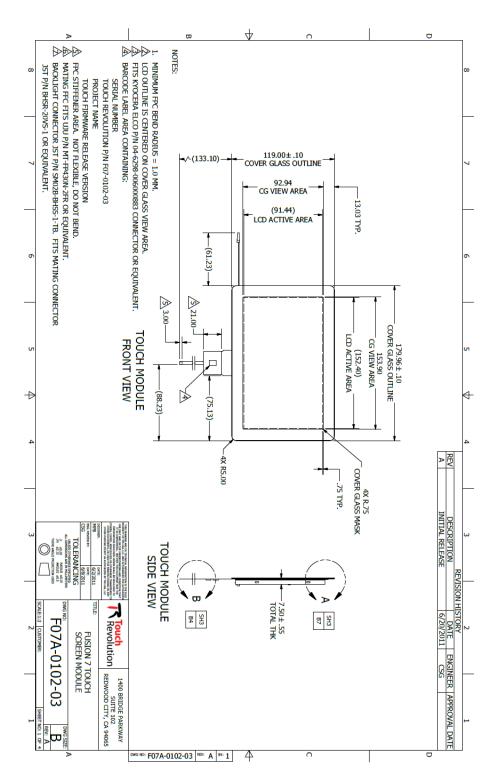

Note 4: Minimum Touch Diameter

The minimum touch diameter is the minimum diameter of a copper slug that is needed to record a touch.

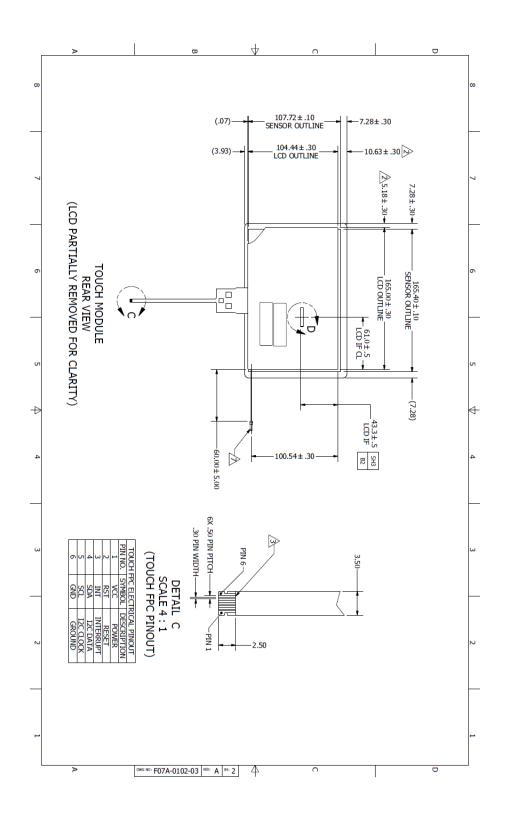
Note 5: Optical Transmittance

Measured Per ASTM D1003

Note 6: Viewing Angle

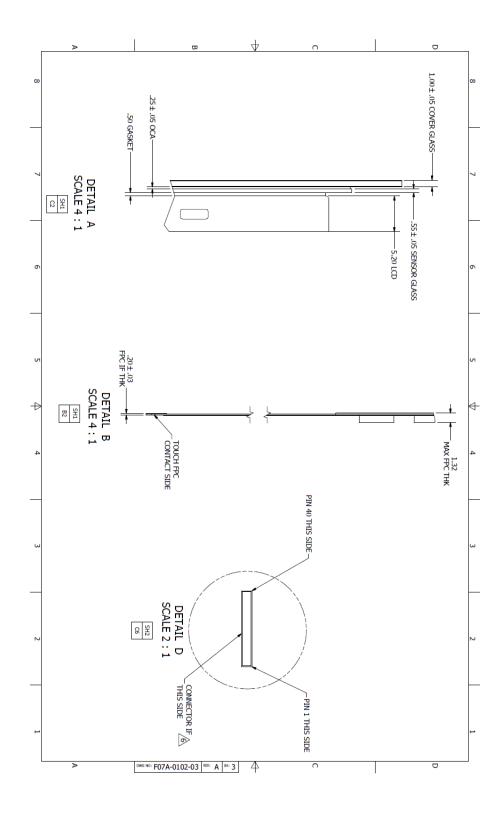

Note 7: First Surface Hardness Measured Per ASTM D3363

Page 27 TPK USA LLC Confidential

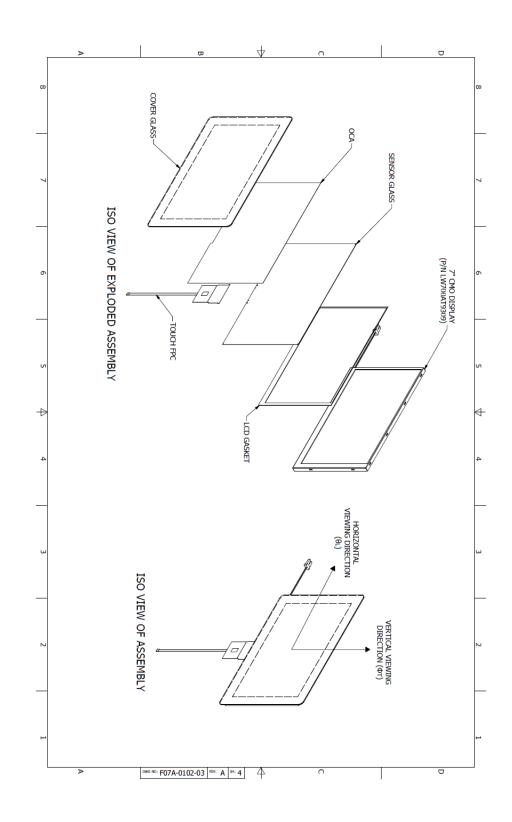

APPENDIX B

Revolution

Page 28 TPK USA LLC Confidential



Page 29 TPK USA LLC Confidential



Page 30 TPK USA LLC Confidential

Revolution

Page 31 TPK USA LLC Confidential

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Display Modules category:

Click to view products by Digi International manufacturer:

Other Similar products are found below :

 P6153-PR
 TDP0700T800480PCAP
 P6171DPR-DC-RS
 P6171DPR-DC-U
 TN0216ANVNANN-GN00
 TN0104ANVAANN-GN00

 TN0181ANVNANN-GN00
 RVT43ULFNWC03 V4
 SM-RVT101HVBNWCA0
 SM-RVT35HHBFWCA0
 SM-RVT35HHBNWCA0
 SM-RVT35HHBNWCA0