

PmodCLP™ Reference Manual

Revised May 24, 2016 This manual applies to the PmodCLP rev. B

Overview

The Digilent PmodCLP is a 16×2 character LCD module that uses a 8-bit parallel data interface to let system boards display up to 32 different characters out of over 200 possible options.

The PmodCLP.

Features include:

- 16×2 character LCD with parallel interface
- 192 predefined characters including 93 ASCII characters
- Up to 8 user-definable characters
- Read and write capability to and from the display
- Small PCB size for flexible designs 2.3" × 3.3" (5.8 cm × 8.4 cm)
- Follows <u>Digilent Pmod Interface</u> <u>Specification</u> Type 1
- Library and example code available in <u>resource center</u>

1 Functional Description

The PmodCLP utilizes a <u>Samsung KS0066</u> LCD controller to display information to a <u>Sunlike LCD panel</u>. The module can execute a variety of instructions, such as erasing specific characters, setting different display modes, scrolling, and displaying user-defined characters.

2 Interfacing with the Pmod

The PmodCLP communicates with the host board via the GPIO protocol. This particular module requires specific timings in order to program the KS0066 correctly, as per the KS0066 datasheet. These timings are described after the pinout description table shown below:

DOC#: 502-142

Page 1 of 6

1300 Henley Court Pullman, WA 99163 509.334.6306 www.digilentinc.com

	Header J	1 - Top Half	H	eader J1 ·	- Bottom Half	Header J2				
Pin	Signal	Description	Pin	Signal	Description	Pin	Signal	Description		
1	DB0	Data Bit 0	7	DB4	Data Bit 4	1	RS	Register Select: High for Data Transfer, Low for Instruction Transfer		
2	DB1	Data Bit 1	8	DB5	Data Bit 5	2	R/W	Read/Write signal: High for Read mode, Low for Write mode		
3	DB2	Data Bit 2	9	DB6	Data Bit 6	3	E	Read/Write Enable: High for Read, falling edge writes data		
4	DB3	Data Bit 3	10	DB7	Data Bit 7	4	NC	Optional back-light enable (not connected on the PmodCLP		
5	GND	Power Supply Ground	11	GND	Power Supply Ground	5	GND	Power Supply Ground		
6	VCC	Positive Power Supply ¹	12	VCC	Positive Power Supply ¹	6	VCC	Positive Power Supply		

Table 1. PmodCLP Connector Signals.

2.1 Timing Requirements

After power-on, at least 20ms must elapse before the "Function Set" instruction code can be written to set the bus width, number of lines, and character patterns (8-bit interface, 2 lines, and 5×8 dots are appropriate). After the Function Set instruction, at least 37us must elapse before the "Display On/Off Control" instruction can be written (to turn the display on, turn the cursor on or off, and set the cursor to blink or no blink). After another 37us, the "Clear Display" instruction can be issued.

After another 1.52ms, the "Entry Mode Set" instruction can set address increment (or address decrement) mode, and display shift mode (on or off). After this sequence, data can be written into the DDRAM via the "Write data into RAM" to cause information to appear on the display. Note that other compatible LCD controllers use similar start-up sequences which may not use the same timings as the Samsung controller.

The table below lists the required bit order needed in order to send a variety of instructions to the LCD controller on the PmodCLP. Before the 8 bits of parallel data (DB7 through DB0) are sent, the output enable pin, E, must be brought to a high '1' state and then brought to a low

Figure 1. LCD startup sequence.

¹ For Revision A of the PmodCLP this must be at 5V. For Revision B, this must be at 3.3V

2.2 PmodCLP Instruction Codes

Instruction				Description							
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
Clear Display	0	0	0	0	0	0	0	0	0	1	Clear display by writing a 20H to all DDRAM locations; set DDRAM address register to 00H; and return cursor to home.
Return Home	0	0	0	0	0	0	0	0	1	x	Return cursor to home (upper left corner), and set DDRAM address to OH. DDRAM contents not changed.
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	I/D = '1' for right-moving cursor and address increment; SH = '1' for display shift (direction set by I/D bit).
Display On/Off Control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor (C), and blinking cursor (B) on or off.
Cursor or Display shift	0	0	0	0	0	1	S/C	R/L	x	x	S/C = '0' to shift cursor right or left, '1' to shift entire display right or left (R/L = '1' for right).
Function Set	0	0	0	0	1	DL	N	F	x	x	Set interface data length DL ('1' for 8 bit), number of display lines N ('1' for 2 lines), font F ('0' for 5×8 dots)
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address counter AC5 - AC0
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address counter AC5 - AC0
Read busy flag/address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Read busy flag (BF) and address counter AC6- AC0
Write data toRAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into DDRAM or CGRAM, depending on which address was last set
Read data toRAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data into DDRAM or CGRAM, depending on which address was last set

Table 2. LCD Instructions and codes.Note: "X" represents a don't care bit.

2.3 CGRAM and DDRAM

The LCD controller contains a character-generator ROM (CGROM) with 192 preset 5×8 character patterns (see table 4 below), a character-generator RAM (CGRAM) that can hold 8 user-defined 5×8 characters, and a display data RAM (DDRAM) that can hold 80 character codes. Character codes written into the DDRAM serve as indexes into the CGROM (or CGRAM). Writing a character code into a particular DDRAM location will cause the associated character to appear at the corresponding display location. Display positions can be shifted left or right by setting a bit in the Instruction Register (IR). The write-only IR directs display operations (such as clear display, shift left or right, set DDRAM address, etc). A busy flag shows whether the display has competed the last requested operation; prior to initiating a new operation, the flag can be checked to see if the previous operation has been completed.

The display has more DDRAM locations than can be displayed at any given time. DDRAM locations 00H to 27H map to the first display row, and locations 40H to 67H map to the second row. Normally, DDRAM location 00H maps to the upper left display corner (the "home" location, and 40H to the lower left. Shifting the display left or right can change this mapping. The display uses a temporary data register (DR) to hold data during DDRAM /CGRAM reads or writes, and an internal address register to select the RAM location. Address register contents, set via the Instruction Register, are automatically incremented after each read or write operation. The LCD display uses ASCII character codes. Codes up through 7F are standard ASCII (which includes all "normal" alphanumeric characters). Codes above 7F produce various international characters.

The predefined characters available to display (from the KS0066 datasheet) are shown in the table below:

2.4 Predefined Character Table

b7-b4 b3-b0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)															
0001	(2)															
0010	(3)															
0011	(4)															
0100	(5)															
0101	(6)															
0110	(7)															
0111	(8)															
1000	(1)															
1001	(2)															
1010	(3)															
1011	(4)															
1100	(5)															
1101	(6)															
1110	(7)															
1111	(8)															

Any external power applied to the PmodCLP must be at 5V for Revision A of the PmodCLP and at 3.3V for Revision B of the PmodCLP.

3 Physical Descriptions

The pins on the pin header are spaced 100 mil apart. The PCB is 2.3 inches long on the sides parallel to the pins on the pin header and 3.3 inches long on the sides perpendicular to the pin header.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Display Development Tools category:

Click to view products by Digilent manufacturer:

Other Similar products are found below :

 KIT 60121-3
 S5U13U11P00C100
 MAX14521EEVKIT
 KIT 60145-3
 S5U13748P00C100
 DFR0413
 3248
 DLPLCR90EVM

 MAX20069EVKIT#
 KIT95000-3
 LCD-16396
 PIM370
 1109
 MCIMX-LVDS1
 MIKROE-2449
 MIKROE-2453
 131
 DEV-13628
 1590

 MIKROE-2269
 1601
 1770
 1947
 1983
 1987
 2050
 2218
 2219
 2260
 2345
 2418
 2455
 2478
 2674
 SK-220RD-PI
 FIT0477
 333

 1774
 334
 TE-M321-SDK
 DFR0428
 cs-epapersk-03
 338
 DEV-14442
 FIT0478
 cs-paperino-01
 OM-E-OLE
 ALTHSMCMIPILCD