1300 Henley Court

PmodAD2 ${ }^{\text {TM }}$ Reference Manual

Revised May 24, 2016
This manual applies to the PmodAD2 rev. A

Overview

The PmodAD2 is an analog-to-digital converter powered by the Analog Devices AD7991. Users may communicate with the board through $I^{2} \mathrm{C}$ to configure up to 4 conversion channels at 12 bits of resolution.

Features include:

- Up to four 12-bit analog to digital converter channels
- On-board 2.048 V voltage reference
- Jumper selectable reference input
- \quad Small PCB size for flexible designs (1.0 in $\times 0.8$ in) $(2.5 \mathrm{~cm} \times 2.0 \mathrm{~cm})$
- Follows Digilent Interface Specification
- Library and example code available in resource center

The PmodAD2.

1 Functional Description

The PmodAD2 utilizes Analog Devices ${ }^{\circledR}$ AD7991 to provide up to four channels of 12-bit analog-to-digital conversion.

2 Interfacing with the Pmod

The PmodAD2 communicates with the host board via the $I^{2} \mathrm{C}$ protocol. System boards are able to call the Pmod by sending out the device address of $0 b 0101000$ followed by the appropriate read or write bit. If a write bit is chosen, users may then configure the on-board chip to only use certain channels or may immediately start reading the 12 bits of data from the 16-bit data register if the read bit is sent.

Unlike other devices that use $I^{2} C$, no addresses are associated with these two registers; only the read/write bit at the end of the slave address distinguishes between the two registers. By default, all four channels have analog-to-
digital conversions performed on them sequentially with the supply voltage VCC acting as the voltage reference for the ADC.

After each conversion is performed, the device places itself into power-down mode. Upon a read command, the device will wake itself up and prepare for a conversion, which takes approximately $0.6 \mu \mathrm{~s}$. The actual conversion process takes approximately $1.0 \mu \mathrm{~s}$.

Pin	Signal	Description
$1 \& 5$	SCL	Serial Clock
$2 \& 6$	SDA	Serial Data
$3 \& 7$	GND	Power Supply Ground
$4 \& 8$	VCC	Power Supply $(3.3 \mathrm{~V} / 5 \mathrm{~V})$

Table 1. Pinout description table.

Any external power applied to the PmodAD2 must be within 2.7 V and 5.5 V ; however, it is recommended that the Pmod is operated at 3.3 V .

3 Physical Dimensions

The pins on the pin header are spaced 100 mil apart. The PCB is 1 inch long on the sides parallel to the pins on the pin header and 0.8 inches long on the sides perpendicular to the pin header.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Data Conversion IC Development Tools category:
Click to view products by Digilent manufacturer:

Other Similar products are found below :
EVAL-AD5063EBZ EVAL-AD5422LFEBZ EVAL-AD7265EDZ EVAL-AD7641EDZ EVAL-AD7674EDZ EVAL-AD7719EBZ EVAL-AD7767-1EDZ EVAL-AD7995EBZ AD9114-DPG2-EBZ AD9211-200EBZ AD9251-20EBZ AD9251-65EBZ AD9255-125EBZ AD9284250EBZ AD9613-170EBZ AD9627-125EBZ AD9629-20EBZ AD9709-EBZ AD9716-DPG2-EBZ AD9737A-EBZ AD9787-DPG2-EBZ AD9993-EBZ DAC8555EVM ADS5482EVM ADS8372EVM EVAL-AD5061EBZ EVAL-AD5062EBZ EVAL-AD5443-DBRDZ EVALAD5570SDZ EVAL-AD7450ASDZ EVAL-AD7677EDZ EVAL-AD7992EBZ EVAL-AD7994EBZ AD9119-MIX-EBZ AD9148-M5375EBZ AD9204-80EBZ AD9233-125EBZ AD9265-105EBZ AD9265-80EBZ AD9608-125EBZ AD9629-80EBZ AD9648-125EBZ AD964920EBZ AD9650-80EBZ AD9765-EBZ AD9767-EBZ AD9778A-DPG2-EBZ ADS8322EVM LM96080EB/NOPB EVAL-AD5445SDZ

