PmodAMP3 ${ }^{\text {TM }}$ Reference Manual

Revised April 15, 2016
This manual applies to the PmodAMP3 rev. A

Overview

The Digilent PmodAMP3 features an Analog Devices ${ }^{\circledR}$ SSM2518 2 watt Class-D Audio Power Amplifier. The module enables the use of $I^{2} S$ audio protocol or TDM to produce stereo audio at various sampling frequencies. Users may configure the digital volume and dynamic range control via an $I^{2} C$ interface. Additionally, the PmodAMP3 may be used in a stand-alone mode that does not require the use of the $I^{2} C$ interface.

The PmodAMP3.

Features include:

- Audio amplifier with left and right channel separation
- Stereo output via two standard $1 / 8^{\prime \prime}$ (0.32 cm) mono speaker jacks
- Supports common $I^{2} S$ audio formats
- Digitally configurable volume control for each channel
- Dynamic range control
- Stand-alone mode for systems without $I^{2} \mathrm{C}$ interface
- \quad Small PCB size for flexible designs $1.5^{\prime \prime} \times$ $0.8^{\prime \prime}(3.8 \mathrm{~cm} \times 2.0 \mathrm{~cm}$)
- 12-pin Pmod port with $I^{2} \mathrm{C}$ interface

1 Functional Description

The PmodAMP3 utilizes Analog Devices SSM2518 to reproduce digitally fed audio signals in separate left and right headphone jacks. The separation of the jacks enables better audio signal isolation.

2 Interfacing with the Pmod

The PmodAMP3 communicates with the host board via the $I^{2} \mathrm{C}$ protocol. Users may operate the PmodAMP3 in either an $I^{2} \mathrm{C}$ programmable mode or a simple stand-alone mode. The stand-alone mode is the default setting and can be activated by removing the shorting block on jumper JP5. When the stand-alone mode is active, jumpers JP3, JP4, and JP6 allow a simple hardware configuration of the amplifier.

Within the stand-alone mode jumper JP3 configuration determines whether to use Standard or Left Justified $\mathrm{I}^{2} \mathrm{~S}$ protocol. Jumper JP4 determines if the MCLK input is 256 or 384 times the audio sampling frequency Fs. The jumper JP6 configures the amplifier to output at either 0 dB or +12 dB gain.

If JP5 is loaded, $I^{2} \mathrm{C}$ is enabled so that the on-board chip can be configured. Consequently, the shorting blocks on both JP3 and JP4 must be removed so that the SCL and SDA lines are pulled to a logic high voltage state. JP6 sets the $I^{2} C$ address of the Pmod; both addresses are valid, but a user may want to use one particular address if another $I^{2} \mathrm{C}$ device on the bus is using the other address.

| | JP5 Unloaded (default Stand-alone mode) | JP5 Loaded (${ }^{2}$ C Programmable Mode) | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Loaded | Unloaded | Loaded | Unloaded |
| JP2 | MCLK-provide own
 external MCLK | BCLK-route BCLK
 to MCLK input | Don't Care | Don't Care |
| JP3 | I 2 S (Standard) | Left Justified | Prohibited | Required |
| JP4 | 256x Fs | 384x Fs | Prohibited | Required |
| JP6 | 12dB Gain | OdB Gain | ADDR: $0110100[\mathrm{r} / \mathrm{w}]$ | ADDR: $0110110[\mathrm{r} / \mathrm{w}]$ |

Table 1. Connector descriptions.

Note: Both the 0 dB and +12 dB gain modes are very loud. You should take care to protect both yourself and your equipment when operating in stand-alone mode. Digilent recommends that you use the programmable mode and set the gain to -12 dB or lower.

The $I^{2} C$ programmable mode is used to set alternate Master Clock (MCLK) and Bit Clock (BCLK) ratios as well as configure the Dynamic Range Control (DRC). More information about these options is available in our user guide.

To transfer audio data in the $1^{2} S$ audio format, the MCLK, BCLK, the Left/Right Word Clock (LRCLK), and the data (SDATA) will need to be provided either internally or externally as appropriate. This module is able to receive audio data anywhere between 8 and 32-bits of resolution. An example timing diagram from Texas Instruments on how $I^{2} S$ data is to be sent to the module is provided below:

Figure 1. Example l^{2} S timing diagram.

		Header J1
Pin	Signal	Description
1	LRCLK	Left/Right Word Clock
2	SDATA	Serial Data
3	NC	Not Connected
4	BCLK	Bit Clock
5	GND	Power Supply Ground
6	VCC	Positive Power Supply
7	NC	Not Connected
8	NC	Not Connected
9	MCLK-E	Master Clock-external
10	~SHUT	Shutdown
11	GND	Power Supply Ground
12	VCC	Positive Power Supply

Figure 2. PmodAMP3 block diagram.
Table 2. Header J1 pinout table.

Header J2		Header J3		Header J4	
Pin	Description	Pin	Description	Pin	Description
1	Left Audio Jack	1	Serial Clock	1	Right Audio Jack

Table 3. Header J2, J3, and J4 pinout table.

Any external power applied to the PmodAMP3 must be within 2.5 V and 5.5 V ; however, it is recommended that the Pmod is operated at 3.3 V .

3 Physical Dimensions

The pins on the pin header are spaced 100 mil apart. The PCB is 1.5 inches long on the sides parallel to the pins on the pin header and 0.8 inches long on the sides perpendicular to the pin header.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Audio IC Development Tools category:
Click to view products by Digilent manufacturer:
Other Similar products are found below :
LM4906MMBD LM4935RLEVAL LME49710NABD LME49740MABD LME49740NABD LME49860MABD LME49870MABD EVALAD1940AZ EVAL-ADAU1401AEBZ SRC4382EVM-PDK TLV320AIC36EVM-K TPA5052EVM TPA6136A2YFFEVM LM4562HABD LM4906LDBD LM4923LQBD LM4992SDBD LME49710MABD LME49713MABD LME49860NABD MAX98300EVKIT+WLP MAX9738EVKIT+ MAX98358EVSYS\#WLP MAX9723DEVKIT+ EVAL-ADAV803EBZ MAX9709EVKIT LM4809MBD LM4674TLBD CDBWM8725-M-1 CDBWM8533-M-1 EV_ICS-40740-FX SDCK3 PIM524 DEV-17737 MAX9850EVCMOD2\# EVALAHNBIM69D130V01TOBO1 1063 TAS5756MDCAEVM TLV320ADC3101EVM-K TLV320AIC3007EVM-K TLV320AIC3105EVM-K TLV320AIC3253EVM-K TPA2016D2EVM TPA2035D1EVM TPA2051D3YFFEVM TPA3107D2EVM TPA6120A2EVM TPA6132A2EVM2 MIKROE-2454 1381

