

PmodCMPS™ Reference Manual

Revised May 24, 2016 This manual applies to the PmodCMPS rev. A

Overview

The Digilent PmodCMPS features the popular Honeywell HMC5883L 3-axis digital compass and can add compass heading readings to any Digilent host board with an I²C interface.

The PmodCMPS.

Features include:

- 3-axis digital compass
- 2 milli-gauss Field Resolution in ±8 gauss fields
- 160 Hz maximum data output rate
- Optional pull-up resistors for SCL and SDA pins
- Small PCB size for flexible designs $0.8" \times 0.8"$ (2.0 cm \times 2.0 cm)
- 2×4-pin connector with I2C interface
- Follows Digilent Pmod Interface Specification
- Library and example code available in resource center

Functional Description

The PmodCMPS utilizes Honeywell's HMC5883L with Anisotropic Magnetoresistive (AMR) technology. In plain English, this means that the three sensors (one for each coordinate direction) have very little interference with each other so that accurate data can be retrieved from the Pmod.

Interfacing with the Pmod

The PmodCMPS communicates with the host board via the I²C protocol. Jumpers JP1 and JP2 provide optional 2.2kΩ pull-up resistors to use for the Serial Data and Serial Clock lines. The 7-bit address for this on-board chip is 0x1E, making the 8-bit address for a read command 0x3D and 0x3C for a write command.

By default, the PmodCMPS starts out in Single Measurement mode so that the compass takes a single measurement, sets the Data Ready pin high, and then places itself into Idle Mode. While in Idle Mode, major sources of power consumption are (not surprisingly) disabled, such as the internal ADC which collects the voltage measurements. However, you can still access all of the registers with their most recent data value through the I²C

bus. To change the PmodCMPS from idle mode back into Single Measurement or Continuous Measurement mode, the user must write to the Mode Register (0x02).

When reading data from the PmodCMPS, all six data registers, corresponding to the upper and lower bytes of each Cartesian coordinate direction, must be read. Since the internal register address pointer automatically increments after a register has been successfully read, it is possible to read from all six registers with a single command. An example how this might look is given below:

	Command byte						Address byte										
0	0	1	1	1	1	0	1	(ACK)	0	0	0	0	0	0	1	1	(ACK)
MSE	MSB X						LSB X										
SX	SX	SX	SX	sb	MSB	b9	b8	(ACK)	b7	b6	b5	b4	b3	b2	b1	b0	(ACK)
MSE	MSB Z						LSB Z										
SX	SX	SX	SX	sb	MSB	b9	b8	(ACK)	b7	b6	b5	b4	b3	b2	b1	b0	(ACK)
MSE	MSB Y					LSB Y											
SX	SX	SX	SX	sb	MSB	b9	b8	(ACK)	b7	b6	b5	b4	b3	b2	b1	b0	(STOP)

Table 1. Command and address bytes.

Note: SX stands for a sign extension of the sign bit (sb).

2.1 Pinout Description Table

Header J1							
Pins	Signal	Description					
1 & 5	SCL	Serial Clock					
2 & 6	SDA	Serial Data					
3 & 7	GND	Power Supply Ground					
4 & 8	VCC	Power Supply (3.3V)					

Header J2					
Pin	Signal	Description			
1	DRDY	Data Ready			
2	GND	Power Supply Ground			
Jumper JP1					
Load	ed State	SDA line uses a 2.2kΩ pull-up resistor			
Jumper JP2					
Load	ed State	SCL line uses a $2.2k\Omega$ pull-up resistor			

Table 1. Connector J1: Pin descriptions as labeled on the Pmod.

The PmodCMPS also offers a self test mode to help calibrate any data that is being received from the module.

Any external power applied to the PmodCMPS must be within 2.16V and 3.6V; therefore, when using Pmod headers on Digilent system boards, the supply voltage must be at 3.3V.

3 Physical Dimensions

The pins on the pin header are spaced 100 mil apart. The PCB is 0.8 inches long on the sides parallel to the pins on the pin header and 0.8 inches long on the sides perpendicular to the pin header.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Magnetic Sensor Development Tools category:

Click to view products by Digilent manufacturer:

Other Similar products are found below:

AS5132 AB MAX9926UEVKIT+ MAX9924UEVKIT+ AS5040-SS_EK_PB AS5013-QF_EK_AB MIKROE-3274 AH1912-W-EVM

AH1903-FA-EVM AH3774-W-EVM MIKROE-4270 MIKROE-4366 AH49FNTR-EVM CTD110 ROTATEKNOBANGLE2GOTOBO1

CTD310 AH3360-FA-EVM AH1912-FA-EVM AH8502-FDC-EVM AH3366Q-SA-EVM AH3774-P-EVM MIKROE-1647 MIKROE-1646

EVAL-CN0332-PMDZ AS5047P-TS_EK_AB AS516X-SO_EK_SB AS5245-QF_EK_PB AS526X-MF_EK_SB AS5600-SO_POTUINO

AS5X47P-TS_EK_MB AS5X47-TS_EK_SB AS5X6X-EK-ST AS5115-SS_EK_DB AS5130-SS_EK_DB AS5140-SS_EK_AB AS5145A
SS_EK_AB AS5145B-SS_EK_AB MIKROE-2750 DRV5032-SOLAR-EVM MMC34160PJ-B ASD2613-R AS5170A-SO_EK_AB

AS5147-EK-AB EVKT-MACOM HAL APB V5.1 STEVAL-MKI181V1 4022 4366 AS5040 AB AS5040 DB V2 AS5045 AB