


1300 Henley Court Pullman, WA 99163 509.334.6306 www.digilentinc.com

PmodCMPS™ Reference Manual

Revised May 24, 2016 This manual applies to the PmodCMPS rev. A

Overview

The Digilent PmodCMPS features the popular <u>Honeywell HMC5883L</u> 3-axis digital compass and can add compass heading readings to any Digilent host board with an I²C interface.

Features include:

- 3-axis digital compass
- 2 milli-gauss Field Resolution in ±8 gauss fields
- 160 Hz maximum data output rate
- Optional pull-up resistors for SCL and SDA pins
- Small PCB size for flexible designs 0.8" × 0.8" (2.0 cm × 2.0 cm)
- 2×4-pin connector with I2C interface
- Follows <u>Digilent Pmod Interface Specification</u>
- Library and example code available in <u>resource center</u>

The PmodCMPS.

1 Functional Description

The PmodCMPS utilizes Honeywell's HMC5883L with Anisotropic Magnetoresistive (AMR) technology. In plain English, this means that the three sensors (one for each coordinate direction) have very little interference with each other so that accurate data can be retrieved from the Pmod.

2 Interfacing with the Pmod

The PmodCMPS communicates with the host board via the I²C protocol. Jumpers JP1 and JP2 provide optional 2.2k Ω pull-up resistors to use for the Serial Data and Serial Clock lines. The 7-bit address for this on-board chip is 0x1E, making the 8-bit address for a read command 0x3D and 0x3C for a write command.

By default, the PmodCMPS starts out in Single Measurement mode so that the compass takes a single measurement, sets the Data Ready pin high, and then places itself into Idle Mode. While in Idle Mode, major sources of power consumption are (not surprisingly) disabled, such as the internal ADC which collects the voltage measurements. However, you can still access all of the registers with their most recent data value through the I²C

bus. To change the PmodCMPS from idle mode back into Single Measurement or Continuous Measurement mode, the user must write to the Mode Register (0x02).

When reading data from the PmodCMPS, all six data registers, corresponding to the upper and lower bytes of each Cartesian coordinate direction, must be read. Since the internal register address pointer automatically increments after a register has been successfully read, it is possible to read from all six registers with a single command. An example how this might look is given below:

Command byte							Address byte										
0	0	1	1	1	1	0	1	(ACK)	0	0	0	0	0	0	1	1	(ACK)
MSE	MSB X							LSB X									
SX	SX	SX	SX	sb	MSB	b9	b8	(ACK)	b7	b6	b5	b4	b3	b2	b1	b0	(ACK)
MSE	MSB Z						LSB Z										
SX	SX	SX	SX	sb	MSB	b9	b8	(ACK)	b7	b6	b5	b4	b3	b2	b1	b0	(ACK)
MSE	MSB Y						LSB Y										
SX	SX	SX	SX	sb	MSB	b9	b8	(ACK)	b7	b6	b5	b4	b3	b2	b1	b0	(STOP)

Table 1. Command and address bytes. Note: SX stands for a sign extension of the sign bit (sb).

2.1 Pinout Description Table

	H	eader J1		Header J2						
Pins	Signal	Description	Pin	Signal	Description					
1&5	SCL	Serial Clock	1	DRDY	Data Ready					
2&6	SDA	Serial Data	2	GND	Power Supply Ground					
3&7	GND	Power Supply Ground	Jum	Jumper JP1						
4 & 8	د ۲۰۰۶ VCC Power Supply (3.3 ک		Load	ed State	SDA line uses a $2.2k\Omega$ pull-up resistor					
			Jumper JP2							
			Load	ed State	SCL line uses a $2.2k\Omega$ pull-up resistor					

Table 1. Connector J1: Pin descriptions as labeled on the Pmod.

The PmodCMPS also offers a self test mode to help calibrate any data that is being received from the module.

Any external power applied to the PmodCMPS must be within 2.16V and 3.6V; therefore, when using Pmod headers on Digilent system boards, the supply voltage must be at 3.3V.

3 Physical Dimensions

The pins on the pin header are spaced 100 mil apart. The PCB is 0.8 inches long on the sides parallel to the pins on the pin header and 0.8 inches long on the sides perpendicular to the pin header.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Magnetic Sensor Development Tools category:

Click to view products by Digilent manufacturer:

Other Similar products are found below :

AS5045 DB V2 AS5134 AB MMC5633NJL-B ROTATEKNOBANGLE2GOTOBO1 MIKROE-1647 MIKROE-1646 EVAL-CN0332-PMDZ AS5510-SO_EK_AB AS5510-WL_EK_DB ADA4571R-EBZ AS5170A-SO_EK_AB 4366 AS5013-QF_EK_AB AS5040 AB AS5040 DB V2 AS5040-SS_EK_PB AS5045 AB AS5047D-TS_EK_AB AS5048A-EK-AB-STM1.1 AS5048A-TS_EK_AB AS5048-TS_EK_DB AS5050A-QF_EK_AB AS5132 AB AS5132 DB AS5132 PB AS5140 DB AS5145B-EK-AB-STM1.0 AS5147P-TS_EK_AB AS5162-EK-AB AS5172B-TS_EK_AB AS5247-MF_EK_SB AS5247U-TQ_EK_AB AS5247U-TQ_EK_SB AS5262-MF_EK_AB AS5311-TS_EK_AB AS5510-SOIC8-AB AS5600-SO_EK_AB AS5600-SO_EK_ST AS5601-SO_EK_AB AS5601-SO_EK_ST AS5600-SO_EK_ST AS5602-SD_EK_ST AS5602-SD_EK_ST AS5602-SD_EK