MCC 152

Voltage Output and DIO DAQ HAT for Raspberry Pi®

The MCC 152 *is a* 12-*bit analog voltage output and digital input/output* DAQ HAT. *The* MCC 152 *is shown here connected to a Raspberry* Pi (not included).

Overview

The MCC 152 is a voltage output and digital input/output HAT (Hardware Attached on Top) designed for use with Raspberry Pi, the most popular single-board computer on the market today.

A HAT is an add-on board with a 40W GPIO (general purpose input/output) connector that conforms to the Raspberry Pi HAT specification.

The MCC 152 HAT provides two analog outputs and eight digital I/O bits. Up to eight MCC HATs can be stacked onto one Raspberry Pi. With CMOS input thresholds, selectable voltage operation, and 5 V tolerance for the digital inputs, the digital channels support both 3.3 V and 5 V logic types.

Raspberry Pi Interface

The MCC 152 header plugs into the 40-pin general purpose I/O (GPIO) connector on a user-supplied Raspberry Pi. The MCC 152 was tested for use with all Raspberry Pi models with the 40-pin GPIO connector.

HAT configuration

HAT configuration parameters are stored in an on-board EEPROM that allows the Raspberry Pi to automatically set up the GPIO pins when the HAT is connected.

Stackable HATs

Up to eight MCC HAT boards can be stacked onto a single Raspberry Pi. Users can mix and match MCC HAT models in the stack.

Analog Voltage Output

The MCC 152 provides two 12-bit analog outputs with a 0 V to 5 V output range and 5 mA output drive, sourcing. Both outputs can be updated simultaneously with software.

Digital I/O

The MCC 152 provides eight bidirectional digital bits.

Each digital bit is configurable for pull-up or pull-down, or can be disabled. Each output bit can source 10 mA and sink 25 mA.

Users can configure the software to generate an interrupt when the state of a digital input bit changes.

The MCC 152 can interface with 3.3 V or 5 V logic types; the voltage is selectable with an onboard jumper.

The input polarity is software programmable for normal (active high, default) or inverted logic (active low).

Features

- Two 12-bit simultaneous voltage outputs
- 5 mA output drive, sourcing
- 0.8 V/µs slew rate
- Eight bidirectional digital bits
- 5V / 3.3V operation; CMOS input thresholds
- Programmable input polarity
- Screw terminal connections
- Stack up to eight MCC HATs onto a single Raspberry Pi

Software

• MCC DAQ HAT Library; available on GitHub

Supported Operating Systems

Linux[®]/Raspbian

Programming API

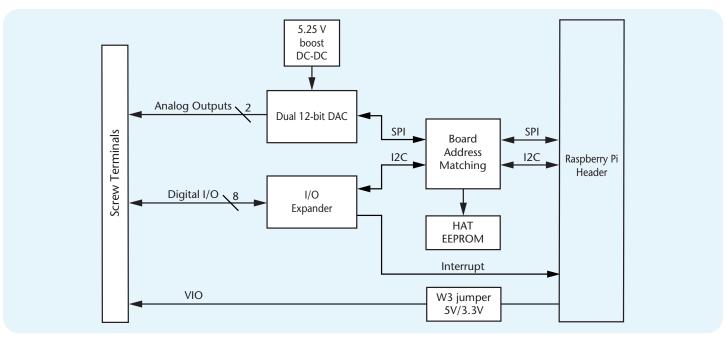
• C, C++, Python

Power

Power is provided by the Raspberry Pi through the GPIO header connector.

MCC DAQ HAT Library

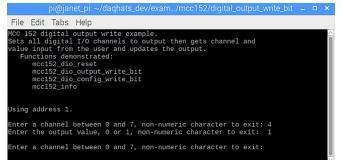
The open-source MCC DAQ HAT Library of commands in C/C++ and Python allows users to develop applications on the Raspberry Pi using Linux.


The library is available to download from <u>GitHub</u>. Comprehensive API and hard-ware <u>documentation</u> is available.

The MCC DAQ HAT Library supports operation with multiple MCC DAQ HATs running concurrently.

Console-based example programs are available for each API.

MCC 152 Block Diagram and Example Programs



MCC DAQ HAT Examples

The MCC DAQ HAT Library includes console-based example programs developed in C/C++ and Python that users can run to become familiar with the library and the MCC 152.

Each example includes a description and a list of the functions demonstrated in the program. An example is shown here.

Users can verify MCC 152 functionality out-of-the-box by running the MCC 152 App from the MCC DAQ HAT Manager utility program. This utility requires the Raspbian desktop interface, and is accessible from the Applications menu.

Ready-to-run examples are included with the DAQ HAT library

Stackable

Connect up to eight MCC DAQ HATs onto a single Raspberry Pi. Onboard jumpers identify each board in the stack.

MCC 152 Specifications and Ordering

Specifications

All specifications are subject to change without notice. Typical for 25 °C unless otherwise specified.

Analog output

Resolution: 12 bits, 1 in 4,096 Output range: 0 V to 5.0 V Number of channels: 2 Write time: 12 µs, typ Power on and reset voltage (Initializes to 000h code): 0 V, ±10 mV Output drive (each D/A OUT): 5 mA, sourcing Slew rate: 0.8 V/µs typ Differential nonlinearity: ±0.25 LSB max Zero-scale error¹ (000h code): 2 mV typ, 10 mV max Full-scale error² (FFFh code): -0.1 % of FSR typ, ±1 % of FSR max Offset error²: ±1 mV typ, ±10 mV max Gain error 2: ±1.5 % of FSR max

Digital input/output

Digital input type: CMOS Number of I/O: 8

- Configuration: Each bit may be configured as input (power on default) or output Pull-up configuration: Each bit has a programmable 100 k Ω pull resistor (50 to 150 k Ω range) that may be programmed as pull-up (power on default), pulldown, or disabled. The pull-up/down resistors are disabled on outputs when in open-drain mode.
- DIO supply voltage (VIO): 5 V or 3.3 V, selectable with jumper W3 (factory default is 5 V.)

Port read time: 400 µs typ

- Port write time: 500 µs typ
- Interrupt functionality: Each bit may be configured to generate an interrupt on change when in input mode.

Input low voltage threshold: 0.3 × VIO V max

- Input high voltage threshold: 0.7 × VIO V min
- Input voltage limits (both 3.3 V and 5 V modes)

6.5 V absolute max³, -0.5 V absolute min

Input voltage recommended range

5 V mode: 5.5 V max, 0 V min 3.3 V mode: 3.8 V max³, 0 V min

Output type: CMOS, entire port may be configured as push-pull or open-drain.

Order Information

Hardware

р

N

Part No.	Description
ACC 152	12-bit voltage output D
	the 40 pip CPIO conne

DAQ HAT. Raspberry Pi model with the 40-pin GPIO connector required.

High level output current: 10 mA max⁴ Low level output current: 25 mA max Output high voltage VIO = 3.3 V: 2.5 V min (IOH = -10 mA)VIO = 5 V: 4.0 V min (IOH = -10 mA)Output low voltage VIO = 3.3 V: 0.25 V max (IOL = 10 mA)

VIO = 5 V: 0.2 V max (IOL = 10 mA)

Memory

Non-volatile memory: 4 KB (ID and serial storage, no user-modifiable memory)

Power

Supply current, 5V supply Typical, 5V DIO selection: 15 mA Maximum, 5V DIO selection: 35 mA5,6 Typical, 3.3V DIO selection: 10 mA Maximum, 3.3V DIO selection: 12 mA5 Supply current, 3.3V supply⁴ Typical, 5V DIO selection: 0.01 mA Maximum, 5V DIO selection: 6 mA Typical, 3.3V DIO selection: 3.5 mA Maximum, 3.3V DIO selection: 11 mA5

Interface specifications

Raspberry Pi GPIO pins used GPIO 8, GPIO 10, GPIO 11 (SPI interface) GPIO 2, GPIO 3 (I2C interface) ID_SD, ID_SC (ID EEPROM) GPIO 12, GPIO 13, GPIO 26, (Board address) GPIO 21 (Interrupt) Data interface type SPI slave device, CE0 chip select (Analog output) I2C slave device (Digital I/O) SPI mode: 1 SPI clock rate: 50 MHz max I2C address: 0×20 to 0×27, depending on board address jumper setting I2C clock rate: 400 kHz max

Environmental

Operating temperature range: 0 °C to 55 °C Storage temperature range: -40 °C to 85 °C Humidity: 0% to 90% non-condensing

Mechanical

Dimensions (L × W × H): 65 × 56.5 × 12 mm (2.56 × 2.22 × 0.47 in.) max

4 The power consumed by all DAQ HATs must be within the capacity of the Raspberry Pi power supply. Extra care must be taken with sourcing 3.3 V loads since they are supplied by the regulator on the Raspberry Pi; MCC recommends using the 5V DIO selection when sourcing large load currents such as LEDs.

5 This specification doesn't include user loading on analog outputs.

6 This specification doesn't include user loading on digital outputs or the VIO terminal.

Software

Part No.

Description

MCC DAQ HAT Library

© Measurement Computing Corporation

¹ Zero-scale error may result in a "dead-band" digital input code region. In this case, changes in requested output voltage may not produce a corresponding change in the output voltage when the voltage is less than 10 mV. The offset error is tested and specified at 10 mV.

² Error tested at no load.

³ When VIO is 3.3 V the input will tolerate voltages up to 6.5 V, but the voltage must be current-limited or it will change the VIO voltage due to current flowing into the MCC 152. An external current limiting resistor of 700 Ω or larger is recommended on each input that is higher than 3.3 V when the W3 jumper is in the 3.3 V position.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Data Logging & Acquisition category:

Click to view products by Digilent manufacturer:

Other Similar products are found below :

 PCI-6208A
 DAQe-2502
 PXI-2208
 ACL-8112DG
 SpotBotBLE
 MCM-204
 USB-4711A-BE
 ACL-7130
 LPCI-7230
 PXES-2780
 Rack-Mount

 kit
 USB-4761-BE
 SE028
 PCI-1761-BE
 PCI-1711UL-CE
 USB-4702-AE
 USB-4704-AE
 USB-4716-AE
 USB-4750-BE
 USB-4751-AE

 USB-4751L-AE
 PCI-1710UL-DE
 PCI-1710U-DE
 PCI-1710HGU-DE
 AR207/8/S1/PPPP/IP30
 U2781A
 4610
 AR407/S1/P/P/P

 AR207/8/S2/PPPP/IP30
 ACL-8112PG
 cPCI-7248
 cPCI-7433
 DAQe-2205
 ND-6053
 ND-6060
 PCI-7230
 PCI-7432
 PCI-7442

 PCI-9112
 PCI-9113A
 PCI-9221
 PCM-7248+
 USB-1903
 USB-2401
 PCIE-1813-AE
 USB-5860-AE
 USB-5862-AE

 AR654/S1/P/P/P/PIP30
 AR654/S2/P/P/P/P/PJ30
 AR654/S2/P/P/P/PJ30
 PCI-9112A
 PCI-9112A
 PCI-91190