Description

The AP2205 series is a positive voltage regulator IC fabricated by high voltage EPNP process.

The AP2205 has features of wide input voltage range, high accuracy, high ripple rejection, low dropout voltage, low noise, current limit and ultra-low quiescent current which make it ideal for use in various USB and portable devices.

The IC consists of a voltage reference, an error amplifier, a resistor network for setting output voltage, a current limit circuit for current protection, and a chip enable circuit, a low power shutdown mode for extended battery life, over current protection, over temperature protection, as well as reversed-battery protection.

The AP2205 has $1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 2.8 \mathrm{~V}, 3.0 \mathrm{~V}, 3.3 \mathrm{~V}, 5.0 \mathrm{~V}$ fixed voltage versions and adjustable voltage version.

The AP2205 is available in space-saving SOT25 and SOT89 packages.

Features

- Wide Input Voltage Range: 2.3 V to 24 V
- Wide Output Voltage Range: 1.24 V to 22 V
- Excellent Ripple Rejection: $60 \mathrm{~dB} @ \mathrm{f}=1 \mathrm{kHz}$
- Low Dropout Voltage: $\mathrm{V}_{\mathrm{DROP}}=100 \mathrm{mV} @$ IOUT $=100 \mu \mathrm{~A}$
- Low Ground Current
- High Output Voltage Accuracy
- Compatible with Low ESR Ceramic Capacitor
- Excellent Line/Load Regulation
- Thermal Shutdown Function
- Totally Lead-Free \& Fully RoHS Compliant (Notes 2 \& 3)
- Halogen and Antimony Free. "Green" Device (Note 4)

Pin Assignments

SOT89 (Note 1)
(Top View)

SOT89R (Note 1)

Note 1: The substrate/exposed pad should be connected to GND or open.
(Top View)

Applications

- Battery-powered Equipment
- Laptop, Palmtops, Notebook Computers
- Portable Information Appliances
- Industrial/Automotive Applications

Notes: 2. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
3. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
4. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and <1000ppm antimony compounds.

Typical Applications Circuit

Typical Applications Circuit (cont.)

Startup Time Adjustable by External R3C1 Circuit

Startup Time Adjustable by External R3C1 Circuit

Pin Number			Pin Name	
SOT25	SOT89	SOT89R		
	Y	YR		
1	1	3	VIN	Input voltage
2	2	2	GND	Ground
3	-	-	EN	Enable input
4	-	-	ADJ/NC	Adjust output for ADJ version/Not connected for fixed version
5	3	1	VOUT	Regulated output voltage

Functional Block Diagram

Fixed Version

AP2205

Absolute Maximum Ratings (Note 5)

Symbol	Parameter	Rating		Unit
VIN	Supply Input Voltage	36		V
$\mathrm{V}_{\text {ce }}$	Enable Input Voltage	36		V
lout	Output Current	250		mA
TLEAD	Lead Temperature (Soldering, 10sec)	+260		${ }^{\circ} \mathrm{C}$
TJ	Operating Junction Temperature	+150		${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Note 6)	SOT25	160	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		SOT89/SOT89R	129	
$\theta \mathrm{sc}$	Thermal Resistance	SOT25	29	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		SOT89/SOT89R	26	
Tsta	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$
-	ESD (Charge Device Model)	1000		V
-	ESD (Human Body Model)	2000		V

Notes: 5. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.
6. θ_{JA} is measured with the component mounted on a 2-Layer FR-4 PCB board with $1.5 \mathrm{~cm} * 1.5 \mathrm{~cm}$ thermal sink pad in free air.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
V_{IN}	Supply Input Voltage	2.3	24	V
$\mathrm{~T}_{J}$	Operating Junction Temperature	-40	+125	${ }^{\circ} \mathrm{C}$

AP2205
 $40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
Vout	Output Voltage	Variation from Specified Vout		$\begin{array}{r} \text { Vout } \\ \times 98 \% \\ \hline \end{array}$	-	$\begin{gathered} \text { VOUT } \\ \times 102 \% \end{gathered}$	V
$V_{\text {REF }}$	Reference Voltage	-		1.215	1.24	1.265	V
V IN	Input Voltage	-		2.3	-	24	V
lout(Max)	Maximum Output Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=98 \% \times \mathrm{V}_{\text {OUT }}$		200	250	-	mA
$\Delta \mathrm{V}_{\text {OUT }} / \Delta \mathrm{V}_{\text {IN }}$	Line Regulation	$\mathrm{V}_{\text {OUT }}+1 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 24 \mathrm{~V}$		-	0.05	-	\%
$\Delta V_{\text {OUT }} / \mathrm{V}_{\text {OUT }}$	Load Regulation	$1 \mathrm{~mA} \leq$ lout $\leq 200 \mathrm{~mA}$		-	0.5	-	\%
$V_{\text {DROP }}$	Dropout Voltage (Note 7)	Iout $=100 \mu \mathrm{~A}$		-	100	150	
		lout $=50 \mathrm{~mA}$		-	270	350	
		IOUT $=100 \mathrm{~mA}$		-	320	460	
		I OUT $=150 \mathrm{~mA}$		-	360	500	
IGND	Ground Current	$\mathrm{lout}=100 \mu \mathrm{~A}$		-	36	-	$\mu \mathrm{A}$
		Iout $=50 \mathrm{~mA}$		-	0.5	-	
		IOUT $=100 \mathrm{~mA}$		-	1.3	-	mA
		lout $=150 \mathrm{~mA}$		-	2.5	-	
Istd	Standby Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+1 \mathrm{~V} \\ & \mathrm{~V}_{\text {EN }} \text { in OFF Mode } \end{aligned}$		-	0.01	1.0	$\mu \mathrm{A}$
PSRR	Power Supply Rejection Ration	Ripple $0.5 \mathrm{~V}_{\text {P-P }}$$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+1 \mathrm{~V}$	$\mathrm{f}=100 \mathrm{~Hz}$	-	60	-	dB
			$\mathrm{f}=1 \mathrm{kHz}$	-	60	-	
$\Delta \mathrm{V}_{\text {OUT }} /\left(\mathrm{V}_{\text {OUT }} \times \Delta \mathrm{T}\right.$)	Output Voltage Temperature Coefficient	$\begin{aligned} & \text { lout }=100 \mu \mathrm{~A}, \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C} \end{aligned}$		-	± 100	-	ppm $/{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{NOI}}$	RMS Output Noise	$\mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$		-	30	-	$\mu \mathrm{V}_{\text {rms }}$
$\mathrm{I}_{\text {ADJ }}$	ADJ Pin Current	Iout $=100 \mu \mathrm{~A}$		-	0.5	-	$\mu \mathrm{A}$
$I_{\text {EN }}$	EN Pin Current	$\mathrm{V}_{\text {EN }}=\mathrm{V}_{\text {OUT }}+1 \mathrm{~V}$		-	3	-	$\mu \mathrm{A}$
-	EN "High" Voltage	EN Input Voltage "High"		2.0	-	-	V
-	EN "Low" Voltage	EN Input Voltage "Low"		-	-	0.4	V

Note 7: Dropout voltage is only valid when $\mathrm{V}_{\text {OUT }} \geq 2.3 \mathrm{~V}$ because of the minimum input voltage limits.

AP2205

Performance Characteristics

Output Voltage vs. Input Voltage

Output Voltage vs. Temperature

Output Voltage vs. Temperature

Output Voltage vs. Input Voltage

Output Voltage vs. Temperature

Output Voltage vs. Temperature

AP2205

Performance Characteristics (Cont.)

Output Voltage vs. Output Current

AP2205

Performance Characteristics (Cont.)

Dropout Voltage vs. Output Current

Dropout Voltage vs. Temperature

Supply Current vs. Input Voltage

Dropout Voltage vs. Output Current

Dropout Voltage vs. Temperature

Supply Current vs. Input Voltage

Performance Characteristics (Cont.)

Ground Current vs. Output Current

Load Transient
(Conditions: $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {out }}=2.2 \mu \mathrm{~F}$, lout=1mA to 50 mA)

Load Transient
(Conditions: $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {out }}=2.2 \mu \mathrm{~F}$, lout=1mA to 150 mA)

Ground Current vs. Output Current

Load Transient
(Conditions: $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {out }}=2.2 \mu \mathrm{~F}$, lout=1mA to 100 mA)

Load Transient
(Conditions: $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1.0 \mu \mathrm{~F}$, $\mathrm{C}_{\text {out }}=2.2 \mu \mathrm{~F}$, lout=50mA to 100 mA)

AP2205

Performance Characteristics (Cont.)

Enable Input Response

Enable Input Response

Maximum Output Current vs. Ambient Temperature

Adjustable Start-up Time by RC

Adjustable Start-up Time by RC

Enable Pin Current vs. Enable Input Voltage

Performance Characteristics (Cont.)

PSRR vs. Frequency

PSRR vs. Frequency

Ordering Information

Part Number	Package Code	Package	13"/7" Tape and Reel	
			Quantity	Part Number Suffix
AP2205-XXY-13	Y	SOT89	$2,500 /$ Tape \& Reel	-13
AP2205-XXYR-13	YR	SOT89	$2,500 /$ Tape \& Reel	-13
AP2205-W5-7	W5	SOT25	$3,000 /$ Tape \& Reel	-7
AP2205-XXW5-7	W5	SOT25	$3,000 /$ Tape \& Reel	-7

Marking Information

(1) SOT25
(Top View)

XX : Identification Code
\underline{Y} : Year 0 to 9
W : Week: A to Z : 1 to 26 week;
a to $z: 27$ to 52 week; z represents 52 and 53 week
X : Internal Code

Part Number	Package	Identification Code
AP2205-W5-7	SOT25	5 A
AP2205-15W5-7	SOT25	5 B
AP2205-18W5-7	SOT25	5 C
AP2205-25W5-7	SOT25	5 D
AP2205-28W5-7	SOT25	5 E
AP2205-30W5-7	SOT25	5 F
AP2205-33W5-7	SOT25	5 G
AP2205-50W5-7	SOT25	5 H

Marking Information (Cont.)

(2) SOT89
(Top View)

$\underline{X X}$: Identification code
\underline{Y} : Year: 0~9
W : Week : A~Z : 1~26 week; a~z: 27~52 week; z represents 52 and 53 week
X : Internal code

Part Number	Package	Identification Code
AP2205-15Y-13	SOT89	5 B
AP2205-18Y-13	SOT89	5 C
AP2205-25Y-13	SOT89	5 D
AP2205-28Y-13	SOT89	5 E
AP2205-30Y-13	SOT89	5 F
AP2205-33Y-13	SOT89	5 G
AP2205-50Y-13	SOT89	5 H
AP2205-15YR-13	SOT89	6 B
AP2205-18YR-13	SOT89	6 C
AP2205-25YR-13	SOT89	6 D
AP2205-28YR-13	SOT89	6 E
AP2205-30YR-13	SOT89	6 F
AP2205-33YR-13	SOT89	6 G
AP2205-50YR-13	SOT89	6 H

I N C O R P O R A T E D
Package Outline Dimensions (All dimensions in $\mathrm{mm}($ (inch).)
(1) Package Type: SOT25

AP2205

Package Outline Dimensions (Cont. All dimensions in mm(inch).)

(2) Package Type: SOT89

Option 1

Option 2

(1) Package Type: SOT25

Dimensions	Z $(\mathrm{mm}) /($ inch $)$	G $(\mathrm{mm}) /($ inch $)$	X $(\mathrm{mm}) /(\mathrm{inch})$	Y $(\mathrm{mm}) /(\mathrm{inch})$	E1 $(\mathrm{mm}) /($ inch $)$	E2 $(\mathrm{mm}) /(\mathrm{inch})$
Value	$3.600 / 0.142$	$1.600 / 0.063$	$0.700 / 0.028$	$1.000 / 0.039$	$0.950 / 0.037$	$1.900 / 0.075$

Suggested Pad Layout (Cont.)

(2) Package Type: SOT89

Dimensions	Z $(\mathrm{mm}) /(\mathrm{inch})$	X $(\mathrm{mm}) /(\mathrm{inch})$	X1 $(\mathrm{mm}) /(\mathrm{inch})$	X2 $(\mathrm{mm}) /(\mathrm{inch})$	Y $(\mathrm{mm}) /(\mathrm{inch})$	Y 1 $(\mathrm{~mm}) /(\mathrm{inch})$	E $(\mathrm{mm}) /(\mathrm{inch})$
Value	$4.600 / 0.181$	$0.550 / 0.022$	$1.850 / 0.073$	$0.800 / 0.031$	$1.300 / 0.051$	$1.475 / 0.058$	$1.500 / 0.059$

AP2205

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2019, Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Display Development Tools category:
Click to view products by Adafruit manufacturer:

Other Similar products are found below :
KIT 60121-3 S5U13L02P00C100 S5U13U11P00C100 4172800XX-3 TW8823-LC2-EVAL KIT 67134-3 LCD8000-43T CC-ACC-LCDW70 TW8836-L-EVAL TW8819-NA2-CR-EVAL 121CBL02-RPK KIT 60145-3 S5U13748P00C100 DFR0413 ADM00931 3248 MIKROE3158 MIKROE-3157 MIKROE-3159 104PW01F DLPLCR90EVM DLPLCR67EVM DLPLCR50XEVM DLPLCRC900DEVM DLPLCRC900EVM MAX20069EVKIT\# LCD-16397 LCD-16398 KIT95000-3 LCD-16396 1109 MIKROE-2449 MIKROE-2453 TSC2007EVM TSC2007EVM-PDK $131 \underline{1316} 1431$ DEV-13628 1590 MIKROE-2269 $1601 \underline{1673} 1770$ TPS65132BEVM UEZGUI-178870WVM $1947 \underline{1983}$ KIT 60110-3 KIT 60125-3

