Description

The 74LVC1G3157 is a single-pole, double-throw analog switch. The device is designed for operation with a power supply range of 1.65 V to 5.5 V . The bidirectional switch can handle signal amplitudes between Vcc and Ground. The OFF state impedance of the switch is typically $50 \mathrm{M} \Omega$ while the ON state is typically 6Ω.

Pin Assignments

X2-DFN1410-6

Packages not to scale

Features

- Wide Supply Voltage Range from 1.65 to 5.5 V
- Control Pin Includes Hysteresis Allowing for Slower Input Rise and Fall Times
- CMOS Low Power Consumption
- Very Low ON-State Resistance
- 7.5Ω (typical) at $\mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V}$
- 6.5Ω (typical) at $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$
- 6Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
- Break Before Make Switching
- Control Input accepts up to 5.5 V Regardless of Vcc .
- Direct Interface with TTL Levels when $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- ESD Protection Tested per JESD 22
- Exceeds 2,000-V Human Body Model (A114)
- Exceeds 1,000-V Charged Device Model (C101)
- Latch-Up Exceeds 100 mA per JESD 78, Class I
- Range of Package Options
- Totally Lead-Free \& Fully RoHS Compliant (Notes 1 \& 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative. https://www.diodes.com/quality/product-definitions/

Applications

- Multiplexing of Analog Signals
- Multiplexing of Digital Signals
- Wide array of products such as:
- Tablets, E-readers, Wearables
- Cell Phones, Personal Navigation / GPS
- MP3 Players, Cameras, Video Recorders
- Computer Peripherals, Hard Drives, CD/DVD ROMs
- TV, DVD, DVR, Set Top Boxes
- PCs, Networking, Notebooks, Netbooks, PDAs

[^0]74LVC1G3157

Ordering Information (Note 4)

Device	Package Code	Package (Note 5)	Package Size	7" Tape and Reel (Note 6)	
	Puantity				
74LVC1G3157DW-7	DW	SOT363	$2.0 \mathrm{~mm} \times 2.0 \mathrm{~mm} \times 1.1 \mathrm{~mm}$ 0.65 mm lead pitch	$3,000 /$ Tape \& Reel	-7
74LVC1G3157FZ4-7	FZ4	X2-DFN1410-6	$1.4 \mathrm{~mm} \times 1.0 \mathrm{~mm} \times 0.4 \mathrm{~mm}$ 0.5 mm pad pitch	$5,000 /$ Tape \& Reel	-7

Notes: 4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/
5. Pad layout as shown in Diodes Incorporated's package outline PDFs, which can be found on our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.
6. The taping orientation is located on our website at https://www.diodes.com/assets/Packaging-Support-Docs/ap02007.pdf.

Pin Descriptions

Pin Name	Description
B1	Selectable Data $/ / 0$
GND	Ground
B0	Selectable Data $\mathrm{I} / 0$
A	Common Data $/ / 0$
$\mathrm{~V}_{\mathrm{CC}}$	Supply Voltage
Select	Selection Pin

Logic Diagram

Function Table

Select	Status
H	B1 connected to A;
	B0 high impedance
L	B0 connected to A;
	B1 high impedance

Simplified Schematic

74LVC1G3157

Absolute Maximum Ratings (Note 7)

Symbol	Description	Rating	Unit
ESD HBM	Human Body Model ESD Protection	2	kV
ESD CDM	Charged Device Model ESD Protection	1	kV
V_{cc}	Supply Voltage Range	-0.5 to 6.5	V
$\mathrm{V}_{\text {IN }}$	Input Voltage Range Applicable to Select Pin	-0.5 to 6.5	V
$V_{\text {sw }}$	Voltage Range Applicable to B0, B1, and A Pins	-0.5 to $\mathrm{V}_{\mathrm{cc}}+0.5$	V
I_{1}	Input Clamp Current $\mathrm{V}_{1}<0$ Applicable to Select Pin	-50	mA
10	Continuous Current Applicable to B0,B1, and A Pins	± 50	mA
$I_{\text {CC, }} \mathrm{I}_{\text {GND }}$	Continuous current through $\mathrm{V}_{\text {cc }}$ or GND	± 100	mA
TJ	Operating Junction Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Note: $\quad 7$. Stresses beyond the absolute maximum may result in immediate failure or reduced reliability. These are stress values and device operation should be within recommend values

Recommended Operating Conditions

Symbol	Parameter		Min	Max	Unit
$V_{c c}$	Operating Voltage	Operating	1.65	5.5	V
$\mathrm{V}_{\text {IN }}$	Select Input Voltage		0	5.5	V
$\mathrm{V}_{\text {sw }}$	Switch Voltage (applicable to pins B0, B1, A)		-0.2	V_{cc}	V
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate - Select Pin	$\mathrm{V}_{C C}=1.65$ to 2.7 V	-	20	ns/V
		$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$ to 5.5 V	-	10	
T_{A}	Operating Free-Air Temperature	-	-40	+125	${ }^{\circ} \mathrm{C}$

74LVC1G3157

Electrical Characteristics (All typical values are at, $\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}$		Unit
				Min	Typical (Note 8)	Max	Min	Max	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage Select Pin	-	1.65 to 1.95	0.65 V cc	-	-	$0.65 \mathrm{~V}_{\text {cc }}$	-	V
			2.3 to 2.7	1.7	-	-	1.7	-	
			3 to 3.6	2.0	-	-	2.0	-	
			4.5 to 5.5	$0.7 \mathrm{~V}_{\mathrm{cc}}$	-	-	$0.7 \mathrm{~V}_{\text {cc }}$	-	
VIL	Low Level Input Voltage Select Pin	-	1.65 to 1.95	-	-	$0.35 \mathrm{~V}_{\mathrm{cc}}$	-	$0.35 \mathrm{~V}_{\mathrm{cc}}$	V
			2.3 to 2.7	-	-	0.7	-	0.7	
			3 to 3.6	-	-	0.8	-	0.8	
			4.5 to 5.5	-	-	$0.3 \mathrm{~V}_{c c}$	-	$0.3 \mathrm{~V}_{c c}$	
I_{N}	Input Leakage Current Select Pin	$0 \leq$ Select $\leq 5.5 \mathrm{~V}$	0 to 5.5	-	± 0.05	± 1	-	± 10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(OFF) }}$	OFF State Leakage Current	$0 \mathrm{~V} \leq \mathrm{A}, \mathrm{~B}_{\mathrm{n}} \leq \mathrm{V}_{\mathrm{cc}}$ Figure 1	1.65 to 5.5	-	± 0.05	± 1	-	± 10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON) }}$	ON State Leakage Current	$0 V \leq A, B_{n} \leq V_{c C}$ Figure 2	1.65 to 5.5	-	± 0.05	± 1	-	± 10	$\mu \mathrm{A}$
$\mathrm{IS}_{\mathrm{S}}^{(\mathrm{ON})}$	ON State Leakage Current	$-0.1 \mathrm{~V} \leq \mathrm{A}, \mathrm{B}_{\mathrm{n}} \leq \mathrm{V}_{\mathrm{Cc}}$ Figure 2	1.65 to 5.5	-	± 0.05	± 2	-	± 20	$\mu \mathrm{A}$
I_{cc}	Quiescent Supply Current	$\begin{aligned} & \text { Select }=\mathrm{V}_{\mathrm{cc}} \text { or GND } \\ & \mathrm{A}, \mathrm{Bn}=\mathrm{V}_{\mathrm{cc}} \text { or } \mathrm{GND} \\ & \text { lout }=0 \end{aligned}$	5.5	-	1.0	10	-	40	$\mu \mathrm{A}$
$\Delta l_{\text {cc }}$	Additional Supply Current	Select $=V_{c c}-0.6 \mathrm{~V}$ $\mathrm{A}, \mathrm{B}_{\mathrm{n}}=\mathrm{V}_{\mathrm{cc}}$ or GND lout $=0$	5.5	-	30	500	-	5,000	$\mu \mathrm{A}$
C_{1}	Input Capacitance Select Pin	-	3.3	-	2.5	-	-	-	pF
$\mathrm{C}_{\text {S(OFF) }}$	OFF State Capacitance	$\begin{aligned} & \text { Select }=V_{c c} \text { or GND } \\ & A, B_{n}=V_{c c} \text { or GND } \\ & \text { lout }=0 \end{aligned}$	3.3	-	6.0	-	-	-	pF
$\mathrm{C}_{\text {S(ON) }}$	ON State Capacitance	$\begin{aligned} & \text { Select }=V_{c c} \text { or GND } \\ & A, B_{n}=V_{c c} \text { or GND } \\ & \text { lout }=0 \end{aligned}$	3.3	-	18	-	-	-	pF

Note: $\quad 8$. Typical performance information is included in figures 11 to 34 on pages 11 to 14.

74LVC1G3157

Electrical Characteristics (All typical values are at $\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition (Note 9)	$\mathbf{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
Ron	ON Resistance	$\mathrm{V}_{1}=0 \mathrm{~V}, \mathrm{I}_{0}=4 \mathrm{~mA}$	1.65	-	12.5	18	-	27	Ω
		$\mathrm{V}_{1}=1.65 \mathrm{~V}, \mathrm{I}_{0}=-4 \mathrm{~mA}$		-	14	18	-	35	
		$\mathrm{V}_{1}=0 \mathrm{~V}, \mathrm{l}_{0}=8 \mathrm{~mA}$	2.3	-	9.0	16	-	24	
		$\mathrm{V}_{1}=2.3 \mathrm{~V}, \mathrm{I}_{0}=-8 \mathrm{~mA}$		-	9.0	16	-	30	
		$\mathrm{V}_{1}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$	2.7	-	8.0	14	-	21	
		$\mathrm{V}_{1}=2.7 \mathrm{~V}, \mathrm{I}_{0}=-12 \mathrm{~mA}$		-	8.0	14	-	27	
		$\mathrm{V}_{1}=0 \mathrm{~V}, \mathrm{l}_{0}=24 \mathrm{~mA}$	3.0	-	7.0	12	-	18	
		$\mathrm{V}_{1}=3.0 \mathrm{~V}, \mathrm{I}_{0}=-24 \mathrm{~mA}$		-	7.0	12	-	23	
		$\mathrm{V}_{1}=0 \mathrm{~V}, \mathrm{I}_{0}=32 \mathrm{~mA}$	4.5	-	5.5	10	-	15	
		$\mathrm{V}_{1}=2.7 \mathrm{~V}, \mathrm{l}_{0}=-32 \mathrm{~mA}$		-	6.0	12	-	17	
		$\mathrm{V}_{1}=4.5 \mathrm{~V}, \mathrm{l}_{0}=-32 \mathrm{~mA}$		-	5.5	10	-	15	
$\mathrm{R}_{\text {Range }}$	On Resistance Over Signal Range	$\mathrm{I}_{\mathrm{A}}=4 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{BN}} \leq \mathrm{V}_{\mathrm{CC}}$	1.65	-	34	130	-	195	Ω
		$\mathrm{I}_{\mathrm{A}}=8 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{BN}} \leq \mathrm{V}_{\mathrm{CC}}$	2.3	-	5	30	-	45	
		$\mathrm{I}_{\mathrm{A}}=12 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{BN}} \leq \mathrm{V}_{\text {CC }}$	2.7	-	4	25	-	38	
		$\mathrm{I}_{\mathrm{A}}=24 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{BN}} \leq \mathrm{V}_{\mathrm{CC}}$	3.0	-	7.8	20	-	30	
		$\mathrm{I}_{\mathrm{A}}=32 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{BN}} \leq \mathrm{V}_{\mathrm{CC}}$	4.5	-	6.2	15	-	23	
$\Delta \mathrm{R}_{\text {ON }}$	On Resistance Match Between Channels (Note 10)	$\begin{aligned} & I_{\mathrm{A}}=-4 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{BN}}=1.15 \mathrm{~V} \end{aligned}$	1.65	-	0.25	-	-	-	Ω
		$\begin{aligned} & I_{A N}=-8 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{BN}}=1.6 \mathrm{~V} \end{aligned}$	2.3	-	0.25	-	-	-	
		$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=-12 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{BN}}=1.9 \mathrm{~V} \end{aligned}$	2.7	-	0.25	-	-	-	
		$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{BN}}=2.1 \end{aligned}$	3.0	-	0.25	-	-	-	
		$\begin{aligned} & \mathrm{I}_{\mathrm{BN}}=-22 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{BN}}=3.15 \end{aligned}$	4.5	-	$0 . .25$	-	-	-	
$\mathrm{R}_{\text {flat }}$	On Resistance Flatness (Note 11)	$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{BN}} \leq \mathrm{V}_{\mathrm{CC}}$	1.65	-	26	110	-	150	Ω
		$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, 0 \leq \mathrm{V}_{\text {BN }} \leq \mathrm{V}_{\text {CC }}$	2.3	-	5.0	26	-	105	
		$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{BN}} \leq \mathrm{V}_{\mathrm{CC}}$	2.7	-	3.5	16	-	35	
		$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{BN}} \leq \mathrm{V}_{\mathrm{CC}}$	3.3	-	2.0	9	-	15	
		$\mathrm{I}_{\mathrm{A}}=-32 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{BN}} \leq \mathrm{V}_{\mathrm{CC}}$	5.0	-	1.5	4	-	8	

Note: \quad 9. Switch resistance test is measured per Figure 3.
10. $\Delta \mathrm{R}_{\mathrm{ON}}$ is measured at identical V_{CC}, temperature and voltage levels.
11. Flatness is defined as the difference between the maximum and minimum of ON resistance measured at identical V_{cc} and temperature.

74LVC1G3157

Switching Characteristics

Symbol	Parameter	Test Condition	$V_{c c}$ Volts	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$		Unit	Figure Number
				Min	Typ	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\text {PHL }} \\ & \mathrm{t}_{\text {PLH }} \end{aligned}$	Propagation Delay A to B_{n}	$V_{1}=\text { OPEN }$ (Note 12)	1.65 to 1.95	-	-	2.0	-	3.0	ns	Figure 4
			2.3 to 2.7	-	-	1.2	-	2.0		
			2.7	-	-	1.0	-	1.5		
			3.0 to 3.6	-	-	0.8	-	1.5		
			4.5 to 5.5	-	-	0.6	-	1.0		
$\begin{aligned} & \mathrm{t}_{\text {PZL }} \\ & \mathrm{t}_{\text {PLH }} \end{aligned}$	Output Enable Time Switch to B_{n}	$\mathrm{V}_{1}=2 \times \mathrm{V}_{\text {cc }}$ for $\mathrm{t}_{\text {PZL }}$ $V_{1}=0 V$ for $t_{\text {PzH }}$ (Note 13)	1.65 to 1.95	1.0	8.7	14.0	1.0	14.0	ns	Figure 4
			2.3 to 2.7	1.0	5.3	7.5	1.0	7.5		
			2.7	1.0	4.9	6.0	1.0	6.0		
			3.0 to 3.6	0.5	4.0	5.5	0.5	5.5		
			4.5 to 5.5	0.5	3.0	4.0	0.5	4.0		
$\begin{aligned} & \mathrm{t}_{\mathrm{tLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time Switch to B_{n}	$V_{1}=2 \times V_{\text {CC }}$ for $t_{\text {PLZ }}$ $\mathrm{V}_{1}=0 \mathrm{~V}$ for $\mathrm{t}_{\text {PHz }}$ (Note 13)	1.65 to 1.95	2.5	6.0	8.5	2.5	8.5	ns	Figure 4
			2.3 to 2.7	2.0	4.4	8.2	2.0	8.2		
			2.7	1.5	4.2	8.0	1.5	8.0		
			3.0 to 3.6	1.5	3.6	7.8	1.5	7.8		
			4.5 to 5.5	0.8	2.9	7.5	0.8	7.5		
$\mathrm{t}_{\text {B }-\mathrm{M}}$	Break Before Make Time (Note 9)	-	1.65 to 1.95	0.5	-		0.5	-	ns	Figure 5
			2.3 to 2.7	0.5	-	-	0.5	-		
			2.7	0.5	-	-	0.5	-		
			3.0 to 3.6	0.5		-	0.5	-		
			4.5 to 5.5	0.5	-	-	0.5			
Q	Charge Injection (Note 9)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF}, \\ & \mathrm{~V}_{G E N}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	5.0	-	7.0	-	-	-	pC	Figure 6
			3.3		3.0	-	-	-		
QIRR	Off Isolation (Note 11)	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$	$1.65 \sim 5.5$	-	-42	-	-	-	dB	Figure 7
Xtalk	Crosstalk	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=10 \mathrm{MHz}$	$1.65 \sim 5.5$	-	-42	-	-	-	dB	Figure 8
BW	-3dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	1.65 ~ 5.5	-	300	-	-	-	MHz	Figure 9
THD	Total Harmonic Distortion (Note 9)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, 0.5 \mathrm{~V}_{\mathrm{P} \cdot \mathrm{P}}, \\ & \mathrm{f}=600 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$	5.0	-	0.1	-	-	-	\%	Figure 10

Notes:
12. Due to the symmetry of the part, the direction of the propagation delay applies to either direction A to B_{n} or B_{n} to A. Propagation time is the calculated RC time constant of the typical ON resistance of the switch and the specified load capacitance when capacitance when driven by an ideal voltage source.
13. The Switch signal enable and disables time are the same for Bn and A if they are reversed at input and output.

74LVC1G3157

Parameter Measurement Information

SW	Select
1	$\mathrm{~V}_{\mathrm{IH}}$
2	$\mathrm{~V}_{\mathrm{IL}}$

Condition 1: $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}, \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$
Condition 2: $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{O}}=\mathrm{GND}$

Figure 1 OFF -State Leakage Curent Test

Figure 2 ON -State Leakage Curent Test

Figure 3 ON State Resistance Test

74LVC1G3157

Parameter Measurement Information (Notes 15-19)

TEST	S1	RL
tpLH/tpHL	Open	500Ω
tPLZ/tpzL	Vload	500Ω
tPHz/tpzH	GND	500Ω

Vcc	Inputs		V_{m}	V Load	C (Note 14)	$\mathrm{V} \Delta$
	V_{1}	$\mathrm{t}_{\mathrm{r}} / \mathrm{ff}_{f}$				
$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	$\mathrm{V}_{\text {cc }}$	$\leq 2 \mathrm{~ns}$	$\mathrm{V}_{\mathrm{cc}} / 2$	$2 \times \mathrm{VCC}$	50 pF	0.1 V
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	V_{CC}	$\leq 2 \mathrm{~ns}$	$\mathrm{V}_{\mathrm{cc}} / 2$	$2 \times V_{C C}$	50pF	0.1 V
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$\mathrm{V}_{\text {CC }}$	$\leq 2.5 \mathrm{~ns}$	$\mathrm{V}_{\mathrm{CC}} / 2$	$2 \times \mathrm{V}_{\mathrm{CC}}$	50 pF	0.1 V
$5 \mathrm{~V} \pm 0.5 \mathrm{~V}$	V_{CC}	$\leq 2.5 \mathrm{~ns}$	$\mathrm{V}_{\mathrm{cc}} / 2$	$2 \times \mathrm{VCC}$	50 pF	0.1 V

Figure 4 Load Circuit and Voltage Waveforms

Notes: 14. Includes test lead and test apparatus capacitance.
15. All pulses are supplied at pulse repetition rate $\leq 10 \mathrm{MHz}$.
16. Inputs are measured separately one transition per measurement.
17. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis. }}$
18. $t_{\text {PZL }}$ and $t_{\text {PZH }}$ are the same as $t_{E N}$.
19. $\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{t}_{\text {PHL }}$ are the same as t_{PD}

74LVC1G3157

Parameter Measurement Information (continued)

Figure 5 Break before Make Timing Test

Figure 6 Charge Injection

Figure 7 OFF Isolation

74LVC1G3157

Parameter Measurement Information (continued)

Figure 8 Cross Talk

Adjust fin voltage to obtain 0 dBm level at input.
Adjust fin frequency until dB meter reads $\mathbf{- 3} \mathbf{d B}$.
Figure 9 Bandwdith

Figure 10 THD

74LVC1G3157

Typical Performance Characteristics

Figure 11 ON state Resistance $\mathrm{Vcc}=1.65 \mathrm{~V}$; $\mathrm{I}_{\mathrm{Bn}}=4 \mathrm{ma}$

Figure 13 ON state Resistance Vcc = 2.3 V ; $\mathrm{I}_{\mathrm{Bn}}=8 \mathrm{ma}$

Figure 15 ON state Resistance $\mathrm{Vcc}=2.7 \mathrm{~V}$; $\mathrm{I}_{\mathrm{Bn}}=12 \mathrm{ma}$

Figure 12 ON state Resistance $\mathrm{Vcc}=1.8 \mathrm{~V}$; $\mathrm{I}_{\mathrm{Bn}}=4 \mathrm{ma}$

Figure 14 ON state Resistance $\mathrm{Vcc}=2.5 \mathrm{~V}$; $\mathrm{I}_{\mathrm{Bn}}=8 \mathrm{ma}$

Figure 16 ON state Resistance $\mathrm{Vcc}=\mathbf{3} \mathbf{V}$; $\mathrm{I}_{\mathrm{Bn}}=\mathbf{2 4 m a}$

74LVC1G3157

Typical Performance Characteristics (continued)

Figure 17 ON state Resistance $\mathrm{Vcc}=3.3 \mathrm{~V}$; $\mathrm{I}_{\mathrm{Bn}}=24 \mathrm{ma}$

Figure 19 ON state Resistance $\mathrm{Vcc}=5.5 \mathrm{~V}$; $\mathrm{I}_{\mathrm{Bn}}=32 \mathrm{ma}$

Figure $21 \mathrm{I}_{\mathrm{S}(\mathrm{OFF})}$ OFF state leakage $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$

Figure 18 ON state Resistance $\mathrm{Vcc}=4.5 \mathrm{~V}$; $\mathrm{I}_{\mathrm{Bn}}=32 \mathrm{ma}$

Figure $20 \triangle$ Ron-Resistance Match Between Channels

Figure $22 \mathrm{I}_{\mathrm{S}(\mathrm{OFF})}$ OFF state leakage $\mathrm{V}_{\mathrm{IN}}=\mathbf{- 0 . 1} \mathrm{V}$

74LVC1G3157

Typical Performance Characteristics (continued)

Figure $23 \mathrm{I}_{\mathrm{s}(\text { OFF })}$ OFF state leakage $\mathrm{V}_{\mathrm{IN}}=\mathbf{- 0 . 2 ~ V}$

Figure $25 \mathrm{I}_{\mathrm{S}(\mathrm{ON})} \mathrm{ON}$ state leakage $\mathrm{V}_{\mathrm{IN}}=\mathbf{- 0 . 1} \mathrm{V}$

Figure $24 \mathrm{I}_{\mathrm{S}(\mathrm{ON})} \mathrm{ON}$ state leakage $\mathrm{V}_{\mathrm{IN}}=\mathbf{0} \mathbf{V}$

Figure $26 \mathrm{I}_{\mathrm{S}(\mathrm{ON})}$ ON state leakage $\mathrm{V}_{\mathrm{IN}}=\mathbf{- 0 . 2 V}$

Figure 28 Delta I_{cc} verses Temperture

74LVC1G3157

Typical Performance Characteristics (continued)

Figure $29 \mathrm{~V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{IL}}$, Hysteresis $\mathrm{V}_{\mathrm{cc}}=1.65 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{cc}}=1.95 \mathrm{~V}$

Figure $31 \mathrm{~V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{LL}}$, Hysteresis $\mathrm{V}_{\mathrm{cC}}=3 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=3.3 \mathbf{V}$

Figure $30 \mathrm{~V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{LL}}$, Hysteresis $\mathrm{V}_{\mathrm{cc}}=2.3 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$

Figure $32 \mathrm{~V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{LL}}$, Hysteresis $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$

74LVC1G3157

Marking Information

(1) SOT363

6	5	4	
	Y		XX : Identification code Y: Year 0~9 W : Week : A~Z : 1~26 week; a~z : 27~52 week; z represents 52 and 53 week X : A~Z: Internal Code
1	2	3	

Part Number	Package	Identification Code
74LVC1G3157DW	SOT363	$\mathrm{J7}$

(2) X2-DFN1410-6

Part Number	Package	Identification Code
74LVC1G3157FZ4	X2-DFN1410-6	J7

Package Characteristics (All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Conditions	V_{cc}	Min	Typ.	Max	Unit
θ_{JA}	Thermal Resistance Junction-to-Ambient	SOT363	(Note 20)	-	371	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		X2-DFN1410-6		-	460	-	
$\theta_{\text {Jc }}$	Thermal Resistance Junction-to-Case	SOT363	(Note 20)	-	143	-	C/W
		X2-DFN1410-6		-	265	-	

Note:
20. Test condition SOT363, and X2-DFN1410-6: Device mounted on FR-4 substrate PC board, 2oz. copper, with minimum recommended pad layout.

74LVC1G3157

SOT363 Package Outline Dimensions and Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT363			
Dim	Min	Max	Typ
A1	0.00	0.10	0.05
A2	0.90	1.00	1.00
b	0.10	0.30	0.25
c	0.10	0.22	0.11
D	1.80	2.20	2.15
E	2.00	2.20	2.10
E1	1.15	1.35	1.30
e	0.650 BSC		
F	0.40	0.45	0.425
L	0.25	0.40	0.30
a	0°	8°	--
All Dimensions in $\mathbf{~ m m}$			

Dimensions	Value (in mm)
\mathbf{C}	0.650
\mathbf{G}	1.300
\mathbf{X}	0.420
\mathbf{Y}	0.600
$\mathbf{Y 1}$	2.500

74LVC1G3157

X2-DFN1410-6 Package Outline Dimensions and Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

Dimensions	Value (in mm)
\mathbf{C}	0.500
\mathbf{G}	0.250
\mathbf{X}	0.250
$\mathbf{X 1}$	1.250
\mathbf{Y}	0.525
$\mathbf{Y 1}$	1.250

Mechanical Data

 SOT363- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish - Mate Tin Plated Leads, Solderable per MIL-STD-202, Method 208 e3)
- Weight: 0.0064 grams (Approximate)

X2-DFN1410-6

- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish - NiPdAu Nickel Palladium Gold, Solderable per MIL-STD-202, Method 208 e4)
- Weight: 0.002 grams (Approximate)

IMPORTANT NOTICE

1. DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
5. Diodes products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
6. Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

Copyright © 2021 Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 CD4053BPWRG4 ADG658TRUZ-EP FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZ-RL7 ADW54003-0 AD7506JNZ AD7506KNZ AD7506SQ AD8170AR AD8183ARUZ AD8184ANZ AD8185ARUZ AD8187ARUZ AD8188ARUZ AD8189ARUZ ADG1208YRUZREEL7 ADG1409YCPZ-REEL7 ADG5209FBRUZ ADG1408YRUZ-REEL7 ADG659YRUZ-REEL7

[^0]: Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total $\mathrm{Br}+\mathrm{Cl}$) and <1000 ppm antimony compounds.

