
74LVC2G126

DUAL BUFFER GATE WITH 3-STATE OUTPUTS

Description

The 74LVC2G126 is a dual buffer gate with 3-state outputs. The device is designed for operation over a power supply range of 1.65V to 5.5V. The device is fully specified for partial power down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing damaging current backflow when the device is powered down.

Pin Assignments

Features

- Wide Supply Voltage Range from 1.65 to 5.5V
- ±24mA Output Drive at 3.3V
- CMOS Low Power Consumption
- IOFF Supports Partial-Power-Down Mode Operation
- Inputs accept up to 5.5V
- Schmitt Trigger Action at all inputs makes the circuit tolerant for slower input rise and fall times. The hysteresis is typically 100mV at V_{CC} = 3.0V.
- ESD Protection Exceeds JESD 22
 - 2000-V Human Body Model (A114)
 - Exceeds 1000-V Charged Device Model (C101)
 - Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please <u>contact us</u> or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/

Applications

- Voltage Level Shifting
- General Purpose Logic
- Power Down Signal Isolation
- Wide Array of Products Such as:
 - PCs, Networking, Notebooks, Netbooks, PDAs
 - Tablet Computers, E-Readers
 - Computer Peripherals, Hard Drives, CD/DVD ROMs
 - TVs, DVDs, DVRs, Set Top Boxes
 - Cell Phones, Personal Navigation / GPS
 - MP3 Players, Cameras, Video Recorders

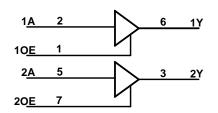
Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Ordering Information (Note 4)

			126 XXX - 7		
Logic Device		Function	Package	Packi	ng
74 : Logic Prefix LVC : 1.65V to 5.5V Logic Family 2G : Dual Gate		126 : 3-State Buffer HD4 : X2-DFN2010-8 OE - High HK3 : X2-DFN1410-8 RA3 : X2-DFN1210-8		7 : 7" Tape 8	Reel
	Package	Package	Package	7" Tape and Reel (Note 6)	
Device	Code	(Note 5)	Size	Quantity	Part Number Suffix
74LVC2G126HD4-7	HD4	X2-DFN2010-8	1.95mm × 1.0mm × 0.4mm 0.5mm Lead Pitch	5,000/Tape & Reel	-7
74LVC2G126HK3-7	HK3	X2-DFN1410-8	1.35mm × 1.0mm × 0.35mm 0.4mm Lead Pitch	5,000/Tape & Reel	-7
74LVC2G126RA3-7	RA3	X2-DFN1210-8	1.2mm × 1.0mm × 0.35mm 0.3mm Lead Pitch	5,000/Tape & Reel	-7


Notes:

For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.
 Pad layout as shown in Diodes Incorporated's package outline PDFs, which can be found on our website at http://www.diodes.com/package-outlines.html.
 The taping orientation is located on our website at https://www.diodes.com/assets/Packaging-Support-Docs/Ap02007.pdf.

Pin Descriptions

Pin Name	Pin Number	Description	
10E	1	Output Enable for buffer 1	
1A	2	Data Input	
2Y	3	Data Output	
GND	4	Ground	
2A	5	Data Input	
1Y	6	Data Output	
20E	7	Output Enable for buffer 2	
VCC	8	Supply Voltage	

Logic Diagram

Function Table

Inp	Output	
OE	Α	Y
Н	Н	Н
Н	L	L
L	Х	Z

Absolute Maximum Ratings (Notes 7 & 8)

Symbol	Description	Rating	Unit
ESD HBM	Human Body Model ESD Protection	2	kV
ESD CDM	Charged Device Model ESD Protection	1	kV
Vcc	Supply Voltage	-0.5 to +6.5	V
VI	Input Voltage	-0.5 to +6.5	V
	Output Voltage - Active Mode	-0.5 to Vcc +0.5	V
Vo	Output Voltage Power Down Mode	-0.5 to +6.5	V
Ік	Input Clamp Current VI < 0	-50	mA
loк	Output Clamp Current (Vo < 0 or Vo > Vcc)	±50	mA
lo	Continuous Output Current ($V_O = 0$ to V_{CC})	±50	mA
lcc	Continuous Current Through Vcc	100	mA
Ignd	Continuous Current Through GND	-100	mA
TJ	Operating Junction Temperature	-40 to +150	°C
Tstg	Storage Temperature	-65 to +150	°C

7. Stresses beyond the absolute maximum may result in immediate failure or reduced reliability. These are stress values and device operation should be Notes:

8. Forcing the maximum allowed voltage could cause a condition exceeding the maximum current or conversely forcing the maximum current could cause a condition exceeding the maximum voltage. The ratings of both current and voltage must be maintained within the controlled range.

Recommended Operating Conditions (Note 9)

Symbol	P	arameter	Min	Мах	Unit
Vcc	Operating Voltage	Operating	1.65	5.5	v
VCC		Data Retention Only	1.5	—	v
VI	Input Voltage		0	5.5	V
Vo	Output Voltage Active Mode		0	Vcc	V
VO	Output Voltage Power-Down Mode		0	5.5	v
		$V_{CC} = 1.65V$	—	-4	
		$V_{CC} = 2.3V$	—	-8	
I _{OH}	High-Level Output Current	Vcc = 2.7V	—	-12	mA
ЮН		V _{CC} = 3.0V	—	-16	
		VCC = 3.0V	—	-24	
		Vcc = 4.5V	—	-32	
		Vcc = 1.65V	—	4	
		$V_{CC} = 2.3V$	—	8	
lol	Low-Level Output Current	Vcc = 2.7V	—	12	mA
IOL		$V_{CC} = 3.0V$	—	16	
		VCC = 3.0V	—	24	
		$V_{CC} = 4.5V$	—	32	
Δt/ΔV		V _{CC} = 1.65V to 2.7V	—	20	ns/V
ΔUΔV	Input Transition Rise or Fall Rate	V _{CC} = 2.7V to 5.5V	—	10	115/ V
TA	Operating Free-Air Temperature		-40	+125	°C

9. Unused inputs should be held at V_{CC} or Ground. Note:

Electrical Characteristics (All typical values are at T_A = +25°C.)

				-40	°C to +8	5°C	-40°C to	+125°C		
Symbol	Parameter	Test Conditions	Vcc	Min	Тур	Max	Min	Max	Unit	
			V _{CC} = 1.65V to 1.95V	$0.65 \times V_{CC}$	_	_	$0.65 \times V_{CC}$	—		
	High-Level		V _{CC} = 2.3V to 2.7V	1.7	_	_	1.7	—	.,	
VIH	Input Voltage	_	V _{CC} = 2.7V to 3.6V	2.0		_	2.0	_	V	
			V _{CC} = 4.5V to 5.5V	$0.7 \times V_{CC}$		_	$0.7 \times V_{CC}$	_		
			V _{CC} = 1.65V to 1.95V	—		$0.35 \times V_{CC}$		$0.35 \times V_{CC}$		
	Low-Level		V _{CC} = 2.3V to 2.7V	_		0.7	_	0.7	.,	
VIL	Input Voltage	_	V _{CC} = 2.7V to 3.6V	—	_	0.8	_	0.8	V	
			$V_{CC} = 4.5V$ to 5.5V	—	_	$0.3\times V_{CC}$	_	$0.3\times V_{CC}$		
		I _{OH} = -100µА	1.65V to 5.5V	V _{CC} – 0.1	Vcc	—	V _{CC} – 0.1	—		
		Iон = -4mA	1.65V	1.2	1.53	—	0.95	—		
	High-Level	I _{OH} = -8mA	2.3V	1.9	2.13	—	1.7	—		
Vон	Output	Iон = -12mA	2.7V	2.2	2.5	—	1.9	—	V	
	Voltage	I _{OH} = -16mA	2)/	2.4	2.7	—	2.2	—		
		Iон = -24mA	3V	2.3	2.6	—	2.0	—		
		I _{OH} = -32mA	4.5V	3.8	4.1	—	3.4	—		
		I _{OL} = 100µA	1.65V to 5.5V	—	0	0.1	_	0.1		
		$I_{OL} = 4mA$	1.65V	—	0.08	0.45		0.7		
	Low-Level	IoL = 8mA	2.3V	—	0.14	0.3		0.45		
VoL	Output	$I_{OL} = 12mA$	2.7V	—	0.19	0.4		0.6	V	
	Voltage	IoL = 16mA	0)/	_	0.25	0.4		0.6		
		$I_{OL} = 24mA$	3V	—	0.37	0.55	—	0.8		
		I _{OL} = 32mA	4.5V	—	0.43	0.55	_	0.8		
lı	Input Current	VI = 5.5V or GND	0V to 5.5V	_	± 0.1	±5	_	± 20	μA	
loz	Z-State Leakage Current	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = 5.5V \text{ or } GND$	3.6V	_	± 0.1	± 10		±20	μA	
IOFF	Power Down Leakage Current	V_I or $V_O = 5.5V$	0V	_	± 0.1	±10		±20	μA	
Icc	Supply Current	$V_I = 5.5V \text{ or } GND$ $I_O = 0A$	1.65V to 5.5V	_	0.1	10		40	μA	
ΔI _{CC}	Additional Supply Current	One input at $V_{CC} - 0.6V$ Other inputs at V_{CC} or GND	2.3V to 5.5V	_	5	500	_	5,000	μA	
Cı	Input Capacitance	VI = VCC or GND	3.3V	_	2.5	_	_	—	pF	

Operating Characteristics

	Parameter	Test Conditions	Vcc = 1.8V Typ	Vcc = 2.5V Typ	Vcc = 3.3V Typ	Vcc = 5V Typ	Unit
	Power Dissipation	f = 10MHz output enabled	17	17	17	17	pF
Cpd	Capacitance	f = 10MHz output disabled	5	5	5	5	pF

Package Characteristics

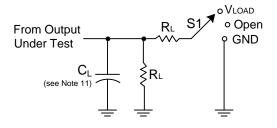
Symbol	Parameter	Package	Test Conditions	Min	Тур	Max	Unit
	θ _{JA} Thermal Resistance Junction-	X2-DFN2010-8			313	—	
θја		X2-DFN1410-8	(Note 10)	-	321	_	°C/W
to-Ambient	lo-Ambieni	X2-DFN1210-8			395	—	
		X2-DFN2010-8		_	145	_	
θ」С	Thermal Resistance Junction-	X2-DFN1410-8	(Note 10)	_	166	_	°C/W
t	to-Case	X2-DFN1210-8		_	236	_	

Note: 10. Test condition for each package type: Device mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout.

Switching Characteristics

Typical Values at $T_A = +25^{\circ}C$ and nominal voltages 1.8V, 2.5V, 2.7V, 3.3V, and 5.0V. See Figure 1.

Devenueter	From	То	Maa	TA =	-40°C to +8	35°C	T _A = -40°C	to +125°C	Unit
Parameter	Input	Output	Vcc	Min	Тур	Max	Min	Max	Unit
			1.8V ± 0.15V	1.0	3.9	9.8	1.0	12.3	
			2.5V ± 0.2V	0.5	2.6	4.9	0.5	6.3	
tpd	А	Y	2.7V	1.0	2.8	4.7	1.0	5.9	ns
			3.3V ± 0.3V	0.5	2.4	4.4	0.5	5.4	
			5.0V ± 0.5V	0.5	1.9	3.9	0.5	4.0	
	OE		1.8V ± 0.15V	1.0	4.1	10.0	1.0	12.5	
			2.5V ± 0.2V	1.0	2.6	5.0	1.0	6.3	
t _{en}		Y	2.7V	1.0	2.8	4.7	1.0	5.9	ns
			3.3V ± 0.3V	1.0	2.4	4.1	1.0	5.1	
			5.0V ± 0.5V	0.5	1.8	3.4	0.5	3.9	
			1.8V ± 0.15V	1.0	3.3	12.6	1.0	15.4	
			2.5V ± 0.2V	0.5	1.9	5.7	0.5	7.5	
t _{dis}	OE	OE Y	2.7V	1.5	3.0	4.8	1.5	6.2	ns
			3.3V ± 0.3V	1.0	2.5	4.4	1.0	5.7	
			5.0V ± 0.5V	0.5	1.8	3.3	0.5	4.4	

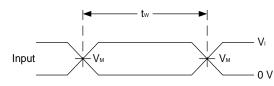


Vı

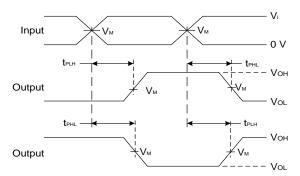
0 V

Ум

Parameter Measurement Information



TEST (Notes 14, 15, 16)	S1
tplh/tphl	Open
tplz/tpzl	Vload
tpнz/tpzн	GND

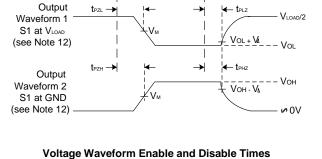

No.	Inp	outs	Max	Maria	C∟	D .	N/1
Vcc	VI	tr/tr	VМ	VM VLOAD		RL	V۵
1.8V±0.15V	Vcc	≤2ns	Vcc/2	$2 \times Vcc$	30pF	1kΩ	0.15V
2.5V±0.2V	Vcc	≤2ns	Vcc/2	$2 \times Vcc$	30pF	500Ω	0.15V
2.7V	2.7V	≤2.5ns	1.5V	6V	50pF	500Ω	0.3V
3.3V±0.3V	3V	≤2.5ns	1.5V	6V	50pF	500Ω	0.3V
5V±0.5V	Vcc	≤2.5ns	Vcc/2	$2 \times Vcc$	50pF	500Ω	0.3V

Output

Control

Voltage Waveform Pulse Duration (Note 13)

Voltage Waveform Propagation Delay Times Inverting and Non Inverting Outputs (Note 13)


Figure 1. Load Circuit and Voltage Waveforms

Notes:

- Includes test lead and test apparatus capacitance.
 All pulses are supplied at pulse repetition rate ≤ 10MHz.
 Inputs are measured separately one transition per measurement.

14. t_{PLZ} and t_{PHZ} are the same as t_{dis} .

- 15. t_{PZL} and t_{PZH} are the same as t_{en} .
- 16. t_{PLH} and t_{PHL} are the same as $t_{\text{pd.}}$

Ум

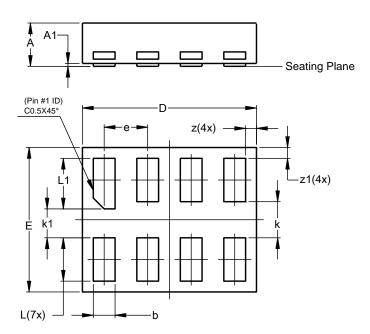
Low and High Level Enabling

Marking Information

(Top View)

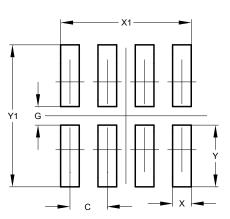
<u>XX</u> : Identification Code <u>Y</u> : Year : $0 \sim 9$ <u>W</u> : Week : $A \sim Z$: $1 \sim 26$ week; $a \sim z$: $27 \sim 52$ week; z represents 52 and 53 week <u>Y</u> : Intermed Code

 \underline{X} : Internal Code


Part Number	Package	Identification Code
74LVC2G126HD4-7	X2-DFN2010-8	9X
74LVC2G126HK3-7	X2-DFN1410-8	9Y
74LVC2G126RA3-7	X2-DFN1210-8	9Z

X2-DFN1210-8 Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

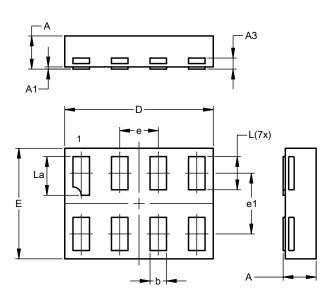

X2-DFN1210-8

X2-DFN1210-8				
Dim	Min	Max	Тур	
Α	-	0.35	0.30	
A1	0	0.03	0.02	
b	0.10	0.20	0.15	
D	1.15	1.25	1.20	
E	0.95	1.05	1.00	
е	-	-	0.30	
k	-	-	0.25	
k1	-	-	0.20	
L	0.25	0.35	0.30	
L1	0.30	0.40	0.35	
z	0.050	0.100	0.075	
z1	0.050	0.100	0.075	
All Dimensions in mm				

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

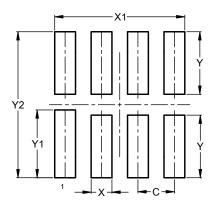
Dimensions	Value (in mm)	
C	0.300	
G	0.150	
Х	0.150	
X1	1.050	
Y	0.500	
Y1	1.150	


Document number: DS37933 Rev. 3 - 2

74LVC2G126

X2-DFN1410-8 Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

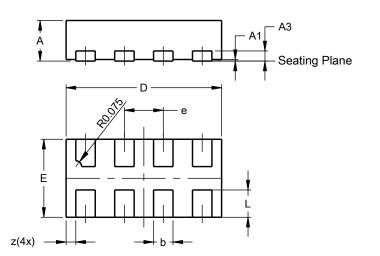

	X2-DFN1410-8			
Dim	Min	Max	Тур	
Α	0.30	0.35	0.33	
A1	0.00	0.03	0.02	
A3		-	0.10	
b	0.12	0.20	0.15	
D	1.30	1.40	1.35	
Е	0.95	1.05	1.00	
е			0.35	
e1			0.55	
L	0.27	0.35	0.30	
L1	0.32	0.40	0.35	
All Dimensions in mm				

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

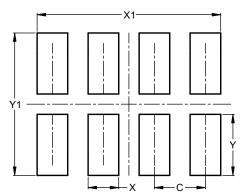
X2-DFN1410-8

X2-DFN1410-8



Dimensions	Value (in mm)
С	0.350
Х	0.200
X1	1.250
Y	0.600
Y1	0.650
Y2	1.400

Package Outline Dimensions X2-DFN2010-8


Please see http://www.diodes.com/package-outlines.html for the latest version.

X2-DFN2010-8			
Dim	Min	Max	Тур
Α		0.40	
A1	0.00	0.05	0.02
A3			0.13
b	0.20	0.30	0.25
D	1.950	2.05	2.00
Е	0.95	1.05	1.00
е			0.50
L	0.30	0.40	0.35
z			0.125
All Dimensions in mm			

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

X2-DFN2010-8

X2-DFN2010-8

Dimensions	Value (in mm)
С	0.500
Х	0.300
X1	1.800
Y	0.600
Y1	1.400

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2020, Diodes Incorporated

www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP NL17SG125DFT2G NLU1GT126CMUTCG CD4041UBE 54FCT240CTDB 74HCT540N DS14C88N 070519XB NL17SZ07P5T5G 74LVC2G17FW4-7 CD4502BE 5962-8982101PA 61446R00 NL17SH17P5T5G NLV37WZ17USG 74HCT126T14-13 74VHC9126FT(BJ) RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC1G126FW4-7 74LVC2G126RA3-7 74LVCE1G125FZ4-7 74AUP1G126FW5-7 54FCT240TLB NLX3G16DMUTCG NLX2G06AMUTCG LE87100NQCT LE87285NQC LE87290YQC LE87290YQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NL17SG17P5T5G NLV74HC125ADR2G NLVHCT245ADTR2G NLVVHC1G126DFT2G EL5623IRZ ISL15102AIRZ-T13 ISL1539IRZ-T13 MC100EP17MNG MC74HCT365ADR2G MC74LCX244ADTR2G NL27WZ126US NL37WZ16US NLU1G07MUTCG NLU2G07MUTCG