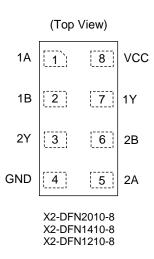


DUAL 2-INPUT NAND GATE WITH OPEN-DRAIN OUTPUTS


Description

The 74LVC2G38 is a dual, two input NAND gate with open-drain outputs. Both gates have open-drain outputs designed for operation over a power supply range of 1.65V to 5.5V. The device is fully specified for partial power down applications using I_{OFF} . The I_{OFF} circuitry disables the output preventing damaging current backflow when the device is powered down. Each gate performs the positive Boolean function

$$Y = \overline{A \bullet B} \text{ or } Y = \overline{A} + \overline{B}$$

It is understood that the logical HIGH output level is a result of pullup resistor.

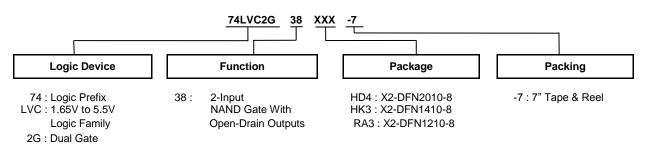
Pin Assignments

Features

- Wide Supply Voltage Range from 1.65V to 5.5V
- Outputs Sink 24mA at Vcc = 3.3V
- CMOS Low Power Consumption
- IOFF Supports Partial-Power-Down Mode Operation
- Inputs accept up to 5.5V
- Schmitt Trigger Action at all inputs makes the circuit tolerant for slower input rise and fall times. The hysteresis is typically 100mV at $V_{CC} = 3.0V$
- ESD Protection Exceeds JESD 22
 - 2000-V Human Body Model (A114)
 - Exceeds 1000-V Charged Device Model (C101)
- Latch-Up Exceeds 100mA per JESD 78, Class I
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

Applications

- Voltage Level Shifting
- General Purpose Logic
- Power Down Signal Isolation
- Wide Array of Products Such as:
 - PCs, Networking, Notebooks, Netbooks, PDAs
 - Tablet Computers, E-readers
 - Computer Peripherals, Hard Drives, CD/DVD ROMs
 - TVs, DVDs, DVRs, Set Top Boxes
 - Cell Phones, Personal Navigation / GPS
 - MP3 Players, Cameras, Video Recorders


Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.

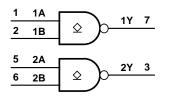
2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.

3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Ordering Information (Note 4)

	Package	Package Package		7" Tape and Re	el (Note 6)
Device	Code	(Note 5)	Size	Quantity	Part Number Suffix
74LVC2G38HD4-7	HD4	X2-DFN2010-8	1.95mm x 1.0mm x 0.4mm 0.5mm lead pitch	5,000/Tape & Reel	-7
74LVC2G38HK3-7	НК3	X2-DFN1410-8	1.35mm x 1.0mm x 0.35mm 0.4mm lead pitch	5,000/Tape & Reel	-7
74LVC2G38RA3-7	RA3	X2-DFN1210-8	1.2mm x 1.0mm x 0.35mm 0.3mm lead pitch	5,000/Tape & Reel	-7

Notes: 4. For packaging details, go to our website at http://www.diodes.com/products/packages.html.


5. Pad layout as shown in Diodes Incorporated's package outline PDFs, which can be found on our website at http://www.diodes.com/package-

outlines.html. 6. The taping orientation is located on our website at http://www.diodes.com/datasheets/ap02007.pdf.

Pin Descriptions

Pin Name	Pin No.	Description
1A	1	Data Input
1B	2	Data Input
2Y	3	Data Output (Open Drain)
GND	4	Ground
2A	5	Data Input
2B	6	Data Input
1Y	7	Data Output (Open Drain)
V _{CC}	8	Supply Voltage

Logic Diagram

Function Table

Inp	Output	
Α	в	Y
L	L	Z
L	Н	Z
н	L	Z
Н	Н	L

Absolute Maximum Ratings (Notes 7 & 8)

Symbol	Description	Rating	Unit
ESD HBM	Human Body Model ESD Protection	2	kV
ESD CDM	Charged Device Model ESD Protection	1	kV
Vcc	Supply Voltage	-0.5 to +6.5	V
VI	Input Voltage	-0.5 to +6.5	V
Vo	Output Voltage -Active Mode	-0.5 to +6.5	V
VO	Output Voltage Power Down Mode	-0.5 to +6.5	V
I _{IK}	Input Clamp Current V _I < 0	-50	mA
Ι _{ΟΚ}	Output Clamp Current (Vo < 0)	-50	mA
lo	Continuous Output Current (Vo = 0 to 5.5V)	50	mA
Icc	Continuous Current Through V _{CC}	100	mA
I _{GND}	Continuous Current Through GND	-100	mA
TJ	Operating Junction Temperature	-40 to +150	°C
T _{STG}	Storage Temperature	-65 to +150	°C

Notes: 7. Stresses beyond the absolute maximum may result in immediate failure or reduced reliability. These are stress values and device operation should be within recommend values.

8. Forcing the maximum allowed voltage could cause a condition exceeding the maximum current or conversely forcing the maximum current could cause a condition exceeding the maximum voltage. The ratings of both current and voltage must be maintained within the controlled range.

Recommended Operating Conditions (Note 9)

Symbol	Р	arameter	Min	Max	Unit	
		Operating	1.65	5.5		
Vcc	Operating Voltage	Data Retention Only	1.5	_	V	
VI	Input Voltage		0	5.5	V	
	Output Voltage Active Mode		0	5.5	V	
Vo	Output Voltage Power-Down Mode	put Voltage Power-Down Mode		5.5	v	
		V _{CC} = 1.65V	—	4		
		$V_{CC} = 2.3V$	—	8		
	Low-Level Output Current	$V_{CC} = 2.7V$	_	12	-	
IOL				_	16	- mA
		$V_{CC} = 3.0V$		24		
		$V_{CC} = 4.5V$	—	32		
A 1/A) /		V _{CC} = 1.65V to 2.7V	_	20		
Δt/ΔV	Input Transition Rise or Fall Rate	V _{CC} = 2.7V to 5.5V	_	10	ns/V	
TA	Operating Free-Air Temperature		-40	+125	°C	

Note: 9. Unused inputs should be held at V_{CC} or Ground.

Electrical Characteristics (All typical values are at T_A = +25°C)

0	Demonstra	Test Osmilitisme	N.	-40	°C to +8	5°C	-40°C to	+125°C	Unit	
Symbol	Parameter	Test Conditions	V _{cc}	Min	Тур.	Max	Min	Max	Unit	
			V _{CC} = 1.65V to 1.95V	$0.65 \times V_{CC}$	_	_	0.65 x V _{CC}	_		
N	High-Level		$V_{CC} = 2.3 V$ to 2.7 V	1.7	_	_	1.7	_	v	
V _{IH}	Input Voltage	_	$V_{CC} = 2.7V$ to 3.6V	2.0	—	_	2.0	_	V	
			V_{CC} = 4.5V to 5.5V	0.7 x V_{CC}	_	_	0.7 x V_{CC}	_		
			$V_{CC} = 1.65V$ to 1.95V	_	_	0.35 x V_{CC}	_	$0.35 \times V_{CC}$		
VIL	Low-Level		V_{CC} = 2.3V to 2.7V	—	_	0.7	—	0.7	v	
۷IL	Input Voltage	—	$V_{CC} = 2.7V$ to 3.6V	—	_	0.8	—	0.8	v	
			V_{CC} = 4.5V to 5.5V	—	—	0.3 x V_{CC}	—	$0.3 \times V_{CC}$		
		I _{OL} = 100μA	1.65V to 5.5V	—	0	0.1	—	0.1		
			I _{OL} = 4mA	1.65V	—	0.08	0.45	—	0.7	
	Low-Level	I _{OL} = 8mA	2.3V	—	0.14	0.3	—	0.45		
V _{OL}	Output	$I_{OL} = 12mA$	2.7V	—	0.19	0.4	—	0.6	V	
	Voltage	I _{OL} = 16mA	3V	_	0.25	0.4	—	0.6		
		$I_{OL} = 24mA$	37	—	0.37	0.55	—	0.8		
		$I_{OL} = 32mA$	4.5V	—	0.43	0.55	—	0.8		
lı –	Input Current	$V_1 = 5.5V$ or GND	0V to 5.5V	_	± 0.1	±5	_	± 20	μA	
I _{OFF}	Power Down Leakage Current	V_{I} or $V_{O} = 5.5V$	٥V	_	± 0.1	±10	_	±20	μA	
Icc	Supply Current	$V_I = 5.5V \text{ or GND}$ $I_O = 0A$	1.65V to 5.5V	_	0.1	10	—	40	μA	
ΔI _{CC}	Additional Supply Current	One input at $V_{CC} - 0.6V$ Other inputs at V_{CC} or GND	2.3V to 5.5V	_	5	500	_	5,000	μA	
Cı	Input Capacitance	$V_I = V_{CC}$ or GND	3.3V	_	2.5	_	_	_	pF	

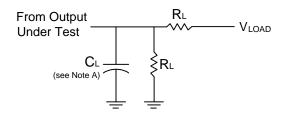
Operating Characteristics

Parameter		Parameter Test Conditions		V _{cc} = 2.5V Typ.	V _{cc} = 3.3V Typ.	V _{cc} = 5V Typ.	Unit
C_{pd}	Power Dissipation Capacitance	f = 10MHz	6	7	7	9	pF

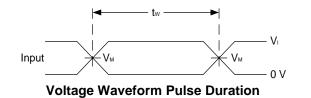
Package Characteristics

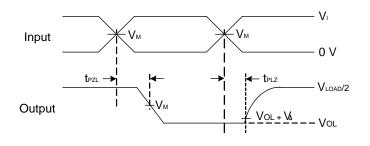
Symbol	Parameter	Package	Test Conditions	Min	Тур.	Max	Unit
		X2-DFN2010-8		_	313		
θ_{JA}	Thermal Resistance Junction- to-Ambient	X2-DFN1410-8	(Note 10)	_	321		°C/W
	to-Ambient	X2-DFN1210-8		_	395	_	
		X2-DFN2010-8		_	145	_	
θ_{JC}	Thermal Resistance Junction-	X2-DFN1410-8	(Note 10)	_	166	_	°C/W
	to-Case	X2-DFN1210-8		_	236	_	

Note: 10. Test condition for each package type: Device mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout.


Switching Characteristics

Typical Values at $T_A = +25^{\circ}$ C and nominal voltages 1.8V, 2.5V, 2.7V, 3.3V, and 5.0V. See Figure 1.


0	From	То	V	T _A	= -40°C to +8	5°C	T _A = -40°C	T _A = -40°C to +125°C		
Parameter	Input	Output	V _{cc}	Min	Тур	Max	Min	Мах	Unit	
			1.8V ± 0.15V	1.2	3.0	8.6	1.2	10.8		
			2.5V ± 0.2V	0.7	1.8	4.8	0.7	6.0		
t _{PZL}	A or B	Y	2.7V	0.7	2.5	4.4	0.7	5.5	ns	
			3.3V ± 0.3V	0.7	2.1	4.1	0.7	5.2		
			5.0V ± 0.5V	0.5	1.5	3.3	0.5	4.2		
			1.8V ± 0.15V	1.2	3.0	8.6	1.2	10.8		
			2.5V ± 0.2V	0.7	1.8	4.8	0.7	6.0		
t _{PLZ}	A or B	Y	2.7V	0.7	2.5	4.4	0.7	5.5	ns	
			3.3V ± 0.3V	0.7	2.1	4.1	0.7	5.2		
			5.0V ± 0.5V	0.5	1.5	3.3	0.5	4.2		



Parameter Measurement Information

, v	Inp	outs	No. View	6		N/A	
Vcc	VI	t _r /t _f	VM	VLOAD	C∟	RL	VΔ
1.8V ± 0.15V	V _{CC}	≤2ns	V _{CC} /2	$2 \times V_{CC}$	30pF	1kΩ	0.15V
2.5V ± 0.2V	V _{CC}	≤2ns	V _{CC} /2	$2 \times V_{CC}$	30pF	500Ω	0.15V
2.7V	2.7V	≤2.5ns	1.5V	6V	50pF	500Ω	0.3V
3.3V ± 0.3V	2.7V	≤2.5ns	1.5V	6V	50pF	500Ω	0.3V
5.0V ± 0.5V	V _{CC}	≤2.5ns	V _{CC} /2	$2 \times V_{CC}$	50pF	500Ω	0.3V

Voltage Waveforms Inverting and Non Inverting Outputs

Figure 1. Load Circuit and Voltage Waveforms

 Notes:
 A. Includes test lead and test apparatus capacitance.

 B. All pulses are supplied at pulse repetition rate ≤ 10MHz.

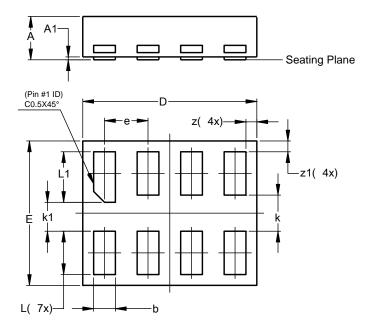
 C. Inputs are measured separately one transition per measurement.

Marking Information

(Top View)

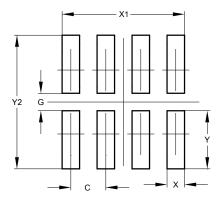
XX : Identification Code Y : Year : 0~9 W : Week : A~Z : 1~26 week; a~z : 27~52 week; z represents 52 and 53 week

X : Internal Code


Part Number	Package	Identification Code
74LVC2G38HD4-7	X2-DFN2010-8	9M
74LVC2G38HK3-7	X2-DFN1410-8	9N
74LVC2G38RA3-7	X2-DFN1210-8	9P

X2-DFN1210-8 Package Outline Dimensions

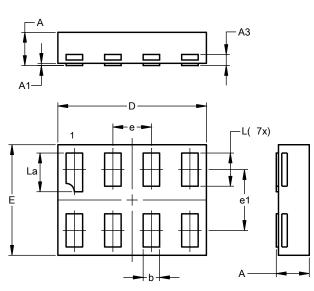
Please see http://www.diodes.com/package-outlines.html for the latest version.


X2-DFN1210-8

	X2-DFN	1210-8	
Dim	Min	Max	Тур
Α	-	0.35	0.30
A1	0	0.03	0.02
b	0.10	0.20	0.15
D	1.15	1.25	1.20
Е	0.95	1.05	1.00
е	-	-	0.30
k	-	-	0.25
k1	-	-	0.20
L	0.25	0.35	0.30
L1	0.30	0.40	0.35
z	0.050	0.100	0.075
z1	0.050	0.100	0.075
All I	Dimens	ions in	mm

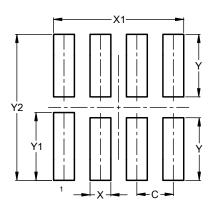
Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.


X2-DFN1210-8

Dimensions	Value (in mm)
С	0.300
G	0.150
Х	0.150
X1	1.050
Y	0.500
Y1	1.150

X2-DFN1410-8 Package Outline Dimensions


Please see http://www.diodes.com/package-outlines.html for the latest version.

X2-DFN1410-8				
Dim	Min	Max	Тур	
Α	0.30	0.35	0.33	
A1	0.00	0.03	0.02	
A3			0.10	
b	0.12	0.20	0.15	
D	1.30	1.40	1.35	
E	0.95	1.05	1.00	
е			0.35	
e1			0.55	
L	0.27	0.35	0.30	
L1	0.32	0.40	0.35	
All Dimensions in mm				

Suggested Pad Layout

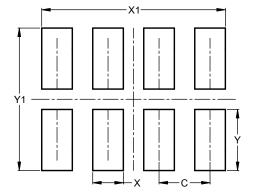
Please see http://www.diodes.com/package-outlines.html for the latest version.

X2-DFN1410-8

Dimensions	Value (in mm)	
С	0.350	
Х	0.200	
X1	1.250	
Y	0.600	
Y1	0.650	
Y2	1.400	

X2-DFN1410-8

X2-DFN2010-8 Package Outline Dimensions


Please see http://www.diodes.com/package-outlines.html for the latest version.

X2-DFN2010-8				
Dim	Min	Max	Тур	
Α		0.40		
A1	0.00	0.05	0.02	
A3			0.13	
b	0.20	0.30	0.25	
D	1.950	2.05	2.00	
E	0.95	1.05	1.00	
е			0.50	
L	0.30	0.40	0.35	
z			0.125	
All Dimensions in mm				

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

X2-DFN2010-8

X2-DFN2010-8

Dimensions	Value (in mm)
С	0.500
Х	0.300
X1	1.800
Y	0.600
Y1	1.400

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

- 1. are intended to implant into the body, or
- 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systemsrelated information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated

www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :

74HC85N NLV7SZ58DFT2G NLVHC1G08DFT1G CD4068BE NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC32ADTR2G MC74HCT20ADTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV74HC02ADR2G 74HC32S14-13 74LS133 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 NLV74HC08ADTR2G NLV74HC14ADR2G NLV74HC20ADR2G NLX2G86MUTCG 5962-8973601DA 74LVC2G02HD4-7 NLU1G08AMUTCG NLU1G00AMUTCG 74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G00HK3-7 74LVC2G86HK3-7 NLX1G99DMUTWG NLVVHC1G00DFT2G NLVHC1G08DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ86USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G 74AUP2G00RA3-7 NLV1HC1GT00DFT2G NLV74HC02ADTR2G NLX1G332CMUTCG NL17SG86P5T5G NL17SZ05P5T5G