AH9247

Description

The AH9247 is a high sensitivity Hall-effect switch with internal pull-up resistor on the output, designed for battery-operation, handheld equipments.

A chopper stabilized amplifier improves stability of magnetic switch points. A sleep-awake logic controls the IC in sleep time or awake time. This function will reduce the average operating current of the IC. During the awake time, the output is changed with the magnetic flux density. During the sleep time, the output is latched in its previous state and the current consumption will reduce to some $\mu \mathrm{A}$.

The output can be switched on with either north or south pole of sufficient strength. If the magnetic flux density perpendicular to the part marking surface is larger than operating point ($\mathrm{B}_{\circ \mathrm{P}}$), the output will be turned on; if it is less than releasing point ($B_{\text {RP }}$), the output will be turned off.

The AH9247 is available in TO92S (TYPE B), SC59 and DFN-2X2-3 packages which are optimized for most applications.

Pin Assignments

Features

- Micropower Operation
- 2.5 V to 5.5 V Power Supply
- Switching for Both Poles of a Magnet (Omnipolar)
- Stabilized Chopper
- Superior Temperature Stability
- Digital Output Signal
- Built-in Pull-up Resistor
- ESD (HBM): 6000V
- Small Low Profile DFN-2X2-3 and Industry Standard SC59 and TO92S (TYPE B) Packages
- Totally Lead-Free \& Fully RoHS Compliant (Notes 1 \& 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

Applications

- Cover Switch in Notebook PC/PDA
- Handheld Wireless Application Awake Switch
- Magnet Switch in Low Duty Cycle Applications

Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and <1000ppm antimony compounds.

Typical Applications Circuit

Pin Descriptions

Pin Number			Pin Name	Function	
TO92S (TYPE B)	SC59	DFN-2X2-3		Power supply pin	
1	1	1	VCC	Ground pin	
2	3	3	GND	Output pin	
3	2	2	OUTPUT		

Functional Block Diagram

AH9247
Absolute Maximum Ratings (@T $\mathrm{T}_{\left.A+25^{\circ} \mathrm{C}, \text { Note } 4\right)}$

Symbol	Parameter	Rating		Unit
V_{CC}	Supply Voltage	7		V
ICC	Supply Current (Fault)	6		mA
$\mathrm{V}_{\text {OUT }}$	Output Voltage	7		V
lout	Output Current	2		mA
B	Magnetic Flux Density	Unlimited		Gauss
PD	Power Dissipation	TO92S (TYPE B)	400	mW
		SC59	230	
		DFN-2X2-3	230	
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-55 to +150		${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	+150		${ }^{\circ} \mathrm{C}$
-	ESD (Human Body Model) (Note 5)	6000		V
-	ESD (Machine Model) (Note 5)	400		V

Notes: 4. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.
5. Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
V_{CC}	Supply Voltage	2.5	5.5	V
$\mathrm{~T}_{\mathrm{OP}}$	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $\left(@ T_{A=+25^{\circ}} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}\right.$, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Vcc	Supply Voltage	Operating	2.5	3	5.5	V
IAW	Supply Current	Awake	-	1.8	3	mA
IsL		Sleep	-	4	10	$\mu \mathrm{A}$
Iavg		Average	-	8	15	$\mu \mathrm{A}$
lout	Output Current	-	-	-	1.0	mA
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	lout $=1.0 \mathrm{~mA}$	-	-	0.4	V
taw	Awake Mode Time	Operating	-	120	-	$\mu \mathrm{s}$
tsL	Sleep Mode Time	Operating	-	80	120	ms
D	Duty Cycle	-	-	0.15	-	\%
fc_{c}	Chopper Frequency	-	-	15	-	kHz

AH9247

Magnetic Characteristics $\left(@ T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=3 \mathrm{~V}\right.$, unless otherwise specified. Note 6)

For TO92S (TYPE B) Package

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Bops (South Pole to Part Marking Side)	Operating Point	B>Bops, Vout=low(output on)	15	30	55	Gauss
Bopn (North Pole to Part Marking Side)		$B>B_{\text {OPN }}, \mathrm{V}_{\text {OUT }}=10 w($ output on)	-55	-30	-15	Gauss
BrPS (South Pole to Part Marking Side)	Releasing Point	$\mathrm{B}<\mathrm{B}_{\text {RPS }}, \mathrm{V}$ OUT=high(output off)	5	20	45	Gauss
BRPN (North Pole to Part Marking Side)		$\mathrm{B}<\mathrm{B}_{\text {RPN }}, \mathrm{V}_{\text {OUT }}=$ high(output off)	-45	-20	-5	Gauss
BHYS	Hysteresis	Bopx-Brpx \| (Note 7)	-	10	-	Gauss

For SC59 and DFN-2X2-3 Packages

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Bops (South Pole to Part Marking Side)	Operating Point	$\mathrm{B}>\mathrm{B}_{\text {OPS }}, \mathrm{V}_{\text {OUT }}=10 w($ output on)	20	30	40	Gauss
Bopn (North Pole to Part Marking Side)		B>Bops,Vout=low(output on)	-40	-30	-20	Gauss
BRPS (South Pole to Part Marking Side)	Releasing Point	$\mathrm{B}<\mathrm{B}_{\text {RPs }}, \mathrm{V}_{\text {OUT }}=$ high(output off)	5	20	32	Gauss
BRPN (North Pole to Part Marking Side)		B<Brps, $\mathrm{V}_{\text {OUT }}=$ high(output off)	-32	-20	-5	Gauss
BHYS	Hysteresis	Bopx - Brpx \| (Note 7)	-	10	-	Gauss

Notes: 6. The specifications stated here are guaranteed by design. 1 Gauss= 0.1 mT
7. $B_{o p x}=$ operating point (output turns on); $B_{\text {RPX }}=$ releasing point (output turns off)

Output Voltage vs. Magnetic Flux Density

Average Supply Current (Notes 8 and 9)

Note 8: $I_{c C}$ represents the average supply current. OUTPUT is open during measurement.
Note 9: The device is put under magnetic field with $B<B_{R P}$.

Output Saturation Voltage (Notes 10 and 11)

Note 10: The output saturation voltage $\mathrm{V}_{\mathrm{SAT}}$ is measured at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$.
Note 11: The device is put under magnetic field with $B>B_{o p}$.

Magnetic Thresholds (Notes 12 and 13)

Note 12: B_{OP} is determined by putting the device under magnetic field swept from $\mathrm{B}_{\mathrm{RP}(\min)}$ to $\mathrm{B}_{\mathrm{OP}(\max)}$ until the output is switched on. Note 13: B_{RP} is determined by putting the device under magnetic field swept from $\mathrm{B}_{\mathrm{OP}(\max)}$ to $\mathrm{B}_{\mathrm{RP}(\min)}$ until the output is switched off.

AH9247

Performance Characteristics

$B_{o p} / B_{\text {RP }}$ vs. Supply Voltage

Average Supply Current vs. Supply Voltage

Sleep Mode Time vs. Supply Voltage

$\mathrm{B}_{\mathrm{OP}} / \mathrm{B}_{\mathrm{RP}}$ vs. Ambient Temperature

Awake Mode Time vs. Supply Voltage

Power Dissipation vs. Ambient Temperature

Ordering Information

Device	Status	Package Code	Packaging	Bulk	7" Tape and Reel
				Quantity	
AH9247Z3-G1	Active	DN	DFN-2X2-3	NA	1000/Bulk
AH9247DNTR-G1	NRND	NA			

Note 14: NRND = Not Recommended for New Design.

Device	Status	Package Code	Packaging	Bulk	7" Tape and Reel
		W		Quantity	
AH9247-W-7	Active	SC59	NA	3000/Tape \& Reel	

Marking Information
(1) Package Type: TO92S (TYPE B)

Part Number	Package	Identification Code
AH9247	TO92S (TYPE B)	9247

(2) Package Type: SC59
(Top View)

XXX: Identification Code
\underline{Y} : Year 0 to 9
W : Week: A to Z: 1 to 26 week;
a to $z: 27$ to 52 week; z represents
52 and 53 week
X : Internal Code

Part Number	Package	Identification Code
AH9247	SC59	GX8

(3) Package Type: DFN-2X2-3
(Top View)

XX : Identification Code
解: Week: A~Z: 1~26 week; a~z: 27~52 week; z represents 52 and 53 week
X : Internal Code

Part Number	Package	Identification Code
AH9247	DFN-2X2-3	JF

Package Outline Dimensions (All dimensions in mm(inch).)

Please see http://www.diodes.com/package-outlines.html for the latest version.
(1) Package Type: TO92S(TYPE B)

Sensor Location

Package Outline Dimensions (All dimensions in mm (inch) , Cont..)

Please see http://www.diodes.com/package-outlines.html for the latest version.
(2) Package Type: SC59

SC59				
Dim	Min	Max	Typ	
A	0.35	0.50	0.38	
B	1.50	1.70	1.60	
C	2.70	3.00	2.80	
D	-	-	0.95	
G	-	-	1.90	
H	2.90	3.10	3.00	
J	0.013	0.10	0.05	
K	1.00	1.30	1.10	
L	0.35	0.55	0.40	
M	0.10	0.20	0.15	
N	0.70	0.80	0.75	
$\boldsymbol{\alpha}$	0°	8°	-	
All Dimensions in mm				

Min/Max

Sensor Location

Please see http://www.diodes.com/package-outlines.html for the latest version.
(3) Package Type: DFN-2X2-3

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.
(1) Package Type: SC59

Dimensions	Value (in mm)
\mathbf{Z}	3.4
\mathbf{X}	0.8
\mathbf{Y}	1.0
\mathbf{C}	2.4
\mathbf{E}	1.35

(2) Package Type: DFN-2X2-3

Dimensions	$\underset{(\mathrm{mm}) /(\text { inch })}{\mathbf{Y}}$	$\begin{gathered} \mathrm{X} 1=\mathrm{X3} \\ (\mathrm{~mm}) /(\text { inch }) \end{gathered}$	$\begin{gathered} \mathrm{Y} 1 \\ (\mathrm{~mm}) /(\mathrm{inch}) \end{gathered}$	$\begin{gathered} \text { X2 } \\ (\mathrm{mm}) /(\mathrm{inch}) \end{gathered}$	$\begin{gathered} \text { Y2 } \\ (\mathrm{mm}) /(\text { inch }) \end{gathered}$	$\begin{gathered} \text { Y3 } \\ (\mathrm{mm}) /(\text { inch }) \end{gathered}$	$\underset{(\mathrm{mm}) /(\mathrm{inch})}{\mathrm{E}}$
Value	2.200/0.087	0.400/0.016	0.300/0.012	1.600/0.063	1.100/0.043	0.600/0.024	1.300/0.051

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2018, Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Board Mount Hall Effect/Magnetic Sensors category:
Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :
ACHS-7194-500E ACHS-7193-500E ACHS-7193-000E ACHS-7194-000E G-MRCO-017 A1104LUA-T A1212LUA-T HGPRDT005A AH1808-P-A AH277AZ4-AG1 AH373-WG-7 AV-10379 AV-10448 A1211LUA-T SS41C AH1803-WG-7 AH1806-P-B AH1894-Z-7 MA700GQ-P ATS601LSGTN-HT-WU4-T ATS601LSGTN-LT-WU4-T TLE4917 TLE4946-1L 50017859-003 TY-13101 TLE4976L AH1751-WG-7-A SS85CA BU52002GUL-E2 MAX13366GTE/V+ A1128LUA-T AH173-WG-7-B MA702GQ-P BU52003GUL-E2 AH277AZ4-BG1 TLE49614MXTSA1 AH3376-P-B TLE4941 AH3382-P-B AH3372-W-7 AH9250-W-7 AH211Z4-AG1 AH9251-W-7 TLE4905L AH3373-W-7 AH3360-FT4-7 AH3376-W-7 TLE4961-3M AS5601-ASOT TLE4941-1

