Features

- Output voltage: $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$ and adjustable output version
- Adjustable version output voltage range, 1.23 V to 37V+4\%
- $150 \bar{K} H Z \pm 15 \%$ fixed switching frequency
- Voltage mode non-synchronous PWM control
- Thermal-shutdown and current-limit protection
- ON/OFF shutdown control input
- Operating voltage can be up to 40 V
- Output load current: 3A
- Low power standby mode
- Built-in switching transistor on chip
- Lead Free packages: TO263-5L and TO220-5L(R)
- TO263-5L and TO220-5L(R): Available in "Green" Molding Compound (No Br, Sb)
- Lead Free Finish/RoHS Compliant (Note 1)

General Description

The AP1501 is a fully integrated step-down DC/DC converter with the ability to drive 3A load without the need of additiona driver components. The AP1501 operates at a switching frequency of 150 KHZ enabling the use of small size filter components. As a result, board space is reduced and BOM costs are lowered

The AP1501 has integrated the shutdown function that allows standby mode to be activated via an external logic signal input. The internal compensation facilitates feedback control for line and load regulation without the need of an external circuitry. The AP1501 has a built-in Thermal shutdown and Current Limit function to prevent damage from high operating temperature and high current operating to the output switch.

Additional features include a guaranteed $+/-4 \%$ tolerance on the output voltage under specified input and output load conditions, and $+/-15 \%$ on oscillator frequency. The AP1501 offers both fixed and a Adjustable output voltages. For fixed outputs the AP1501 supports $3.3 \mathrm{~V}, 5.0 \mathrm{~V}$ and 12 V . The package options available are standard 5-lead TO263 and TO220(R) packages.

Applications

- Simple High-efficiency step-down regulator
- On-card switching regulators
- Positive to negative converter

Ordering Information

Notes: 1. EU Directive 2002/95/EC (RoHS). All applicable RoHS exemptions applied, see EU Directive 2002/95/EC Annex Notes.
2. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

Pin Assignments

(Top View)

(Top View)

TO220-5L/TO220-5L(R)

Pin Descriptions

Name	Description
V_{IN}	Operating voltage input
Output	Switching output
Gnd	Ground
FB	Output voltage feedback control
SD	ON/OFF shutdown

Block Diagram

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
ESD MM	Machine Model ESD Protection	400	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply Voltage	+45	V
$\mathrm{~V}_{\mathrm{SD}}$	ON/OFF Pin input Voltage	-0.3 to +40	V
$\mathrm{~V}_{\text {FB }}$	Feedback Pin Voltage	-0.3 to +40	V
$\mathrm{~V}_{\text {out }}$	Output Voltage to Ground	-1	V
P_{D}	Power Dissipation	Internally limited	W
T_{ST}	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{J}	Operating Junction Temperature	-20 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {MJ }}$	Maximum Junction Temperature	150	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Rating	Units
V_{OP}	Operating Voltage	4.5 to 40	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature	-20 to 85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (All Output Voltage Versions)

Unless otherwise specified, $\mathrm{V}_{I N}=12 \mathrm{~V}$ for $3.3 \mathrm{~V}, 5 \mathrm{~V}$, adjustable version and $\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}$ for the 12 V version. $\mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}$
Specifications with boldface type are for full operating temperature range, the other type are for $T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Para	meter	Conditions	Min	Typ.	Max	Unit	
$\mathrm{I}_{\text {FB }}$	Feedback Bias Current		$V_{F B}=1.3 \mathrm{~V}$ (Adjustable version only)		40	60	nA	
				100				
Fosc	Oscillator Frequency				127	150	173	KHZ
				110		173		
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage		$l_{\text {lut }}=3 \mathrm{~A}$ No outside circuit $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$ force driver on		1.3	1.4	V	
				1.5				
DC	Max. Duty	ycle(ON)		$\mathrm{V}_{\text {FB }}=0 \mathrm{~V}$ force driver on		100		\%
	Min. Duty	cle(OFF)	$\mathrm{V}_{\text {FB }}=12 \mathrm{~V}$ force driver off		0			
	Current Limit		Peak current no outside circuit $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$ force driver on	3.6	4.0	5.5	A	
ICL			6.5					
I_{L}	Output $=0$	Output Leakage Current		No outside circuit $\mathrm{V}_{\mathrm{FB}}=12 \mathrm{~V}$ force driver off (Note 3)			200	uA
	Output = -1		$\mathrm{V}_{\text {IN }}=40 \mathrm{~V}$		2	60	mA	
I_{Q}	Quiescent Current		$\mathrm{V}_{\text {FB }}=12 \mathrm{~V}$ force driver off		5	10	mA	
$\mathrm{I}_{\mathrm{STBY}}$	Standby Quiescent Current		ON/OFF pin $=5 \mathrm{~V}$		150	250	uA	
			$\mathrm{V}_{\text {IN }}=40 \mathrm{~V}$			350		
$\mathrm{V}_{\text {IL }}$	ON/OFF pin Logic Inpu Threshold Voltage		Low (regulator ON)		1.3	0.6	V	
V_{IH}			High (regulator OFF)	2.0				
I_{H}	ON/OFF P Input Curre	Logic	$\mathrm{V}_{\text {LOGIC }}=2.5 \mathrm{~V}$ (OFF)		15	25	uA	
I	ON/OFF P Current	Input	$\mathrm{V}_{\text {Logic }}=0.5 \mathrm{~V}(\mathrm{ON})$		0.02	5		
$\theta_{\text {JA }}$	Thermal Resistance unction to Ambient		TO263-5L (Note 4)		37		${ }^{\circ} \mathrm{C} / \mathrm{W}$	
			TO220-5L(R) (Note 4)		31			
$\theta_{\text {Jc }}$	Thermal Resistance Junction to Case		TO263-5L (Note 4)		6			
			TO220-5L(R) (Note 4)		5			

Notes: 3. Feedback pin removed from output and connected to $O V$ to force the output transistor switch ON. Feedback pin removed from output and connected to 12 V for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and the ADJ. version, and 15 V for the 12 V version, to force the output transistor switch OFF.
4. Test condition: Device mounted with copper area of approximately 3 in ${ }^{2}, 1 \mathrm{oz}$, no air flow.

Electrical Characteristics (Continued)

Specifications with boldface type are for full operating temperature range, the other type are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

	Symbol	Parameter	Conditions	$\mathrm{V}_{\text {Min }}$	Typ.	$\mathrm{V}_{\text {Max }}$	Unit
AP1501-ADJ	$V_{\text {FB }}$	Output Feedback	$\left\lvert\, \begin{aligned} & 4.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \\ & \mathrm{~V}_{\text {OUT }} \text { programmed for } 3 \mathrm{~V} \end{aligned}\right.$	$\begin{gathered} 1.193 \\ 1.18 \end{gathered}$	1.23	$\begin{gathered} 1.267 \\ 1.28 \end{gathered}$	V
	η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$		73		\%
AP1501-3.3V	$V_{\text {OUT }}$	Output Voltage	$\begin{aligned} & 4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 3.168 \\ & 3.135 \\ & \hline \end{aligned}$	3.3	$\begin{aligned} & \hline 3.432 \\ & 3.465 \\ & \hline \end{aligned}$	V
	η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$		73		\%
AP1501-5V	$V_{\text {OUT }}$	Output Voltage	$\begin{aligned} & 7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{aligned}$	$\begin{gathered} \hline 4.8 \\ 4.75 \\ \hline \end{gathered}$	5	$\begin{gathered} \hline 5.2 \\ 5.25 \\ \hline \end{gathered}$	V
	η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$		80		\%
AP1501-12V	$V_{\text {OUT }}$	Output Voltage	$\begin{aligned} & 15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{aligned}$	$\begin{gathered} \hline 11.52 \\ 11.4 \\ \hline \end{gathered}$	12	$\begin{gathered} \hline 12.48 \\ 12.6 \\ \hline \end{gathered}$	V
	η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$		90		\%

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Typical Application Circuit

(1) Fixed Type Circuit

(2) Adjustable Type Circuit

$$
\begin{aligned}
& \mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{FB}} \times\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right) \\
& \mathrm{V}_{\mathrm{FB}}=1.23 \mathrm{~V} \\
& \mathrm{R} 2=1 \mathrm{~K} \sim 3 \mathrm{~K}
\end{aligned}
$$

(3) Delay Start Circuit

[^0]AP1501
150KHz, 3A PWM BUCK DC/DC CONVERTER

Functional Description

Pin Functions

$+\mathrm{V}_{\text {IN }}$
This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be present at this pin to minimize voltage transients and to supply the switching currents needed by the regulator.

Ground

Circuit ground.

Output

Internal switch. The voltage at this pin switches between $\left(+\mathrm{V}_{\mathrm{IN}}-\right.$ $\mathrm{V}_{\text {SAT }}$) and approximately -0.5 V , with a duty cycle of approximately $\mathrm{V}_{\text {OUt }} / \mathrm{V}_{\mathrm{IN}}$. To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be kept a minimum.

Feedback

Senses the regulated output voltage to complete the feedback loop.

ON/OFF

Allows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supply current to approximately 150 uA . Pulling this pin below a threshold voltage of approximately 1.3 V turns the regulator on, and pulling this pin above 1.3 V (up to a maximum of 40 V) shuts the regulator down. If this shutdown feature is not needed, the ON/OFF pin can be wired to the ground pin or it can be left open, in either case the regulator will be in the ON condition.

Thermal Considerations

The AP1501 is available in 5-pin surface mount TO-263 and TO-220.

The TO-220 package needs a heat sink under most conditions. The size of the heat sink depends on the input voltage, the output voltage, the load current and the ambient temperature. The AP1501 junction temperature rises above ambient temperature for a 3A load and different input and output voltages. The data for these curves was taken with the AP1501 (TO-220 package) operating as a buck switching regulator in an ambient temperature of $25^{\circ} \mathrm{C}$ (still air). These temperature rise numbers are all approximate and there are many factors that can affect these temperatures. Higher ambient temperatures require more heat sinking.

The TO-263 surface mount package tab is designed to be soldered to the copper on a printed circuit board. The copper and the board are the heat sink for this package and the other heat producing components, such as the catch diode and inductor. The PC board copper area that the package is soldered to should be at least $0.4 \mathrm{in}^{2}$, and ideally should have 2 or more square inches of 2 oz . Additional copper area improves the thermal characteristics, but with copper areas greater than approximately 6 in 2, only small improvements in heat dissipation are realized. If further thermal improvements are needed, double sided, multilayer PC boards with large copper areas and/or airflow are recommended.

The AP1501 (TO-263 package) junction temperature rises above ambient temperature with a 2A load for various input and output voltages. This data was taken with the circuit operating as a buck switching regulator with all components mounted on a

PC board to simulate the junction temperature under actual operating conditions. This curve can be used for a quick check for the approximate junction temperature for various conditions, but be aware that there are many factors that can affect the junction temperature. When load currents higher than 2A are used, double sided or multilayer PC boards with large copper areas and/or airflow might be needed, especially for high ambient temperatures and high output voltages.

For the best thermal performance, wide copper traces and generous amounts of printed circuit board copper should be used in the board layout. (One exception to this is the output (switch) pin, which should not have large areas of copper.) Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further.

Package thermal resistance and junction temperature rise numbers are all approximate, and there are many factors that will affect these numbers. Some of these factors include board size, shape, thickness, position, location, and even board temperature. Other factors are, trace width, total printed circuit copper area, copper thickness, single or double-sided, multilayer board and the amount of solder on the board. The effectiveness of the PC board to dissipate heat also depends on the size, quantity and spacing of other components on the board, as well as whether the surrounding air is still or moving.

Furthermore, some of these components such as the catch diode will add heat to the PC board and the heat can vary as the input voltage changes. For the inductor, depending on the physical size, type of core material and the DC resistance, it could either act as a heat sink taking heat away from the board, or it could add heat to the board.

AP1501
150KHz, 3A PWM BUCK DC/DC CONVERTER

Marking Information

(1) TO263-5L

(2) TO220-5L(R)

(1) Package Type: TO263-5L

(2) Package Type: TO220-5L

Package Information (Continued)

(3) Package Type: TO220-5L(R) Mechanical drawing

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT
Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Voltage Regulators - Switching Regulators category:
Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :
LX7186A 622616F 632259F MP2148GQD-33-P MP2374DS-LF-Z EN6310QA L79M05TL-E FAN48610BUC45X R3 430464BB 455605G MIC4930YFL-T5 KE177614 418569H 455596X 511087D 030908C 063375FB 067501FB 099508GB EP5358LUA NCP81102MNTXG 715715H FAN48611UC53X FAN53611AUC12X MAX809TTR MAX77596ETBC+T MAX77596ETBB+T MAX16905AUE/V+ NCP6332CMTAATBG LX7176A MP2162AGQH-Z MAX17544ATP+T MCP1623T-IMC MCP1642B-18IMC MCP1642BT-30I/MS MCP1642D-50IMC MCP1642D-50IMS MCP1642D-ADJIMC MC34063LBBGEVB MCP1252T-33X50IMS MCP1259-EMF MCP1602-250IMF MCP1640CT-IMC MCP1642B-30IMC MCP1642B-50IMC MCP1642B-50IMS MCP1642B-ADJIMC MCP1642D-18IMC MCP1642D-30IMC

[^0]: Notes: 5. Suggested DIODES Power Schottky: B340A or PDS340 series.

