Description

The AP1507 is a monolithic IC designed for a step-down DC/DC converter and is capable of driving a 3A load without an external transistor. Due to reducing the number of external components, the board space can be saved easily.

The external shutdown function can be controlled by logic level and then go into standby mode. The internal compensation makes the feedback control have good line and load regulation without an external design. Regarding the protected function, the thermal shutdown prevents overtemperature operation from damaging the device, and current limit protects against overcurrent operation of the output switch. If the current limit function occurs, and V_{FB} is down to 0.5 V below, the switching frequency reduces.

The AP1507 series operates at a switching frequency of 150 kHz , which allows smaller-sized filter components than the requirements with lower frequency switching regulators.

Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage under specified input voltage and output load conditions and $\pm 15 \%$ on the oscillator frequency. The output version included a fixed 3.3 V , $5 \mathrm{~V}, 12 \mathrm{~V}$, and an adjustable type.

AP1507 is available in a 5-lead TO-252 green package.

Features

- Output Voltage: 3.3V, 5V, 12V and Adjustable Output Version
- Adjustable Version Output Voltage Range, 1.23V to $18 \mathrm{~V} \pm 4 \%$
- $150 \mathrm{kHz} \pm 15 \%$ Fixed Switching Frequency
- Voltage Mode Non-Synchronous PWM Control
- Thermal-Shutdown and Current-Limit Protection
- ON/OFF Shutdown Control Input
- Operating Voltage up to 22 V
- Output Load Current: 3A
- Low Power Standby Mode
- Built-in Switching Transistor On Chip
- Totally Lead-Free \& Fully RoHS Compliant (Notes 1 \& 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

Pin Assignments

Applications

- Simple High-Efficiency Step-Down Regulator
- On-Card Switching Regulators
- Positive to Negative Converter

Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and <1000ppm antimony compounds.

Typical Application Circuit

(1) Fixed Type Circuit

(2) Adjustable Type Circuit

$$
\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{FB}} \times\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)
$$

$$
V_{F B}=1.23 \mathrm{~V}, \mathrm{R} 2=1 \mathrm{~K} \sim 3 \mathrm{~K}
$$

(3) Delay Start Circuit

Pin Descriptions

Pin Number	Pin Name	Description
1	VIN	Operating Voltage Input
2	Output	Switching Output
3	GND	Ground
4	FB	Output Voltage Feedback Control
5	SD	$\overline{\text { ON } / ~ O F F ~ S h u t d o w n ~}$

Functional Block Diagram

AP1507

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)($ Note 4)

Symbol	Parameter	Rating	Unit
ESD HBM	Human Body Model ESD Protection	2	KV
ESD MM	Machine Model ESD Protection	200	V
$\mathrm{~V}_{\text {CC }}$	Supply Voltage	+24	V
$\mathrm{~V}_{\text {SD }}$	ON/OFF Pin Input Voltage	-0.3 to +18	V
$\mathrm{~V}_{\text {FB }}$	Feedback Pin Voltage	-0.3 to +18	V
$\mathrm{~V}_{\text {OUT }}$	Output Voltage to Ground	-1	V
PD_{D}	Power Dissipation	Internally Limited	W
$\mathrm{T}_{\text {ST }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{J}	Operating Junction Temperature	-40 to +125	

Note: 4. Stresses greater than the Absolute Maximum Ratings specified above, may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions exceeding those indicated in this specification is not implied. Device reliability may be affected by exposure to absolute maximum rating conditions for extended periods of time.

Recommended Operating Conditions ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$)

Symbol	Parameter	Min	Max	Unit
lout	Output Current	0	3	A
$\mathrm{~V}_{\text {OP }}$	Operating Voltage	4.5	22	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature	-20	+85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (All Output Voltage Versions)

Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ for $3.3 \mathrm{~V}, 5 \mathrm{~V}$, adjustable version and $\mathrm{V}_{\mathrm{IN}}=18 \mathrm{~V}$ for the 12 V version. ILOAD $=0.5 \mathrm{~A}$
Specifications with boldface type are for full operating temperature range, the other type are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter		Conditions		Min	Typ	Max	Unit		
$\mathrm{IFB}^{\text {f }}$	Feedback Bias Current		$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=1.3 \mathrm{~V} \\ & \text { (Adjustable Version Only) } \end{aligned}$		-	-10	-50	nA		
			-100							
Fosc	Oscillator Frequency						127	150	173	
					110	-	173	kHz		
Fscp	Oscillator Frequency of Short-Circuit Protect		When Current Limit Occurred and $\mathrm{V}_{\mathrm{FB}}<0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	30	50	kHz		
	Saturation Voltage		lout $=3 \mathrm{~A}$ No Outside Circuit $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$ Force Driver On				1.6			
$\mathrm{V}_{\text {SAT }}$			-	1.4	1.7	V				
DC	Max. Duty Cycle (ON)				$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$ Force Driver On		-	100	-	\%
	Min. Duty Cycle (OFF)		$\mathrm{V}_{\mathrm{FB}}=12 \mathrm{~V}$ Force Driver Off		-	0	-			
ICL	Current Limit		Peak Current No Outside Circuit $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$ Force Driver On		3.6	4.5	5.5	A		
			6.5							
I leak	Output $=0 \mathrm{~V}$	Output Leakage Current			No Outside Circuit $\mathrm{V}_{\mathrm{FB}}=12 \mathrm{~V}$ Force Driver Off		-	-	-200	$\mu \mathrm{A}$
	Output $=-1 \mathrm{~V}$		$\mathrm{V}_{\mathrm{IN}}=22 \mathrm{~V}$		-	-5	-	mA		
lQ	Quiescent Current		$\mathrm{V}_{\mathrm{FB}}=12 \mathrm{~V}$ Force Driver Off		-	5	10	mA		
Istby	Standby Quiescent Current		ON/OFF Pin $=5 \mathrm{~V}$$\mathrm{V}_{\mathrm{IN}}=22 \mathrm{~V}$		-	70	150	$\mu \mathrm{A}$		
			200							
VIL	ON/OFF Pin Logic Input Threshold Voltage				Low (Regulator ON)		-	1.3	0.6	V
V_{IH}			High (Reg	or OFF)	2.0	-				
I_{H}	ON/OFF Pin Logic Input Current		$\mathrm{V}_{\text {LOGIC }}=$	(OFF)	-	-	-0.01	$\mu \mathrm{A}$		
I	ON/OFF Pin Input Current		$\mathrm{V}_{\text {LOGIC }}=0.5 \mathrm{~V}$ (ON)		-	-0.1	-1			
$\theta_{\text {JA }}$	Thermal Resistance		TO252-5	Junction to Case	-	10	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$		
$\theta_{\text {Jс }}$	Thermal Resistance (Copper Area of Approximately $2 \mathrm{~cm} \times 2 \mathrm{~cm}$)		TO252-5	Junction to Ambient	-	50	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$		

Electrical Characteristics (All Output Voltage Versions)

Specifications with boldface type are for full operating temperature range, the other type are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

-	Symbol	Parameter	Conditions	$\mathrm{V}_{\text {MIN }}$	Typ.	$\mathrm{V}_{\text {MAX }}$	Unit
AP1507-ADJ	$V_{\text {fb }}$	Output Feedback	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 22 \mathrm{~V} \\ & 0.2 \mathrm{~A} \leq \mathrm{I} \text { LOAD } \leq 3 \mathrm{~A} \end{aligned}$ Vout Programmed for 3V	$\begin{gathered} 1.193 \\ 1.18 \end{gathered}$	1.23	$\begin{gathered} 1.267 \\ 1.28 \end{gathered}$	V
	η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{ILOAD}=3 \mathrm{~A}$	-	74	-	\%
AP1507-3.3V	Vout	Output Voltage	$\begin{aligned} & 5.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 22 \mathrm{~V} \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 3.168 \\ & 3.135 \end{aligned}$	3.3	$\begin{aligned} & 3.432 \\ & 3.465 \end{aligned}$	V
	η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	-	75	-	\%
AP1507-5V	Vout	Output Voltage	$\begin{aligned} & 8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 22 \mathrm{~V} \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{aligned}$	$\begin{gathered} 4.8 \\ 4.75 \\ \hline \end{gathered}$	5	$\begin{gathered} 5.2 \\ 5.25 \end{gathered}$	V
	η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	-	80	-	\%
AP1507-12V	Vout	Output Voltage	$\begin{aligned} & 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 22 \mathrm{~V} \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{aligned}$	$\begin{gathered} 11.52 \\ 11.4 \\ \hline \end{gathered}$	12	$\begin{gathered} 12.48 \\ 12.6 \\ \hline \end{gathered}$	V
	η	Efficiency	$\mathrm{V}_{\text {IN }}=16 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$		89		\%

Typical Characteristics

Typical Characteristics (continued)

Threshold Voltage vs. Temperature

Frequency vs. Temperature

Application Information

Pin Functions

$+\mathrm{V}_{\text {IN }}$
This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be present at this pin to minimize voltage transients and to supply the switching currents needed by the regulator

Ground

Circuit ground.

Output

Internal switch. The voltage at this pin switches between ($+\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{SAT}}$) and approximately -0.5 V with a duty cycle of approximately $\mathrm{V}_{\mathrm{OuT}} / \mathrm{V}_{\mathrm{IN}}$. To minimize coupling to sensitive circuitry, the PCB copper area connected to this pin must be kept at a minimum.

Feedback (FB)

Senses the regulated output voltage to complete the feedback loop.

ON/OFF (SD)

Allows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supply current to approximately $150 \mu \mathrm{~A}$. Pulling this pin below a threshold voltage of approximately 1.3 V turns the regulator on, and pulling this pin above 1.3 V (up to a maximum of 18 V) shuts the regulator down. If this shutdown feature is not required, the ON/OFF pin can be wired to the ground pin.

Thermal Considerations

The TO-252 surface mount package tab is designed to be soldered to the copper on a PCB. The copper and the board are the heat sink for this package and the other heat producing components, such as the catch diode and inductor. The PCB copper area that the package is soldered to should be at least 0.8 in 2 and ideally should have two or more square inches of $20 z$ additional copper area, which improves the thermal characteristics. With copper areas greater than approximately $6 \mathrm{in}^{2}$, only small improvements in heat dissipation are realized. If further thermal improvements are required, double sided, multi-layer PCBs with large copper areas and/or airflow are recommended.

The AP1507 (TO-252 package) junction temperature rises above ambient temperature with a 3A load for various input and output voltages. This data was taken with the circuit operating as a buck-switching regulator with all components mounted on a PCB to simulate the junction temperature under actual operating conditions. This curve can be used for a quick check for the approximate junction temperature for various conditions, but there are many factors that can affect the junction temperature. When load currents higher than 3A are used, double-sided or multi-layer PCBs with large copper areas and/or airflow might be required, especially for high ambient temperatures and high output voltages.

For the best thermal performance, wide copper traces and generous amounts of PCB copper should be used in the board layout. One exception to this is the output (switch) pin, which should not have large areas of copper. Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further.

Package thermal resistance and junction temperature rise numbers are all approximate, and there are many factors that will affect these numbers. Some of these factors include board size, shape, thickness, position, location, and even board temperature. Other factors are trace width, total PC copper area, copper thickness, single- or double-sided, multi-layer board, and the amount of solder on the board. The effectiveness of the PCB to dissipate heat also depends on the size, quantity, and spacing of other components on the board, as well as whether the surrounding air is still or moving. Furthermore, some of these components, such as the catch diode, add heat to the PCB, and the heat can vary as the input voltage changes. Depending on the physical size, type of core material, and the DC resistance, the inductor can either act as a heat sink taking heat away from the board, or it could add heat to the board.

Ordering Information

33 : 3.3 V
$50: 5.0 \mathrm{~V}$
$12: 12 \mathrm{~V}$

	Device	Voltage (V)	Package Code	Package (Note 6)	Lead Free/Green	Quantity	Part Number Suffix		Status (Note 5)	Alternative
							Tube	13" Tape and Reel		
(2)	AP1507-12D5-13	12	K5	TO252-5	Green	800	NA	-13	End of Life	None
(2)	AP1507-33D5-13	3.3	K5	TO252-5	Green	800	NA	-13	End of Life	None
(12)	AP1507-50D5-13	5.0	K5	TO252-5	Green	800	NA	-13	In production	-
(12)	AP1507-D5-13	ADJ	K5	TO252-5	Green	800	NA	-13	In production	-

Notes: 5. All lead-free versions in TO252-5 are End of Life (EOL) with limited replacement.
All green versions with $12 \mathrm{~V} / 3.3 \mathrm{~V}$ output voltage are End of Life (EOL) without any alternative.
6. For packaging details, go to our website at: http://www.diodes.com/package-outlines.html.

Marking Information

(1) TO252-5

Package Outline Dimensions (All Dimensions in mm)

Please see http://www.diodes.com/package-outlines.html for the latest version.

TO252-5

TO252-5				
Dim	Min	Max	Typ	
A	2.19	2.39	2.29	
A1	0.00	0.13	0.08	
A2	0.97	1.17	1.07	
b	0.51	0.71	0.583	
b2	0.61	0.79	0.70	
b3	5.21	5.46	5.33	
c2	0.45	0.58	0.531	
D	6.00	6.20	6.10	
D1	5.21	-	-	
e	-	-	1.27	
E	6.45	6.70	6.58	
E1	4.32	-	-	
H	9.40	10.41	9.91	
L	1.40	1.78	1.59	
L3	0.88	1.27	1.08	
a	0°	10°	-	
All	Dimensions in	$\mathbf{m m}$		

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

TO252-5

Dimensions	Value (in mm)
\mathbf{C}	1.27
\mathbf{X}	1.00
$\mathbf{X 1}$	5.73
\mathbf{Y}	2.00
Y1	6.17
Y2	1.64
Y3	2.66

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the
failure of the life support device or to affect its safety or effectiveness.
Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systemsrelated information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2018, Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Voltage Regulators - Switching Regulators category:
Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :
LX7186A 622616F 632259F MP2148GQD-33-P MP2374DS-LF-Z EN6310QA L79M05TL-E FAN48610BUC45X R3 430464BB 455605G MIC4930YFL-T5 KE177614 418569H 455596X 511087D 030908C 063375FB 067501FB 099508GB EP5358LUA NCP81102MNTXG 715715H FAN48611UC53X FAN53611AUC12X MAX809TTR MAX77596ETBC+T MAX16905AUE/V+ NCP6332CMTAATBG LX7176A MP2162AGQH-Z MAX17544ATP+T MCP1623T-IMC MCP1642B-18IMC MCP1642BT-30I/MS MCP1642D-50IMC MCP1642D-50IMS MCP1642D-ADJIMC MC34063LBBGEVB MCP1252T-33X50IMS MCP1259-EMF MCP1602250IMF MCP1640CT-IMC MCP1642B-30IMC MCP1642B-50IMC MCP1642B-50IMS MCP1642B-ADJIMC MCP1642D-18IMC MCP1642D-30IMC MCP1642D-33IMS

