

NOT RECOMMENDED FOR NEW DESIGN USE AL1665

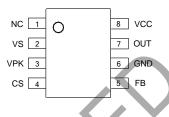
SINGLE STAGE PRIMARY SIDE REGULATION PFC CONTROLLER FOR LED DRIVER

Description

The AP1682E is a high performance AC/DC universal input Primary Side Regulation Power Factor Controller for LED driver applications. The device uses Pulse Frequency Modulation (PFM) technology to regulate output current while achieving high power factor and low THD.

The AP1682E provides accurate constant current (CC) regulation while removing the opto-coupler and secondary control circuitry. It also eliminates the need of loop compensation circuitry while maintaining stability. The AP1682E achieves excellent regulation and high efficiency, yet meets the requirement of IEC61000-3-2 harmonic standard.

The AP1682E features low start-up current, low operation current and high efficiency. It also has rich protection features including over voltage, short circuit, over current protection etc.


The AP1682E is available in SO-8 package.

Features

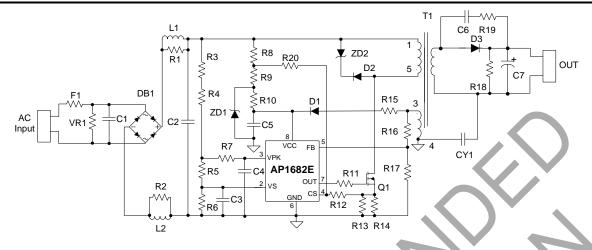
- Primary Side Control for Output Current Regulation Without Opto-coupler and Secondary CV/CC Control Circuitry
- Low Start-up Current
- High Power Factor and Low THD for Universal Input Range
- Tight CC Regulation Performance for Universal Input Mains Voltage Range
- Eliminates Control Loop Compensation Circuitry
- Built-in Acceleration Start
- Open-load and Reload Detection
- Over Voltage and Short Circuit Protection
- Over Current Protection
- Cost Effective Total PFC LED Driver Solution
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative. https://www.diodes.com/quality/product-definitions/

Pin Assignments

(Top View)

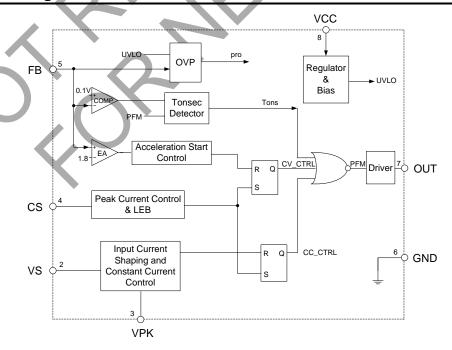
SO-8

Applications


 Single Stage Power Factor Correction Power Supply for LED Lighting

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.


Typical Applications Circuit

Pin Descriptions

Pin Number	Pin Name	Function
1	NC	No connection
2	VS	The rectified input voltage sensing pin. The pin is detecting the instantaneous rectified sine waveform of input voltage
3	VPK	The rectified input voltage peak value sensing pin. The pin is detecting the rectified sine waveform peak value of input voltage
4	CS	Primary current sensing
5	FB	This pin captures the feedback voltage from the auxiliary winding. FB voltage is used to control no load output voltage and determine acceleration stop point at start-up phase
6	GND	Ground. Current return for gate driver and control circuits of the IC
7	OUT	Gate driver output
8	VCC	Supply voltage of gate driver and control circuits of the IC

Functional Block Diagram

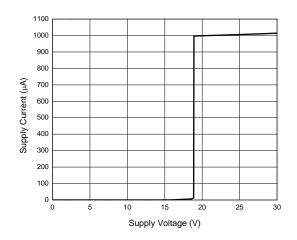
Absolute Maximum Ratings (Note 4)

Symbol	Parameter	Rating	Unit
Vcc	Power Supply Voltage	-0.3 to +35	V
Іоит	Driver Output Current	300	mA
Vvs, Vpk, Vcs	Voltage at VS, VPK, CS	-0.3 to 7	V
VFB	FB Input Voltage	-40 to 10	V
TJ	Operating Junction Temperature	+150	°C
Тѕтс	Storage Temperature	-65 to +150	°C
TLEAD	Lead Temperature (Soldering, 10s)	+300	°C
PD	Power Dissipation (T _A = +50°C)	0.65	W
θја	Thermal Resistance (Junction to Ambient)	190	°C/W
_	ESD (Machine Model)	200	V
	ESD (Human Body Model)	3000	V

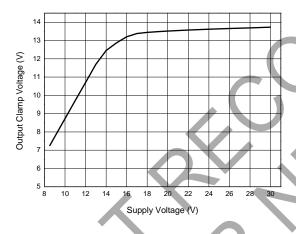
Note 4: Stresses greater than those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods can affect device reliability.

Recommended Operating Conditions

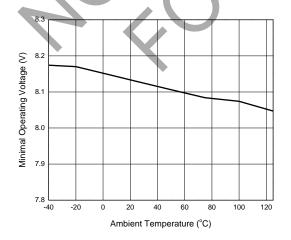
Symbol	Parameter	Min	Max	Unit
Vcc	Power Supply Voltage	9	21	٧
TA	Ambient Temperature	-40	+105	°C

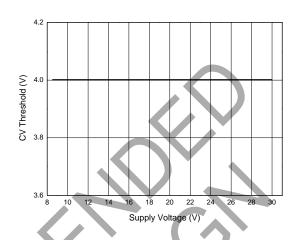

Electrical Characteristics (@ V_{CC} = 15V, T_A = +25°C, unless otherwise specified.)

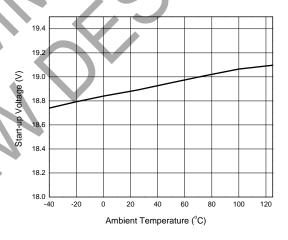
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
UVLO Section							
V _{TH} (ST)	Start-up Threshold	_	18	19	20	V	
Vopr (Min)	Minimal Operating Voltage	After turn on	7.5	8	8.5	V	
Vcc_ovp	VCC OVP Voltage	_	28	32	34	V	
Standby Current Section							
I _{ST}	Start-up Current	Vcc = Vth (ST)-0.5V, Before start up		X	20	μΑ	
Icc (Max)	Maximum Operating Current	Vvs = Vpk = 3V	+	1000	1300	μΑ	
Drive Output Section						3	
Voн	Output High Level Voltage	IGD-SOURCE = 20mA V _{CC} = 12V	10	-	7	V	
VoL	Output Low Level Voltage	IGD-SINK = 20mA Vcc = 12V	-	1	1	V	
t _R	Output Voltage Rise Time	C _L = 1nF	100	140	190	ns	
tF	Output Voltage Fall Time	C _L = 1nF	30	60	90	ns	
Vo-clamp	Output Clamp Voltage	IGD-SOURCE = 5mA Vcc = 20V	12	13.5	15	V	
VuvLo	UVLO Saturation Voltage	Vcc = 0 to Vcc –on Isink = 10mA	_		1.1	V	
VS Input Section							
V _{VS} /V _{PK} (Max)	Maximum Ratio	$V_{VS} = V_{PK} = 3V$	0.8	1	1.2	V	
Vvs/Vpk (Min)	Minimum Ratio	Vvs = 0V, VpK = 3V	_	_	0.2	V	
Current Sense Section							
ton (Min)	Minimum On Time	_	500	750	1000	ns	
Vsocp	Short Circuit Protection Voltage	_	3	4		V	
Feedback Input Section							
IFB	FB Pin Input Leakage Current	V _{FB} = 4V	_	2	8	μΑ	
V _{FB} (ACC)	Acceleration Start Threshold	_	1.4	1.8	2.2	V	
V _{FB} (CV)	CV Threshold	_	3.8	4.1	4.4	V	
V _{FB} (OVP)	Over Voltage Protection	_	5.6	6.25	6.9	V	
Over Temperature Protection Section							
_	Shutdown Temperature	_	_	+140	_	°C	
_	Temperature Hysteresis	_	_	+20	_	°C	

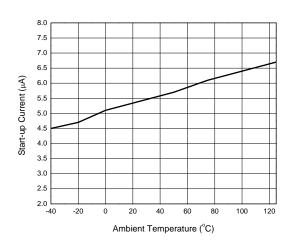


Performance Characteristics

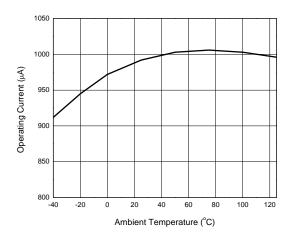

Supply Current vs. Supply Voltage

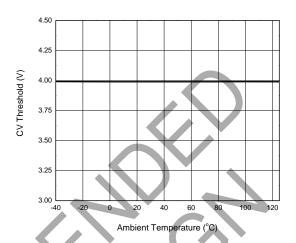

Output Clamp Voltage vs. Supply Voltage


Minimal Operating Voltage vs. Ambient Temperature

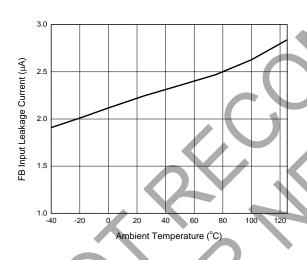

CV Threshold vs. Supply Voltage

Start-up Voltage vs. Ambient Temperature

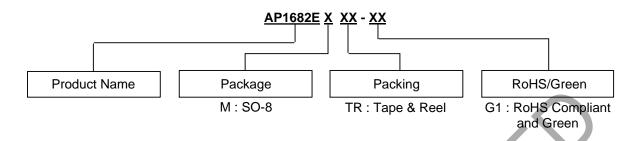

Start-up Current vs. Ambient Temperature



Performance Characteristics (continued)


Operating Current vs. Ambient Temperature

CV Threshold vs. Ambient Temperature

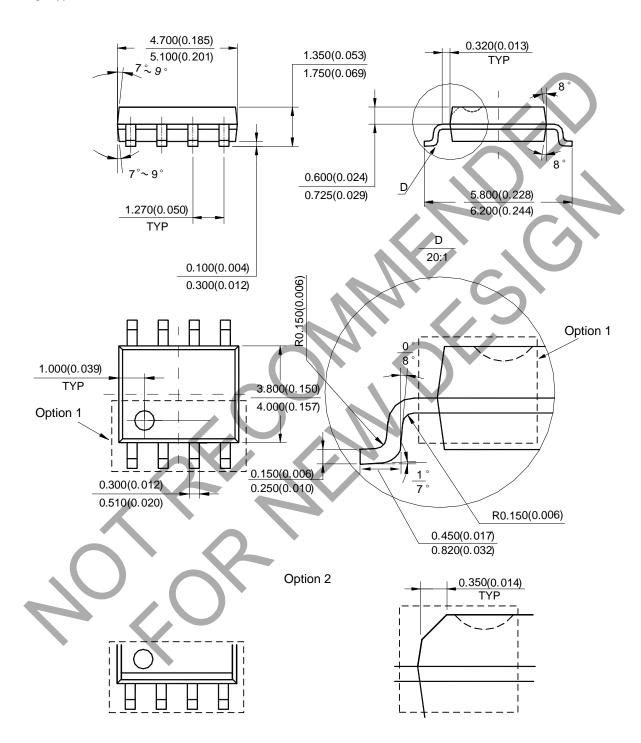


FB Input Leakage Current vs. Ambient Temperature

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing
SO-8	-40°C to +105°C	AP1682EMTR-G1	1682EM-G1	4000/13"Tape & Reel

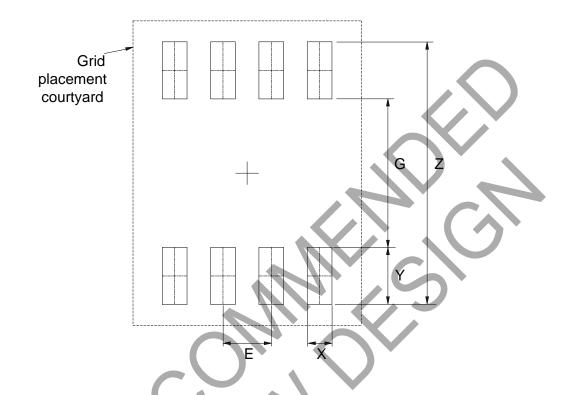
Marking Information



First and Second Lines: Logo and Marking ID Third Line: Date Code Y: Year WW: Work Week of Molding A: Assembly House Code XX: 7th and 8th Digits of Batch Number

Package Outline Dimensions (All dimensions in mm (inch).)

(1) Package Type: SO-8



Note: Eject hole, oriented hole and mold mark is optional.

Suggested Pad Layout

(1) Package Type: SO-8

Dimensions	Z	G	X	Y	E
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	6.900/0.272	3.900/0.154	0.650/0.026	1.500/0.059	1.270/0.050

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2020, Diodes Incorporated

www.diodes.com

AP1682E Document number: DS36648 Rev. 2 - 3

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Factor Correction - PFC category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below:

L6564TD FAN7930MX L4984D NCP1612A1DR2G TDA4863GXUMA2 ICE2PCS06GXUMA1 PFS7624C-TL TDA48632GXUMA2

UCC29910APWR UCC2818AQDRQ1 TDA4862GGEGXUMA2 L6561D013TR L6566B ICE3PCS03G LT1249CN8#PBF

NCP1616A1DR2G LT1248IN#PBF LT1509CN#PBF 415984050NNNN ICE3PCS02GXUMA1 B44066R6012E230 ICE2PCS01GXUMA1

ADP1048ARQZ-R7 LT1249IS8#PBF LT1249CS8#PBF FAN4800AUM FAN4801SMY FAN6921MRMY AL6562AS-13 ICE1PCS01G

NCP1652DR2G ICE2PCS01G ICE2PCS06G ICE3PCS01G TDA4863 TDA4863-2 TDA4863-2G XDPL8210XUMA1 AP1682EMTR-G1

ISL6731BFBZ L6563A L6563TR NCP1615A1DR2G NCP1605DR2G LT1509CSW#PBF TEA1791T/N1,118 NCP1653DR2G

FAN4800ASNY FAN4800AUN FAN4800CSNY