NOT RECOMMENDED FOR NEW DESIGN CONTACT US

AP6015
High Efficiency Step-Down Low Power DC-DC Converter

Features

- High efficiency synchronous step-down converter with greater than 94%
- Current Mode Operation for faster transient response and better loop stabilization
- 2.5 V to 5.5 V operating input voltage range
- Adjustable output voltage range from 0.8 V to V_{IN}
- Fixed output voltage options: $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ and 3.3 V
- Up to 800 mA output current
- High efficiency over a wide range of load currents
- PWM operation mode
- Internal soft-start function
- Typical quiescent current of $150 \mu \mathrm{~A}$
- MSOP-10L: Available in "Green" Molding Compound (No Br, Sb)
- Lead Free Finish/ RoHS Compliant (Note 1)

General Description

The AP6015 is the first device in a family of low-noise current mode synchronous step-down DC-DC converters. It is ideally suited for systems powered by either a 1 -cell Li-ion battery or a 2 to 3 -cell NiCd/ NiMH/ Alkaline battery.

The AP6015 is a synchronous PWM converter with integrated N - and P-channel power MOSFET switches. Compared to the asynchronous topology, synchronous rectification offers the benefits of higher efficiency and reduced component count. The high operating frequency of 1 MHz allows small inductor and capacitor to be used. This results in small pcb area. During shut-down, the standby current drops to $1 \mu \mathrm{~A}$ or less. The AP6015 is available in the 10 -pin MSOP package. It operates over a free-air temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Applications

- Mobile Handsets
- PDAs, Ultra Mobile PCs
- Portable Media Players, Digital Still/Video Cameras
- USB-based DSL Modems
- LAN/WLAN/WPAN/WWAN Modules

Ordering Information

Device	Package	Packaging	13" Tape and Reel	
	Code	(Note 2)	Quantity	Part Number Suffix
AP6015-XXM10G-13	M10	MSOP-10L	$2500 /$ Tape \& Reel	-13

Notes: 1. EU Directive 2002/95/EC (RoHS). All applicable RoHS exemptions applied, see EU Directive 2002/95/EC Annex Notes.
2. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

Pin Assignment

Pin Descriptions

Pin Name	Pin NO.	I/O	Description
PVCC	1	I	Supply voltage input
VCC	2		Supply bypass pin. A $1 \mu \mathrm{~F}$ coupling capacitor should be connected as close as possible to this pin.
GND	3		Ground
PG	4		Power good comparator output. A pull-up resistor should be connected between PG and V_{0}.
FB	5		Feedback pin for the fixed output voltage option.
CC	6	1	Compensation pin
NC	7	NC	No connect
EN	8	1	Enable.Pin, H: Enable. L:shutdown
LX		I/O	Connect the inductor to this pin.
PGND	10		Power ground

Block Diagram

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
ESD HBM	Human Body Model ESD Protection	2.5	KV
ESD MM	Machine Model ESD Protection	300	V
PVCC, VCC	Supply Voltage	-0.3 to +5.5	V
	Voltages on pins EN, CC, PG, FB, LX	-0.3 to $\mathrm{V}_{\text {IN }}+0.3$	V
$\mathrm{~T}_{\text {(MAX }}$	Maximum Junction Temperature Range	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {ST }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {OP }}$	Operating Junction Temperature Range	-40 to +125	${ }^{\circ} \mathrm{C}$

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods ma affect device reliability

NOT RECOMMENDED FOR NEW DESIGN CONTACT US

High Efficiency Step-Down Low Power DC-DC Converter

Recommended Operating Conditions ($\mathrm{T}_{\mathrm{A}}:-40 \sim 85^{\circ} \mathrm{C}$)

Symbol	Parameter	Rating	Unit
T_{A}	Operating Ambient Temperature Range	-40 to +85	${ }^{\circ} \mathrm{C}$
V_{IN}	Supply Voltage	2.0 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output voltage range for adjustable output voltage version	0.8 to V_{I}	V
L	Inductor (see Note 4)	3.3	$\mu \mathrm{H}$
C_{i}	Input capacitor (see Note 4)	10	$\mu \mathrm{~F}$
C_{0}	Output capacitor (see Note 4) $\mathrm{V}_{\mathrm{O}} \geq 1.8 \mathrm{~V}$	10	$\mu \mathrm{~F}$

Notes: 4. Refer to application section for further information.

Electrical Characteristics $\quad\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{l}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=300 \mathrm{~mA}, \mathrm{EN}=\mathrm{V}_{\mathrm{IN}}$. (unless otherwise noted)

Electrical Characteristics (Continued)

Over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{I}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=300 \mathrm{~mA}, \mathrm{EN}=\mathrm{V}_{\mathrm{IN}}$. (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ.	Max	Unit
Power switch and current limit						
$\mathrm{R}_{\text {DS(on) }}$	P-channel MOSFET on-resistance	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{Gs}}=3.6 \mathrm{~V} ; \mathrm{l}=200 \mathrm{~mA}$	200	280	410	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {Gs }}=2 \mathrm{~V} ; \mathrm{l}=200 \mathrm{~mA}$		480		
	P-channel leakage current	$V_{\text {DS }}=5.5 \mathrm{~V}$		7	1	$\mu \mathrm{A}$
	N-channel MOSFET on-resistance	$\mathrm{V}_{1}=\mathrm{V}_{\text {Gs }}=3.6 \mathrm{~V} ; \mathrm{l}_{0}=200 \mathrm{~mA}$	200	280	410	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{GS}}=2 \mathrm{~V} ; \mathrm{l}_{0}=200 \mathrm{~mA}$		500	-	
	N-channel leakage current	$\mathrm{V}_{\mathrm{DS}}=5.5 \mathrm{~V}$	-		1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {LIM }}$	P-channel current limit	$2.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$	200		1600	mA
Power good output (see Note 5)						
$\mathrm{V}_{\text {(PG) }}$	Power good threshold	Feedback voltage falling	$\begin{aligned} & 88 \% \\ & V_{0} \end{aligned}$		$\begin{gathered} \hline 94 \% \\ \mathrm{~V}_{0} \\ \hline \end{gathered}$	V
	Power good hysteresis		$2.5 \% \mathrm{~V}_{0}$			
VoL	PG output low voltage	$\mathrm{V}_{\text {(FB) }}=0.8 \times \mathrm{V}_{\mathrm{o}}$ nominal; $l_{(\operatorname{sink})}=10 \mu \mathrm{~A}$			0.3	V
$\mathrm{l}_{\text {LкG }}$	PG output leakage current	$\mathrm{V}_{(\text {FBB }}=\mathrm{V}_{0}$ nominal		0.01	1	$\mu \mathrm{A}$
	Minimum supply voltage for valid power good signal		1.2)	-	V
Oscillator						
$\mathrm{F}_{\text {s }}$	Oscillator frequency	-	800	1000	1200	KHz
Output						
Vo	Adjustable output voltage range		0.8		5.5	V
VREF	Reference voltage		0.784	0.8	0.816	V
		$\begin{aligned} & V_{1}=2.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & 0 \mathrm{~mA} \leq 10 \leq 800 \mathrm{~mA} \end{aligned}$	-3\%	-	4\%	V
		$10 \mathrm{~mA} \leq 10 \leq 800 \mathrm{~mA}$	-3\%	-	3\%	
		$\begin{aligned} & \mathrm{V}_{1}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} ; \\ & 0 \mathrm{~mA} \leq 1_{0} \leq 800 \mathrm{~mA} \end{aligned}$	-3\%	-	4\%	
		$10 \mathrm{~mA} \leq 10 \leq 800 \mathrm{~mA}$	-3\%	-	3\%	
		$\begin{aligned} & \mathrm{V}_{1}=3.6 \mathrm{~V} \text { to } 5.5 \mathrm{~V} ; \\ & 0 \mathrm{~mA} \leq \mathrm{I}_{0} \leq 800 \mathrm{~mA} \end{aligned}$	-3\%	-	4\%	
		$10 \mathrm{~mA} \leq \mathrm{I}_{0} \leq 800 \mathrm{~mA}$	-3\%	-	3\%	
	Line regulation	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{0}+0.5 \mathrm{~V}(\mathrm{~min} .2 \mathrm{~V}) \\ & \text { to } 6.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{o}}=10 \mathrm{~mA} \end{aligned}$	0.3			\%/V
	Load regulation	$\begin{aligned} & \mathrm{V}_{1}=5.0 \mathrm{~V} ; \\ & \mathrm{l}_{0}=10 \mathrm{~mA} \text { to } 800 \mathrm{~mA} \end{aligned}$		0.8		\%
η	Efficiency	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{o}}=3.3 \mathrm{~V} ; \mathrm{I}_{0}=300 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{I}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{o}}=2.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{o}}=200 \mathrm{~mA} \\ & \hline \end{aligned}$	94			\%
	Start-up time	$\mathrm{l}_{\mathrm{o}}=0 \mathrm{~mA}$, time from active EN to Vo	0.4	1	4	ms
$\theta_{\text {JA }}$	Thermal Resistance Junction-to-Ambient	MSOP-10L (Note 7)		161		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {Jc }}$	Thermal Resistance Junction-to-Case	MSOP-10L (Note 7)		39		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes: 5. Power good is not valid for the first $100 \mu \mathrm{~s}$ after EN goes high. Please refer to the application section for more information.
6. The output voltage accuracy includes line and load regulation over the full temperature range.
7. Test condition for MSOP-10L: Device mounted on $2 o z$ copper, minimum recommended pad layout on top \& bottom layer with thermal vias, double sided FR-4 PCB

Typical Application Circuit

For best transient response we suggest that $R_{c c}, C_{c c}$ and $L 1$ values as below.

	$R_{C C}$	$C_{C C}$	L1-WURTH	$C 1, C 2(M L C C)$
$\mathrm{V}_{\text {IN }}<3.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}<2.5 \mathrm{~V}$	$200 \mathrm{~K} \Omega$	33 PF	$1.8 \mu \mathrm{H}$	$10 \mu \mathrm{~F}$
$\mathrm{~V}_{\operatorname{IN}} \geq 3.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}<2.5 \mathrm{~V}$	$68 \mathrm{~K} \Omega$	100 PF	$1.8 \mu \mathrm{H}$	$10 \mu \mathrm{~F}$
$\mathrm{~V}_{\text {IN }} \geq 3.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \geq 2.5 \mathrm{~V}$	$82 \mathrm{~K} \Omega$	100 PF	$3.3 \mu \mathrm{H}$	$10 \mu \mathrm{~F}$

(1) ADJ Output

(2) FIXED Output

Standard 5 V to 1.8/2.5/ 3.3V/ 800mA Conversion; High Efficiency

NOT RECOMMENDED FOR NEW DESIGN CONTACT US

AP6015
High Efficiency Step-Down Low Power DC-DC Converter

Typical Operating Characteristics

Figure 1

Figure 3

Figure 2

Figure 4

NOT RECOMMENDED FOR NEW DESIGN CONTACT US

Typical Operating Characteristics (Continued)

Figure 5

Figure 7

Figure 6

Figure 8

NOT RECOMMENDED FOR NEW DESIGN CONTACT US

Typical Operating Characteristics (Continued)

Figure 9

Figure 11

Figure 10

Figure 12

NOT RECOMMENDED FOR NEW DESIGN CONTACT US

AP6015
High Efficiency Step-Down Low Power DC-DC Converter

Typical Operating Characteristics (Continued)

Figure 13
Output Ripple

Time ($400 \mathrm{nS} / \mathrm{div}$)
Figure 15

Figure 14
Output Ripple

Time (400nSidiv)
Figure 16

NOT RECOMMENDED FOR NEW DESIGN CONTACT US
High Efficiency Step-Down Low Power DC-DC Converter

Typical Operating Characteristics (Continued)

Figure 17

Load Transient Response

Figure 18

Load Transient Response

Figure 20

Application Information

- Enable (EN)

When EN is on logic low, the AP6015 goes into shutdown mode. In shutdown, all other functions are turned off. The supply current is reduced to 1 uA (Typ.).

- Soft Start

As the enable pin goes high, the soft-start function generates an internal voltage ramp. This causes the start-up current to slowly raise preventing output voltage overshoot and high inrush currents. The soft-start duration is typical 1 mSec .

- Under Voltage Lock Out (UVLO)

The UVLO prevents the converter from turning on when the voltage on V_{cc} is less than typically 1.6 V .

NOT RECOMMENDED FOR NEW DESIGN CONTACT US

Application Information (Continued)

- Power Good (PG)

The PG comparator has an open drain output capable of sinking typically 10 mA . The $P G$ is only active when the AP6015 is enable ($\mathrm{EN}=\mathrm{high}$). When the AP6015 is disable ($\mathrm{EN}=\mathrm{l}=\mathrm{W}$), the PG pin is high impedance.
If the PG pin is connected to the output of the AP6015 with a pull-up resistor, no initial spike occurs and precautions have to be taken during start-up.
The PG pin becomes active high when the output voltage exceeds typically 92% of its nominal value. Leave the PG pin unconnected when not used.

Application Information (Continued)

- Inductor Selection

In order to avoid saturation of the inductor, the inductor should be rated at least for the maximum output current plus the inductor ripple current which is calculated as:
$\Delta I_{L}=V_{O} \times \frac{1-\left(\frac{V_{O}}{V_{C C}}\right)}{L \times f} \quad I_{L(M A X}=I_{O(M A X}+\frac{\Delta I_{L}}{2}$
Where:
$\mathrm{f}=$ Switching frequency (1 MHz typical)
$\mathrm{L}=$ Inductor value
$\triangle I_{L}=$ Peak-to-peak inductor ripple current
$I_{L}(\max)=$ Maximum inductor current

NOT RECOMMENDED FOR NEW DESIGN CONTACT US
High Efficiency Step-Down Low Power DC-DC Converter

Application Information (Continued)

- Input Capacitor Selection

Though there is no special requirement for the ESR (Equivalent Series Resistance) of the input capacitor, due attention should be paid to the tolerance and temperature coefficient of the capacitor used. A 10uF or larger capacitance is required between the PVCC and the GND pins. The input capacitor should be placed as close as possible to the PVCC pin in order to achieve good overall system performance.

- Output Capacitor Selection

Ripple at the voltage output pin is caused by the charge-and-discharge of the output capacitor. For the best performance, a low ESR output capacitor should be used. The equation below demonstrates how the size of the ripple can be calculated.
$\Delta V_{o}=V_{o} \times \frac{1-\left(\frac{V_{O}}{V_{C C}}\right)}{L \times f} \times\left(\frac{1}{8 \times C_{o} \times f}+E S R\right)=\Delta I_{L} \times\left(\frac{1}{8 \times C_{o} \times f}+E S R\right)$

Where:
$\triangle \mathrm{Vo}=$ Output voltage ripple
L = Inductor value
$f=$ Switching frequency (1 MHz typical)
$\triangle I_{L}=$ Peak-to-peak inductor ripple current

Application Information (Continued)

- Layout Considerations

A good board layout practice can significantly improve the stability of the application circuit and reduce the system noise. The feedback path must be as short as possible. The input capacitor and bypass capacitor must be placed close to the PVCC and the VCC pins for optimal performance. It is recommended that the ground planes for System Ground / Power Ground / Analog Ground are isolated from each others, while they should all be joined together at a common point. An example drawing of a circuit with good ground noise performance is shown below.

The external inductor must be placed as close as possible to the switching node, i.e. the LX pin. The copper traces on the pcb, where high peak switching current may flow through, should be kept 'wide' and 'short'. This results in low inductance and capacitance in the current path, hence ground shift problem is avoided and system stability stay within bound.

Marking Information
(Top View)

Package Information (All Dimensions in mm)

NOT RECOMMENDED FOR NEW DESIGN CONTACT US

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB MIC45116-1YMP-
T1 KE177614 MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 LTM8064IY LT8315EFE\#TRPBF NCV1077CSTBT3G DA9121-B0V76 LTC3644IY\#PBF LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3803ES6\#TR LTC3803ES6\#TRM LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUXCE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z LX7178-01CSP-TR MCP1642B-18IMC MCP1642D-ADJIMC MCP1642D-18IMC MCP1642D-30IMC MCP1665T-E/MRA MIC2876-4.75YMT-T5

