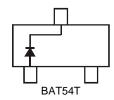
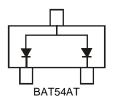


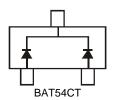
BAT54T/AT/CT/ST

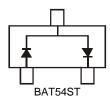
SURFACE MOUNT SCHOTTKY BARRIER DIODE

Features

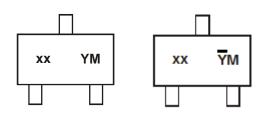

- Ultra-Small Surface Mount Package
- Low Forward Voltage Drop
- Fast Switching
- PN Junction Guard Ring for Transient and ESD Protection
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability


Mechanical Data


- Case: SOT523
- Case Material: Molded Plastic, "Green" Molding Compound.
 UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Annealed over Alloy 42 Leadframe.
 Solderable per MIL-STD-202, Method 208 (§3)
- Lead-Free Plating
- · Polarity: See Diagrams Below
- Weight: 0.002 grams (Approximate)



Top View


Ordering Information (Note 4)

Part Number	Case	Packaging
BAT54T-7-F	SOT523	3,000/Tape & Reel
BAT54AT-7-F	SOT523	3,000/Tape & Reel
BAT54CT-7-F	SOT523	3,000/Tape & Reel
BAT54ST-7-F	SOT523	3,000/Tape & Reel

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/

Marking Information

xx = Product Type Marking Code

L1 = BAT54T

L2 = BAT54AT

L3 = BAT54CT

L4 = BAT54ST

YM or $\overline{Y}M$ = Date Code Marking Y or \overline{Y} = Year (ex: F = 2018) M = Month (ex: 9 = September)

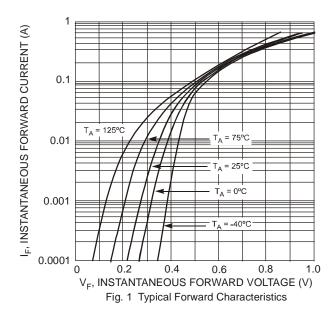
Date Code Key

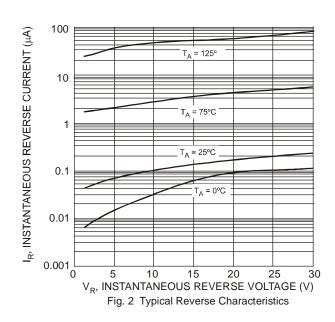
Year	2002		2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Code	N		В	С	D	Е	F	G	Н	I	J	K	L	M
Month	Jan	Feb	Ma	ar .	Apr	May	Jun	Jul	Aug	Se	p (Oct	Nov	Dec
Code	1	2	3		4	5	6	7	8	9		0	N	D

Maximum Ratings ($@T_A = +25^{\circ}C$, unless otherwise specified.)

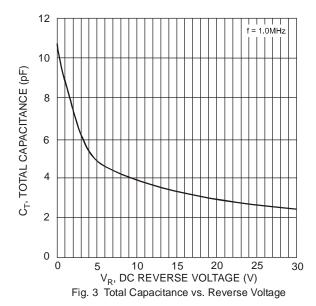
Characteristic	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	30	V
Forward Continuous Current (Note 5)	I _{FM}	200	mA
Repetitive Peak Forward Current	I _{FRM}	300	mA
Non-Repetitive Peak Forward Surge Current 8.3ms Single Half Sine-Wave Superimposed on Rated Load	I _{FSM}	600	mA

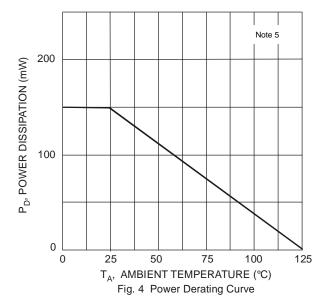
Thermal Characteristics

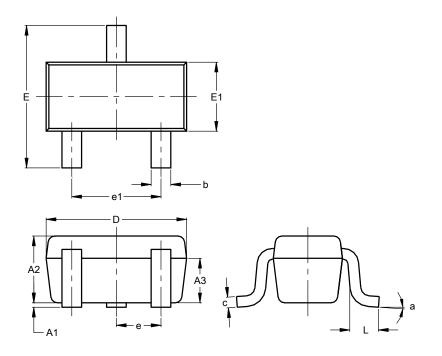

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 5)	P_{D}	150	mW
Typical Thermal Resistance, Junction to Ambient (Note 5)	$R_{\theta JA}$	490	°C/W
Operating and Storage Temperature Range	T _J , T _{STG}	-65 to +150	°C


Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Reverse Breakdown Voltage (Note 6)	$V_{(BR)R}$	30	_	_	V	$I_R = 100 \mu A$
Forward Voltage	V _F	_		240 320 400 500 1,000	mV	I _F = 0.1mA I _F = 1mA I _F = 10mA I _F = 30mA I _F = 100mA
Reverse Leakage Current (Note 6)	I_R	_	_	2.0	μΑ	V _R = 25V
Total Capacitance	C _T			10	pF	$V_R = 10V, f = 1.0MHz$
Reverse Recovery Time	t _{RR}	_	_	5.0	ns	$I_F = I_R = 10 \text{mA},$ $I_{RR} = 0.1 \text{ x } I_R, R_L = 100 \Omega$


Notes:


- 5. Device mounted on FR-4 substrate PC board with recommended pad layout, which can be found on our website at http://www.diodes.com/package-outlines.html.
- 6. Short duration pulse test used to minimize self-heating effect.



Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT523



	SOT523							
Dim	Min	Max	Тур					
A1	0.00	0.10	0.05					
A2	0.60	0.80	0.75					
А3	0.45	0.65	0.50					
b	0.15	0.30	0.22					
С	0.10	0.20	0.12					
D	1.50	1.70	1.60					
Е	1.45	1.75	1.60					
E1	0.75	0.85	0.80					
е	0.50 BSC							
e1	0.90	1.10	1.00					
L	0.20	0.40	0.33					
а	0°		8°					
Al	All Dimensions in mm							

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT523

Dimensions	Value (in mm)				
С	1.29				
Х	0.40				
X1	0.70				
Υ	0.51				
Y1	1.80				

Note: The suggested land pattern dimensions have been provided for reference only, as actual pad layouts may vary depending on application. These dimensions may be modified based on user equipment capability or fabrication criteria. A more robust pattern may be desired for wave soldering and is calculated by adding 0.2 mm to the 'Z' dimension. For further information, please reference document IPC-7351A, Naming Convention for Standard SMT Land Patterns, and for International grid details, please see document IEC, Publication 97.

Note: For high voltage applications, the appropriate industry sector guidelines should be considered with regards to creepage and clearance distances between device Terminals and PCB tracking.

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2018, Diodes Incorporated

www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Schottky Diodes & Rectifiers category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below:

CUS06(TE85L,Q,M) MA4E2039 D1FH3-5063 MBR0530L-TP MBR10100CT-BP MBR30H100MFST1G MMBD301M3T5G PMAD1103-LF PMAD1108-LF RB160M-50TR RB520S-30 RB551V-30 DD350N18K DZ435N40K DZ600N16K BAS16E6433HTMA1 BAS 3010S-02LRH E6327 BAT 54-02LRH E6327 IDL02G65C5XUMA1 NSR05F40QNXT5G NSVR05F40NXT5G JANS1N6640 SB07-03C-TB-H SB1003M3-TL-W SBAT54CWT1G SBM30-03-TR-E SBS818-TL-E SK32A-LTP SK33A-TP SK34A-TP SK34B-TP SMD1200PL-TP ACDBN160-HF SS3003CH-TL-E STPS30S45CW PDS3100Q-7 GA01SHT18 CRS10I30A(TE85L,QM MBR1240MFST1G MBRB30H30CT-1G BAS28E6433HTMA1 BAS 70-02L E6327 HSB123JTR-E JANTX1N5712-1 VS-STPS40L45CW-N3 DD350N12K SB007-03C-TB-E SB10015M-TL-E SB1003M3-TL-E SK110-LTP