BAV5004W
HIGH VOLTAGE SWITCHING DIODE

Features

- Fast Switching Speed: 50ns Maximum
- 400 V High Reverse Breakdown Voltage Rating
- Low Capacitance: 2.5pF Maximum
- Surface Mount Package Ideally Suited for Automated Insertion
- Totally Lead-Free \& Fully RoHS Compliant (Notes 1 \& 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability

Mechanical Data

- Case: SOD123
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Matte Tin Finish Annealed Over Alloy 42 Leadframe. Lead Free Plating. Solderable per MIL-STD-202, Method 208 ©3)
- Weight: 0.01 grams (Approximate)

Top View

Ordering Information (Note 4)

Product	Compliance	Marking	Reel Size (inches)	Tape Width (mm)	Quantity per Reel
BAV5004W-7	AEC-Q101	LY	7	8	$3,000 /$ Tape \& Reel

Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) \& 2011/65/EU (RoHS 2) compliant.
2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and <1000ppm antimony compounds.
4. For packaging details, go to our website at http://www.diodes.com/products/packages.html.

Marking Information

Year	2013	2014		2015	2016		2017		2018	2019		2020
Code	A		B	C		D	E		F	G		H
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	O	N	D

BAV5004W

Maximum Ratings $\left(@ T_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Repetitive Peak Reverse Voltage	$\mathrm{V}_{\text {RRM }}$	400	V
Working Peak Reverse Voltage	$\mathrm{V}_{\text {RWM }}$		
DC Blocking Voltage	V_{R}	350	V
RMS Reverse Voltage	$\mathrm{V}_{\mathrm{R}(\mathrm{RMS})}$	247	V
Forward Continuous Current (Note 5)	$\mathrm{I}_{\text {FM }}$	300	mA
Peak Repetitive Forward Current (Note 5)	$\mathrm{I}_{\text {FRM }}$	625	mA
Non-Repetitive Peak Forward Surge Current	$@ \mathrm{t}=1.0 \mu \mathrm{~s}$		
	$\mathrm{I}=0.1 \mathrm{~ms}$	$\mathrm{I}_{\text {FSM }}$	5.0

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 5) (See Figure 1)	P_{D}	300	mW
Thermal Resistance Junction to Ambient Air (Note 5)	$\mathrm{R}_{\text {JJA }}$	417	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Electrical Characteristics ($@ T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

Characteristic	Symbol	Min	Typ	Max	Unit	Test Condition
Reverse Breakdown Voltage (Note 6)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{R}}$	400	-	-	V	$\mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}$
Forward Voltage	V_{F}	-	-	$\begin{aligned} & 0.93 \\ & 1.09 \\ & 1.29 \end{aligned}$	V	$\begin{aligned} & I_{F}=20 \mathrm{~mA} \\ & I_{F}=100 \mathrm{~mA} \\ & I_{F}=200 \mathrm{~mA} \end{aligned}$
Reverse Current (Note 6)	IR	-		$\begin{gathered} 1 \\ 100 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{R}=240 \mathrm{~V} \\ & V_{R}=240 \mathrm{~V}, T_{J}=+150^{\circ} \mathrm{C} \end{aligned}$
Total Capacitance	$\mathrm{C}_{\text {T }}$	-	0.9	2.5	pF	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$
Reverse Recovery Time	$t_{\text {rr }}$	-	-	50	ns	$\begin{aligned} & I_{F}=I_{R}=30 \mathrm{~mA}, \\ & I_{r r}=3.0 \mathrm{~mA}, R_{L}=100 \Omega \end{aligned}$

Notes: 5. Part mounted on FR-4 board with recommended pad layout, which can be found on our website at http://www.diodes.com. 6. Short duration pulse test used to minimize self-heating effect.

Fig. 1 Power Derating Curve

Fig. 2 Typical Forward Characteristics

BAV5004W

Fig. 4 Typical Total Capacitance vs. Reverse Voltage

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOD123			
Dim	Min	Max	Typ
A	1.00	1.35	1.05
A1	0.00	0.10	0.05
b	0.52	0.62	0.57
c	0.10	0.15	0.11
D	1.40	1.70	1.55
E	2.55	2.85	2.65
He	3.55	3.85	3.65
\mathbf{L}	0.25	0.40	0.30
\mathbf{a}	0°	$\mathbf{B}^{\mathbf{o}}$	--
All Dimensions in $\mathbf{~ m m}$			

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

Dimensions	Value (in mm)
\mathbf{X}	0.900
$\mathbf{X 1}$	4.050
\mathbf{Y}	0.950

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2017, Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Diodes - General Purpose, Power, Switching category:
Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :
RD0306T-H BAQ33-GS18 BAV17-TR BAV19-TR 1SS181-TP 1SS193,LF 1SS400CST2RA SDAA13 SHN2D02FUTW1T1G
LS4151GS08 1N4449 1N456A 1N4934-E3/73 1N914B 1N914BTR RFUH20TB3S BAS 28 E6327 BAV199-TP BAW56DWQ-7-F
BAW75-TAP MM230L-CAA IDW40E65D1 LL4151-GS18 053684A SMMSD4148T3G 707803H SP000010217 ACDSW4448-HF CDSZC01100-HF BAV199E6433HTMA1 BAV70M3T5G SMBT2001T1G DLM10C-AT1 BAS28-7 BAW56HDW-13 BAS28 TR VS-HFA04SD60STR-M3 NSVM1MA152WKT1G BAV99TQ-13-F BAS21DWA-7 P600K MMDB30-E28X VS-HFA04SD60SL-M3 LS4148 IDV15E65D2 NSVM1MA152WAT1G JANTXV1N4454-1 S5AC S1B S1D

