Lead-free Green

Features

- Epitaxial Planar Die Construction
- Complementary NPN Type Available (DCX54)
- Ideally Suited for Automated Assembly Processes
- Ideal for Medium Power Switching or Amplification Applications
- Lead Free By Design/RoHS Compliant (Note 1)
- "Green" Device (Note 2)

Mechanical Data

- Case: SOT89-3L
- Case Material: Molded Plastic, "Green" Molding Compound.

UL Flammability Classification Rating 94V-0

- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminals: Finish - Matte Tin annealed over Copper leadframe (Lead Free Plating). Solderable per MIL-STD-202, Method 208
- Marking \& Type Code Information: See Page 3
- Ordering Information: See Page 3
- Weight: 0.072 grams (approximate)

SOT89-3L

TOP VIEW

Schematic and Pin Configuration

Maximum Ratings $@ T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	-45	V
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	-45	V
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	-5	V
Peak Pulse Current	I_{CM}	-1.5	A
Continuous Collector Current	I_{C}	-1	A

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 3) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	1	W
Thermal Resistance, Junction to Ambient Air @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad$ (Note 3)	$\mathrm{R}_{\theta \mathrm{JJA}}$	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{j},} \mathrm{T}_{\mathrm{STG}}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $@ T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Characteristic	Symbol	Min	Typ	Max	Unit	Test Conditions
OFF CHARACTERISTICS (Note 4)						
Collector-Base Breakdown Voltage	$\mathrm{V}_{\text {(BR) }}$ CBO	-45	-	-	V	$\mathrm{IC}^{\text {c }}=-100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0 \mathrm{~A}$
Collector-Emitter Breakdown Voltage	$\mathrm{V}_{\text {(BR)CEO }}$	-45	-	-	V	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0 \mathrm{~A}$
Emitter-Base Breakdown Voltage	$\mathrm{V}_{(\mathrm{BR})}$	-5	-	-	V	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0 \mathrm{~A}$
Collector Cut-off Current	Icbo		-	$\begin{gathered} -100 \\ -20 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{C B}=-30 V, I_{E}=0 \\ & V_{C B}=-30 \mathrm{~V}, I_{E}=0, T_{A}=150^{\circ} \mathrm{C} \end{aligned}$
Emitter Cut-off Current	Iebo	-	-	-100	nA	$\mathrm{V}_{\mathrm{EB}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0 \mathrm{~A}$
ON CHARACTERISTICS (Note 4)						
Collector-Emitter Saturation Voltage	$\mathrm{V}_{\text {CES (SAT) }}$	-	-	-0.5	V	$\mathrm{IC}=-500 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-50 \mathrm{~mA}$
Base-Emitter Turn-On Voltage	$\mathrm{V}_{\text {be(}}(\mathrm{N})$	-	-	-1.0	V	$\mathrm{I}_{\mathrm{C}}=-500 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-2 \mathrm{~V}$
$*$ DCX51, DCX51-16	$h_{\text {FE }}$	$\begin{aligned} & \hline 63 \\ & 40 \end{aligned}$	-	-	-	$\begin{aligned} & \mathrm{IC}_{\mathrm{C}}=-5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-2 \mathrm{~V} \\ & \mathrm{IC}_{\mathrm{C}}=-500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-2 \mathrm{~V} \end{aligned}$
DC Current Gain		63	-	250	-	$\mathrm{I}_{\mathrm{C}}=-150 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-2 \mathrm{~V}$
		100	-	250	-	$\mathrm{IC}=-150 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-2 \mathrm{~V}$
SMALL SIGNAL CHARACTERISTICS						
Current Gain-Bandwidth Product	f_{T}	-	200	-	MHz	$\begin{aligned} & \text { IC }=-50 \mathrm{~mA}, V_{C E}=-5 \mathrm{~V}, \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$
Output Capacitance	$\mathrm{C}_{\text {obo }}$	-	-	25	pF	$\mathrm{V}_{\mathrm{CB}}=-10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$

Notes: 1. No purposefully added lead.
2. Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.
3. Device mounted on FR-4 PCB; pad layout as shown on page 4 or in Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.
4. Measured under pulsed conditions. Pulse width $=300 \mu \mathrm{~s}$. Duty cycle $\leq 2 \%$.

Fig. 1 Power Dissipation vs. Ambient Temperature (Note 3)

Fig. 3 Typical DC Current Gain vs. Collector Current

Fig 5. Typical Base-Emitter Turn-On Voltage vs. Collector Current

Fig. 2 Typical Collector Current vs. Collector-Emitter Voltage

Fig. 4 Typical Collector-Emitter Saturation Voltage vs. Collector Current

Fig. 6 Typical Base-Emitter Saturation Voltage vs. Collector Current

Fig. 7 Typical Capacitance Characteristics

Fig. 8 Typical Gain-Bandwidth Product vs. Collector Current

Ordering Information (Note 5)

Device	Packaging	Shipping
DCX51-13	SOT89-3L	$2500 /$ Tape \& Reel
DCX51-16-13	SOT89-3L	$2500 /$ Tape \& Reel

Notes: 5. For packaging details, go to our website at http://www.diodes.com/ap02007.pdf.

Marking Information

Package Outline Dimensions

SOT89-3L			
Dim	Min	Max	Typ
A	1.40	1.60	1.50
B	0.45	0.55	0.50
B1	0.37	0.47	0.42
C	0.35	0.43	0.38
D	4.40	4.60	4.50
D1	1.50	1.70	1.60
E	2.40	2.60	2.50
e	-	-	1.50
H	3.95	4.25	4.10
L	0.90	1.20	1.05
All Dimensions in $\mathbf{~ m m}$			

Suggested Pad Layout

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shal assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - Pre-Biased category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
RN1607(TE85L,F) DTA124GKAT146 DTA144WETL DTA144WKAT146 DTC113EET1G DTC115TETL DTC115TKAT146 DTC124TETL DTC144ECA-TP DTC144VUAT106 MUN5241T1G NSBA114TDP6T5G NSBA143ZF3T5G NSBC114YF3T5G NSBC123TF3T5G SMUN5330DW1T1G SSVMUN5312DW1T2G RN1303(TE85L,F) RN4605(TE85L,F) TTEPROTOTYPE79 DDTC114EUAQ-7-F EMH15T2R SMUN2214T3G NSBC114TF3T5G NSBC143ZPDP6T5G NSVMUN5113DW1T3G SMUN5230DW1T1G SMUN5133T1G SMUN2214T1G DTC114EUA-TP NSBA144EF3T5G NSVDTA114EET1G 2SC2223-T1B-A 2SC3912-TB-E SMUN5237DW1T1G SMUN5213DW1T1G SMUN5114DW1T1G SMUN2111T1G NSVDTC144EM3T5G DTC124ECATP DTC123TM3T5G DTA114ECA-TP DTA113EM3T5G DCX115EK-7-F DTC113EM3T5G NSVMUN5135DW1T1G $\underline{\text { NSVDTC143ZM3T5G SMUN5216DW1T1G NSVMUN5312DW1T2G NSVMUN5215DW1T1G }}$

