Features

- Epitaxial Planar Die Construction
- Complementary NPN Types Available (DDTC)
- Built-In Biasing Resistors, R1 = R2
- Totally Lead-Free \& Fully RoHS Compliant (Notes 1 \& 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability
- PPAP Capable (Note 4)

Mechanical Data

- Case: SOT23
- Case Material: Molded Plastic, "Green" Molding Compound UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish - Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 e3)
- Weight: 0.008 grams (Approximate)

Part Number	R1, R2 (NOM)
DDTA123ECA	$2.2 \mathrm{k} \Omega$
DDTA143ECA	$4.7 \mathrm{k} \Omega$
DDTA114ECA	$10 \mathrm{k} \Omega$
DDTA124ECA	$22 \mathrm{k} \Omega$
DDTA144ECA	$47 \mathrm{k} \Omega$
DDTA115ECA	$100 \mathrm{k} \Omega$

Top View

Device Schematic

Equivalent Inverter Circuit

Ordering Information (Notes 4,5 \& 6)

Part Number	Status	Compliance	Marking	Reel Size (inches)	Tape Width (mm)	Quantity Per Reel
DDTA123ECA-7-F	Active	AEC-Q101	P04	7	8	3,000
DDTA143ECA-7-F	Active	AEC-Q101	P08	7	8	3,000
DDTA114ECA-7-F	Active	AEC-Q101	P13	7	8	3,000
DDTA114ECAQ-7-F	NRND (Use ADTA114ECAQ)	Automotive	P13	7	8	3,000
DDTA114ECAQ-13-F	NRND (Use ADTA114ECAQ)	Automotive	P13	13	8	10,000
DDTA124ECA-7-F	Active	AEC-Q101	P17	7	8	3,000
DDTA144ECA-7-F	Active	AEC-Q101	P20	7	8	3,000
DDTA144ECAQ-13-F	NRND (Use ADTA144ECAQ)	Automotive	P20	13	8	10,000
DDTA115ECA-7-F	Active	AEC-Q101	P24	7	8	3,000

Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and <1000ppm antimony compounds.
4. Automotive products are AEC-Q101 qualified and are PPAP capable. Automotive, AEC-Q101 and standard products are electrically and thermally the same, except where specified. For more information, please refer to https://www.diodes.com/quality/.
5. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.
6. NRND = Not Recommended for New Design.

Marking Information

Absolute Maximum Ratings (@T $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless othervise specified.)

Characteristic		Symbol	Value	Unit
Supply Voltage <Pin: (3) to (2)>		$V_{C C}$	-50	V
Input Voltage <Pin: (1) to (2)>	DDTA123ECA DDTA143ECA DDTA114ECA DDTA124ECA DDTA144ECA DDTA115ECA	$\mathrm{V}_{\text {IN }}$	$\begin{aligned} & +10 \text { to }-12 \\ & +10 \text { to }-30 \\ & +10 \text { to }-40 \end{aligned}$	V
Output Current	DDTA123ECA DDTA143ECA DDTA114ECA DDTA124ECA DDTA144ECA DDTA115ECA	lo	$\begin{aligned} & \hline-100 \\ & -100 \\ & -50 \\ & -30 \\ & -30 \\ & -20 \\ & \hline \end{aligned}$	mA
Output Current		IC (Max)	-100	mA

Thermal Characteristics ($@_{A}=+25^{\circ} \mathrm{C}$, unless othemise specified.)

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 7)	P_{D}	200	mW
Thermal Resistance, Junction to Ambient Air (Note 7)	$\mathrm{R}_{\text {JJA }}$	625	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{J},}, \mathrm{T}_{\mathrm{STG}}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Notes: 7. Mounted on FR-4 PC Board with minimum recommended pad layout.

Electrical Characteristics ($@ \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

Characteristic		Symbol	Min	Typ	Max	Unit	Test Condition
Input Voltage		$\mathrm{V}_{\text {I(off) }}$	-0.5	-1.1	-		$\mathrm{V}_{C C}=-5 \mathrm{~V}, \mathrm{I}_{0}=-100 \mu \mathrm{~A}$
		$V_{\text {I(on) }}$	-	-1.9	-3	V	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=-0.3 \mathrm{~V}, \mathrm{I}=-20 \mathrm{~mA}, \text { DDTA123ECA } \\ & \mathrm{V}_{\mathrm{O}}=-0.3 \mathrm{~V}, \mathrm{I}=-20 \mathrm{~mA}, \text { DDTA143ECA } \\ & \mathrm{V}_{\mathrm{O}}=-0.3 \mathrm{~V}, \mathrm{I}=-10 \mathrm{~mA}, \text { DDTA114ECA } \\ & \mathrm{V}_{\mathrm{O}}=-0.3 \mathrm{~V}, \mathrm{I}=-5 \mathrm{~mA}, \text { DDTA124ECA } \\ & \mathrm{V}_{\mathrm{O}}=-0.3 \mathrm{~V}, \mathrm{I}=-2 \mathrm{~mA}, \text { DDTA144ECA } \\ & \mathrm{V}_{\mathrm{O}}=-0.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-1 \mathrm{~mA}, \text { DDTA115ECA } \end{aligned}$
Output Voltage		$\mathrm{V}_{\text {O(on) }}$	-	-0.1	-0.3	V	$\mathrm{I} / \mathrm{I}_{\mathrm{I}}=-10 \mathrm{~mA} /-0.5 \mathrm{~mA}$, DDTA123ECA $\mathrm{I} / \mathrm{l}=-10 \mathrm{~mA} /-0.5 \mathrm{~mA}$, DDTA143ECA $\mathrm{I} / \mathrm{I}=-10 \mathrm{~mA} /-0.5 \mathrm{~mA}$, DDTA114ECA $\mathrm{Io} / \mathrm{I}=-10 \mathrm{~mA} /-0.5 \mathrm{~mA}$, DDTA124ECA $\mathrm{I} / \mathrm{I}=-10 \mathrm{~mA} /-0.5 \mathrm{~mA}$, DDTA144ECA $\mathrm{I} / \mathrm{I}_{\mathrm{I}}=-5 \mathrm{~mA} /-0.25 \mathrm{~mA}$, DDTA115ECA
Input Current	DDTA123ECA DDTA143ECA DDTA114ECA DDTA124ECA DDTA144ECA DDTA115ECA	1	-	-	$\begin{aligned} & \hline-3.8 \\ & -1.8 \\ & -0.88 \\ & -0.36 \\ & -0.18 \\ & -0.15 \end{aligned}$	mA	$\mathrm{V}_{1}=-5 \mathrm{~V}$
Output Current		$\mathrm{I}_{(\text {(off) }}$	-	-	-0.5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=-50 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$
DC Current Gain	DDTA123ECA DDTA143ECA DDTA114ECA DDTA124ECA DDTA144ECA DDTA115ECA	G\|	$\begin{aligned} & 20 \\ & 20 \\ & 30 \\ & 56 \\ & 68 \\ & 82 \end{aligned}$	-	-	-	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{O}}=-5 \mathrm{~V}, \mathrm{I}=-20 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{O}}=-5 \mathrm{~V}, \mathrm{I}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{O}}=-5 \mathrm{~V}, \mathrm{I}=-5 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{O}}=-5 \mathrm{~V}, \mathrm{I}=-5 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{O}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{O}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA} \end{aligned}$
Input Resistor Tolerance		$\Delta \mathrm{R}_{1}$	-30	-	+30	\%	-
Resistance Ratio Tolerance		$\Delta \mathrm{R}_{2} / \mathrm{R}_{1}$	0.8	1	1.2	\%	-
Gain-Bandwidth Product (Note 8)		f_{\top}	-	250	-	MHz	$\begin{aligned} & V_{\text {CE }}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=-5 \mathrm{~mA}, \\ & f=100 \mathrm{MHz} \end{aligned}$

Note: 8. Transistor - For Reference Only

DDTA (R1 = R2 SERIES) CA

Typical Characteristics - DDTA143ECA $\left(\mathrm{C}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified.)

Fig. 1 Derating Curve

I_{C}, COLLECTOR CURRENT (mA)
Fig. 3 DC Current Gain

Fig. 5 Collector Current vs. Input Voltage

Fig. $2 \mathrm{~V}_{\mathrm{CE}(\text { SAT }}$ vs. I_{C}

Fig. 4 Output Capacitance

Fig. 6 Input Voltage vs. Collector Current

DDTA (R1 = R2 SERIES) CA

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT23

SOT23			
Dim	Min	Max	Typ
A	0.37	0.51	0.40
B	1.20	1.40	1.30
C	2.30	2.50	2.40
D	0.89	1.03	0.915
F	0.45	0.60	0.535
G	1.78	2.05	1.83
H	2.80	3.00	2.90
J	0.013	0.10	0.05
K	0.890	1.00	0.975
K1	0.903	1.10	1.025
L	0.45	0.61	0.55
L1	0.25	0.55	0.40
M	0.085	0.150	0.110
a	0°	8°	--
All Dimensions in mm			

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT23

Dimensions	Value (in mm)
\mathbf{C}	2.0
\mathbf{X}	0.8
$\mathbf{X 1}$	1.35
\mathbf{Y}	0.9
$\mathbf{Y 1}$	2.9

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2018, Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - Pre-Biased category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
DRC9A14E0L DTA124GKAT146 DTA144WETL DTA144WKAT146 DTC113EET1G DTC115TETL DTC115TKAT146 DTC144VUAT106 MUN5241T1G BCR158WH6327XTSA1 NSBA114TDP6T5G SMUN5330DW1T1G SSVMUN5312DW1T2G RN1303(TE85L,F) RN1306(TE85L,F) EMH15T2R SMUN2214T3G SMUN5335DW1T1G NSBC143ZPDP6T5G NSVDTA143ZET1G SMUN2214T1G FMA7AT148 DTC114EUA-TP SMUN5237DW1T1G SMUN5213DW1T1G SMUN5114DW1T1G SMUN2111T1G DTC124ECA-TP DTA114ECA-TP DTC113EM3T5G NSVMUN5135DW1T1G NSVMUN2237T1G NSVDTC143ZM3T5G SMUN5335DW1T2G SMUN5216DW1T1G NSVMUN5316DW1T1G NSVMUN5215DW1T1G NSVMUN5213DW1T3G NSVMUN2112T1G NSVIMD10AMT1G NSVEMC2DXV5T1G NSVDTC144WET1G NSVDTC123JET1G NSVDTA143EM3T5G NSVB1706DMW5T1G NSBC143EDP6T5G RN2101,LF(CT NSBA144WDXV6T1G DTA115TET1G NSBC115TDP6T5G

