

DGD21844

HALF- BRIDGE GATE DRIVER IN SO-14

Description

The DGD21844 is a high voltage / high speed gate driver capable of driving N-Channel MOSFETs and IGBTs in a half bridge configuration. High voltage processing techniques enable the DGD21844's high-side to switch to 600V in a bootstrap operation.

The DGD21844 logic inputs are compatible with standard TTL and CMOS levels (down to 3.3V) for easy interfacing with controlling devices. The driver outputs feature high pulse current buffers designed for minimum driver cross conduction. Programmable Deadtime, by an external resistor, provides more system level flexibility.

The DGD21844 is offered in SO-14 package, the operating temperature extends from -40 $^{\circ}$ C to +125 $^{\circ}$ C.

Applications

- DC-DC Converters
- DC-AC Inverters
- AC-DC Power Supplies
- Motor Controls
- Class D Power Amplifiers

V_{CC} V_{CC} V_{CC} V_B TO LOAD SD' DGD21844 DT Typical Configuration

Features

- Floating High-side Driver in Bootstrap Operation to 600V
- Drives Two N-Channel MOSFETs or IGBTs in Half Bridge Configuration
- 1.4A Source / 1.8A Sink Output Current Capability
- Outputs Tolerant to Negative Transients
- Programmable Dead Time to Protect MOSFETs
- Wide Low-side Gate Driver and Logic Supply: 10V to 20V
- Wide Logic Supply Voltage Offset Voltage:-5V to 5V
- Logic Input (IN and SD*) 3.3V Capability
- Schmitt Triggered Logic Inputs with Internal Pull Down
- Undervoltage Lockout for High and Low Side Drivers
- Extended Temperature Range: -40°C to +125°C
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/

Mechanical Data

- Case: SO-14 (Type TH)
- Case material: Molded Plastic. "Green" Molding Compound.
- UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 3 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 (§3)
- Weight: 0.142 grams (Approximate)

Top View

Ordering Information (Note 4)

Part Number	Marking	Reel Size (inches)	Tape Width (mm)	Quantity per Reel
DGD21844S14-13	DGD21844	13	16	2,500

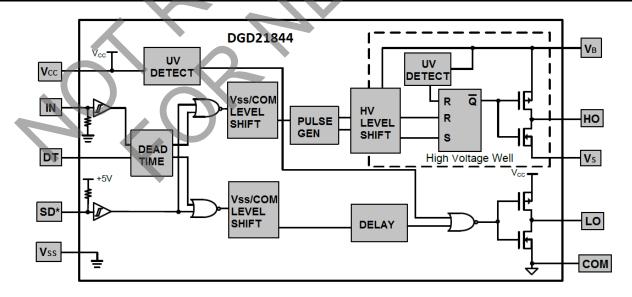
Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

Marking Information

Oll = Manufacturer's marking
DGD21844 = Product Type Marking Code
YY = Year (ex: 19 = 2019)
WW = Week (01 to 53)

Pin Diagrams



Top View SO-14

Pin Descriptions

Pin Number	Pin Name	Function
1	IN	Logic input for high-side and low-side gate driver outputs (HO and LO), in phase with HO (referenced to Vss)
2	SD*	Logic input for shutdown (referenced to Vss), enabled low
3	Vss	Logic ground
4	DT	Programmable Deadtime lead, referenced to Vss
5	COM	Low-side return
6	LO	Low-side gate drive output
7	Vcc	Low-side and logic fixed supply
8,9,10,14	NC	No Connect (No Internal Connection)
11	Vs	High-side floating supply return
12	НО	High-side gate drive output
13	Vв	High-side floating supply

Functional Block Diagram

DGD21844

Absolute Maximum Ratings (@TA = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
High-Side Floating Supply Voltage	V _B	-0.3 to +624	V
High-Side Floating Supply Offset Voltage	Vs	V _B -24 to V _B +0.3	V
High-Side Floating Output Voltage	Vно	Vs-0.3 to V _B +0.3	V
Offset Supply Voltage Transient	dVs / dt	50	V/ns
Programmable Dead Time Pin Voltage	V_{DT}	V _{SS} -0.3 to V _{CC} +0.3	V
Logic and Low-Side Fixed Supply Voltage	Vcc	-0.3 to +24	V
Low-Side Output Voltage	VLO	-0.3 to Vcc+0.3	V
Logic Supply Offset Voltage	Vss	Vcc-24 to Vcc+0.3	V
Logic Input Voltage (IN and SD*)	VIN	Vss-0.3 to Vcc+0.3	V

Thermal Characteristics (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Power Dissipation Linear Derating Factor (Note 5)	P _D	1.0	W
Thermal Resistance, Junction to Ambient (Note 5)	Reja	120	°C/W
Operating Temperature	TJ	+150	
Lead Temperature (Soldering, 10s)	TL	+300	°C
Storage Temperature Range	Tstg	-55 to +150	

Note: 5. When mounted on a standard JEDEC 2-layer FR-4 board.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
High-Side Floating Supply Absolute Voltage	Vв	Vs + 10	Vs + 20	V
High-Side Floating Supply Offset Voltage	Vs	(Note 6)	600	V
High-Side Floating Output Voltage	V _{НО}	Vs	V _B	V
Logic and Low-Side Fixed Supply Voltage	Vcc	10	20	V
Low-Side Output Voltage	VLO	0	Vcc	V
Logic Input Voltage (IN and SD*)	VIN	Vss	5	V
Programmable Dead Time Pin Voltage	VpT	Vss	Vcc	V
Logic Ground	Vss	-5	5	V
Ambient Temperature	T _A	-40	+125	°C

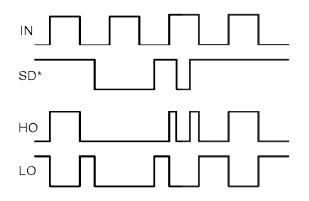
Note: 6. Logic operation for $V_S = -5V$ to +600V.

DGD21844

DC Electrical Characteristics (V_{BIAS} (V_{CC}, V_{BS}) = 15V, V_{SS} = COM, @T_A = +25°C, unless otherwise specified.) (Note 7)

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Logic "1" Input Voltage for HO & Logic "0" for LO (Note 8)	VIH	2.5	-	-	V	V _{CC} = 10V to 20V
Logic "0" Input Voltage for HO & Logic "1" for LO (Note 8)	VIL	-	_	0.8	V	V _{CC} = 10V to 20V
SD* Input Positive Going Threshold	Vspth+	2.5	-	-	V	Vcc = 10V to 20V
SD* Input Negative Going Threshold	V_{SDTH}	_	-	0.8	V	V _{CC} = 10V to 20V
High Level Output Voltage, VBIAS - VO	Voн	_	-	1.4	V	$I_0 = 0mA$
Low Level Output Voltage, Vo	Vol	_	-	0.2	V	Io = 20mA
Offset Supply Leakage Current	ILK	_	-	50	μA	$V_B = V_S = 600V$
Quiescent V _{BS} Supply Current	IBSQ	20	60	150	μΑ	VIN = 0V or 5V
Quiescent Vcc Supply Current	Iccq	0.4	1.0	1.8	mA	VIN = 0V or 5V
Logic "1" Input Bias Current	I _{IN+}	_	25	60	μA	$IN = 5V, SD^* = 0V$
Logic "0" Input Bias Current	I _{IN} -	_	_	1.0	μA	$IN = 0V, SD^* = 5V$
V _{BS} Supply Under-Voltage Positive Going Threshold	V _{BSUV+}	8.0	8.9	9.8	V	_
Vas Supply Under-Voltage Negative Going Threshold	V _{BSUV} -	7.4	8.2	9.0	V	_
Vcc Supply Under-Voltage Positive Going Threshold	Vccuv+	8.0	8.9	9.8	V	-
V _{CC} Supply Under-Voltage Negative Going Threshold	Vccuv-	7.4	8.2	9.0	V	1
Output High Short Circuit Pulsed Current	lo+	1.4	1.9	-	A	Vo = 0V, PW ≤ 10µs
Output Low Short Circuit Pulsed Current	lo-	1.7	2.3	_	A	Vo = 15V, PW ≤ 10µs

Notes:


- 7. The V_{IN} and I_{IN} parameters are referenced to V_{SS} and are applicable to the two logic input pins: IN and SD*. The V_O and I_O parameters are referenced to COM and are applicable to the respective output pins: HO and LO.
- 8. For optimal operation, it is recommended that the input pulses (IN and SD*) should have a minimum amplitude of 2.5V with a minimum pulse width of 2 x Deadtime (t_{DT}).

AC Electrical Characteristics (V_{BIAS} (V_{CC}, V_{BS}) = 15V, V_{SS} = COM, C_L = 1000pF, @T_A = +25°C, unless otherwise specified.)

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Turn-On Propagation Delay	ton	-	680	900	ns	Vs = 0V
Turn-Off Propagation Delay	toff		270	400	ns	Vs = 0V or 600V
Shut-Down Propagation Delay	tsp	-	180	270	ns	_
Delay Matching, HO & LO Turn-On	tomon	-	_	90	ns	_
Delay Matching, HO & LO Turn-Off	tomoff		-	40	ns	_
Turn-On Rise Time	tR	_	40	60	ns	Vs = 0V
Turn-Off Fall Time	tr	-	20	35	ns	Vs = 0V
Deadtime: tpt Lo-Ho & tpt Ho-Lo	tor	280	400	520	ns	$R_{DT} = 0\Omega$
Deadtime. to Lo-HO & to FHO-LO		4	5	6	μs	$R_{DT} = 200k\Omega$
Dogtima Matching - tox - o via tox - o	4	_	0	50	ns	$R_{DT} = 0\Omega$
Deatime Matching = tot Lo-Ho - tot Ho-Lo	tMDT	_	0	600	ns	$R_{DT} = 200k\Omega$

Timing Waveforms

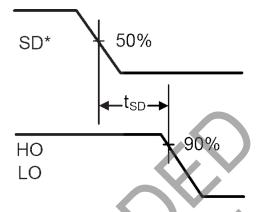
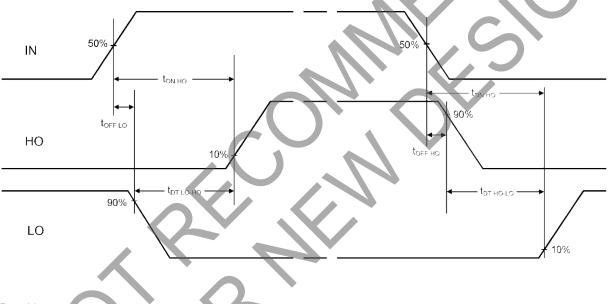



Figure 1. Input / Output Timing Diagram

Figure 2. Shutdown Waveform Definitions

Deadtime $t_{DT LO-HO} = t_{ON HO} - t_{OFF LO}$ $t_{DT HO-LO} = t_{ON LO} - t_{OFF HO}$

Deadtime matching $t_{\text{MDT}} = t_{\text{DT LO-HO}} - t_{\text{DT HO-LO}}$

Delay matching $t_{\text{DM OFF}} = t_{\text{OFF LO}} - t_{\text{OFFT HO}}$

Figure 3. Switching Time Waveform Definitions

Typical Performance Characteristics (Vcc=15V, @TA = +25°C, unless otherwise specified.)

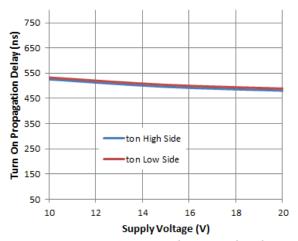


Figure 4. Turn-on Propagation Delay vs. Supply Voltage

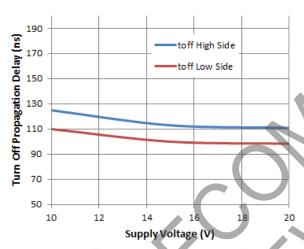


Figure 6. Turn-off Propagation Delay vs. Supply Voltage

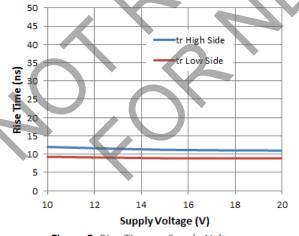


Figure 8. Rise Time vs. Supply Voltage

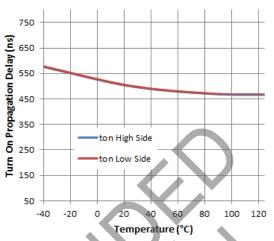


Figure 5. Turn-on Propagation Delay vs. Temperature

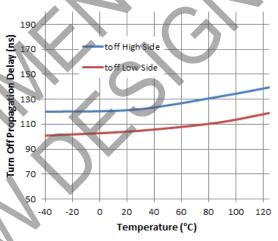


Figure 7. Turn-off Propagation Delay vs. Temperature

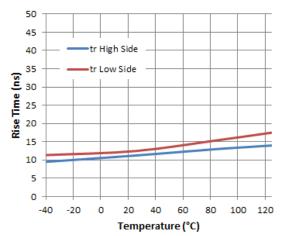


Figure 9. Rise Time vs. Temperature

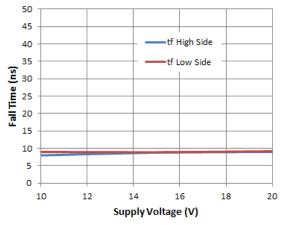


Figure 10. Fall Time vs. Supply Voltage

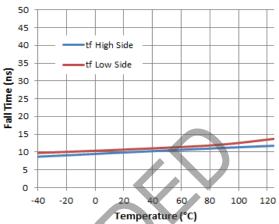


Figure 11. Fall Time vs. Temperature

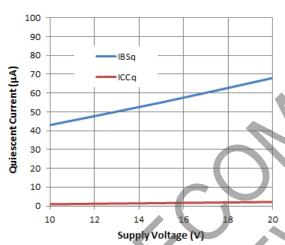


Figure 12. Quiescent Current vs. Supply Voltage

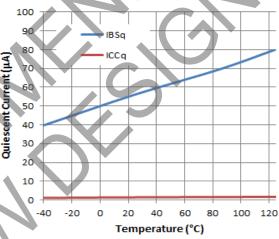


Figure 13. Quiescent Current vs. Temperature

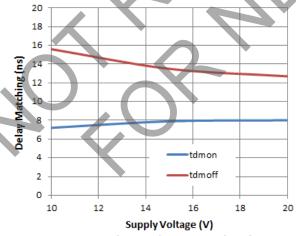


Figure 14. Delay Matching vs. Supply Voltage

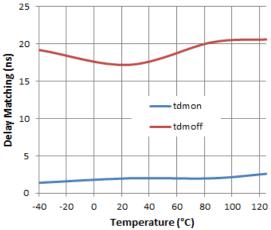


Figure 15. Delay Matching vs. Temperature

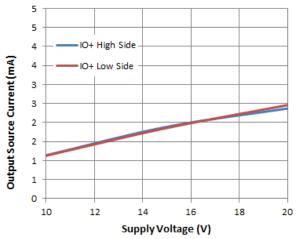


Figure 16. Output Source Current vs. Supply Voltage

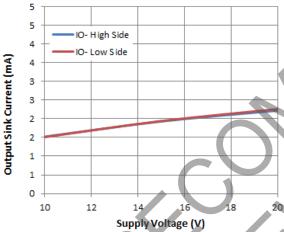


Figure 18. Output Sink Current vs. Supply Voltage

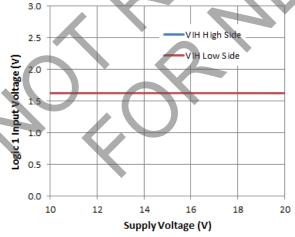


Figure 20. Logic 1 Input Voltage vs. Supply Voltage

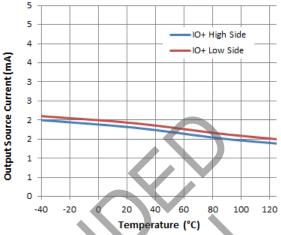


Figure 17. Output Source Current vs. Temperature

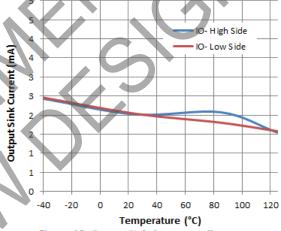


Figure 19. Output Sink Current vs. Temperature

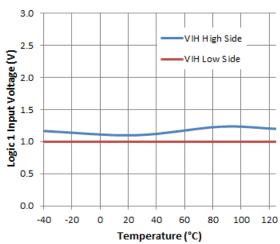


Figure 21. Logic 1 Input Voltage vs. Temperature

600

550

500

450

400

350

300

Deadtime (ns)

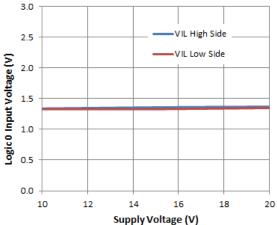
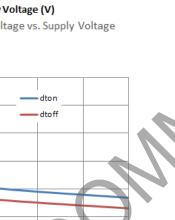



Figure 22. Logic O Input Voltage vs. Supply Voltage

Supply Voltage (V)
Figure 24. Deadtime vs. Supply Voltage

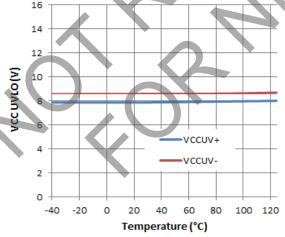


Figure 26. VCC UVLO vs. Temperature

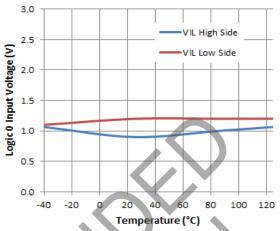


Figure 23. Logic 0 Input Voltage vs. Temperature

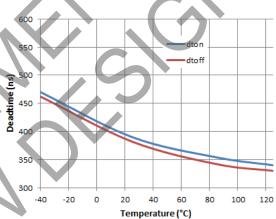


Figure 25. Deadtime vs. Temperature

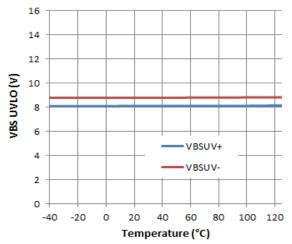
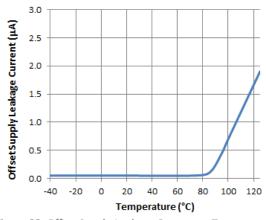
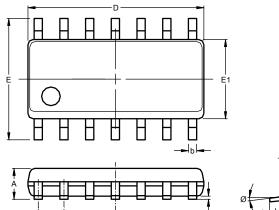


Figure 27. VBS UVLO vs. Temperature



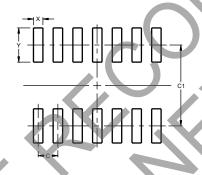

Figure 28. Offset Supply Leakage Current vs. Temperature

DGD21844

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

SO-14 (Type TH)


De la constant de la	0.25 — Gauge Seatin	e Plane ng Plane

SO-14 (Type TH)					
Dim	Min	Max	Тур		
Α	1.55	1.73			
A1	0.10	0.25			
b	0.35	0.51			
С	0.190	0.248			
D	8.56	8.74	8.61		
E	5.84	6.20	6.00		
E1	3.81	3.99	3.94		
е		-	1.27		
h	į		0.33		
ź	0.41	0.89			
Ø	0°	8°			
All Dimensions in mm					

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

SO-14 (Type TH)

Dimensions	Value (in mm)
С	1.27
C1	5.20
Х	0.60
Y	2.20

Note: For high voltage applications, the appropriate industry sector guidelines should be considered with regards to creepage and clearance distances between device Terminals and PCB tracking.

DGD21844

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2019, Diodes Incorporated

www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Gate Drivers category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below:

00053P0231 56956 57.404.7355.5 LT4936 57.904.0755.0 5882900001 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 011003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24
00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000 0207400000 01312
0134220000 60713816 M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131220-21149P 6131-260-2358P 6131-265-11149P CS1HCPU63