

80V 175°C N-CHANNEL ENHANCEMENT MODE MOSFET PowerDI5060-8

Product Summary

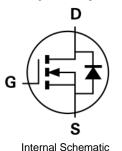
BV _{DSS}	R _{DS(ON)}	I _D Tc = +25°C	
80V	7.8mΩ @ V _{GS} = 10V	92A	

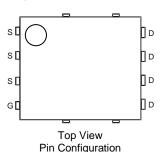
Description and Applications

This MOSFET is designed to meet the stringent requirements of automotive applications. It is qualified to AEC-Q101, supported by a PPAP and is ideal for use in:

- DC-DC Converters
- Load Switch

Features


- Rated to +175°C Ideal for High Ambient Temperature Environments
- 100% Unclamped Inductive Switching (UIS) Test in Production Ensures More Reliable and Robust End Application
- High Conversion Efficiency
- Low Rds(ON) Minimizes On State Losses
- Lead-Free Finish; RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- The DMTH8008SPSQ is suitable for automotive applications requiring specific change control; this part is AEC-Q101 qualified, PPAP capable, and manufactured in IATF 16949 certified facilities.


https://www.diodes.com/quality/product-definitions/

Mechanical Data

- Case: PowerDI[®]5060-8
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminal Connections: See Diagram Below
- Terminals: Finish Matte Tin Annealed over Copper Leadframe.
 Solderable per MIL-STD-202, Method 208 (3)
- Weight: 0.097 grams (Approximate)

Ordering Information (Note 4)

_			
	Part Number	Case	Packaging
	DMTH8008SPSQ-13	PowerDI5060-8	2,500 / Tape & Reel

Notes:

- 1. EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant. All applicable RoHS exemptions applied.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/

Marking Information

⊃¦¦= Manufacturer's Marking TH8008SSQ = Product Type Marking Code YYWW = Date Code Marking YY = Year (ex: 19 = 2019) WW = Week (01 to 53)

PowerDI is a registered trademark of Diodes Incorporated.

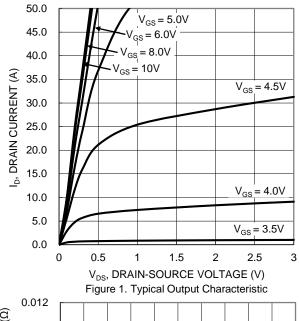
Maximum Ratings (@T_C = +25°C, unless otherwise specified.)

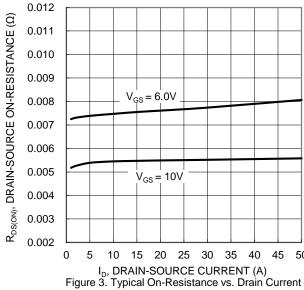
Characteristic			Symbol	Value	Unit
Drain-Source Voltage			VDSS	80	V
Gate-Source Voltage			Vgss	±20	V
Continuous Drain Current, V _{GS} = 10V (Note 7)	lo	92 65	А		
Maximum Continuous Body Diode Forward Current (Note 7)			Is	83	A
Pulsed Drain Current (10µs Pulse, Duty Cycle = 1%)			I _{DM}	360	Α
Pulsed Body Diode Forward Current (10µs Pulse, Duty Cycle = 1%)			I _{SM}	360	A
Avalanche Current, L = 0.1mH (Note 8)			las	40	A
Avalanche Energy, L = 0.1mH (Note 8)			Eas	80	mJ

Thermal Characteristics ($@T_C = +25^{\circ}C$, unless otherwise specified.)

Characteristic		Symbol	Value	Unit
Total Power Dissipation (Note 5)	T _A = +25°C	P _D	1.6	W
Thermal Resistance, Junction to Ambient (Note 5)	Steady State	$R_{\theta JA}$	92	°C/W
Total Power Dissipation (Note 6)	T _A = +25°C	P _D	3.4	W
Thermal Resistance, Junction to Ambient (Note 6)	Steady State	RθJA	43	°C/W
Total Power Dissipation (Note 7)	T _C = +25°C	P _D	100	W
Thermal Resistance, Junction to Case (Note 7)		R ₀ JC	1.5	°C/W
Operating and Storage Temperature Range		T _{J,} T _{STG}	-55 to +175	°C

Electrical Characteristics (@Tc = +25°C, unless otherwise specified.)


Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition	
OFF CHARACTERISTICS (Note 9)							
Drain-Source Breakdown Voltage	BVDSS	80		_	V	$V_{GS} = 0V$, $I_D = 1mA$	
Zero Gate Voltage Drain Current	I _{DSS}	_	_	1	μΑ	V _{DS} = 64V, V _{GS} = 0V	
Gate-Source Leakage	Igss	_	_	±100	nA	$V_{GS} = \pm 20V$, $V_{DS} = 0V$	
ON CHARACTERISTICS (Note 9)							
Gate Threshold Voltage	Vgs(TH)	2	_	4	V	$V_{DS} = V_{GS}$, $I_{D} = 1mA$	
Static Drain-Source On-Resistance	Daggan	_	6.5	7.8	mΩ	V _{GS} = 10V, I _D = 14A	
Static Dialif-Source Off-Resistance	RDS(ON)	_	7.8	11	11122	$V_{GS} = 6V, I_D = 12A$	
Diode Forward Voltage	VsD	_	0.8	1.2	V	V _G S = 0V, I _S = 14A	
DYNAMIC CHARACTERISTICS (Note 10)							
Input Capacitance	Ciss	_	1950	_		V _{DS} = 40V, V _{GS} = 0V, f = 1MHz	
Output Capacitance	Coss	_	826	_	pF		
Reverse Transfer Capacitance	Crss	_	56	_			
Gate Resistance	Rg	_	1.7	_	Ω	$V_{DS} = 0V$, $V_{GS} = 0V$, $f = 1MHz$	
Total Gate Charge (V _{GS} = 6V)	Qg	_	23	_		V _{DS} = 40V, I _D = 14A	
Total Gate Charge (V _{GS} = 10V)	Qg	_	34	_	nC		
Gate-Source Charge	Qgs	_	6	_	nc		
Gate-Drain Charge	Q_{gd}	_	12	_			
Turn-On Delay Time	tD(ON)	_	8	_		$V_{DD}=40V,V_{GS}=10V,\\ I_{D}=14A,R_{G}=6\Omega$	
Turn-On Rise Time	t _R	_	15	_			
Turn-Off Delay Time	tD(OFF)	_	29	_	ns		
Turn-Off Fall Time	tF	_	21	_			
Body Diode Reverse Recovery Time	t _{RR}	_	43	_	ns	1 444 11/11 4004/	
Body Diode Reverse Recovery Charge	Q _{RR}	_	49	_	nC	Is = 14A, di/dt = 100A/μs	


Notes: 5. Device mounted on FR-4 PC board, with minimum recommended pad layout, single sided.

- 6. Device mounted on FR-4 substrate PC board, 2oz copper, with thermal bias to bottom layer 1inch square copper plate.
- 7. Thermal resistance from junction to soldering point (on the exposed drain pad).
- 8. I_{AS} and E_{AS} ratings are based on low frequency and duty cycles to keep T_J = +25°C.
- 9. Short duration pulse test used to minimize self-heating effect.
- 10. Guaranteed by design. Not subject to product testing.

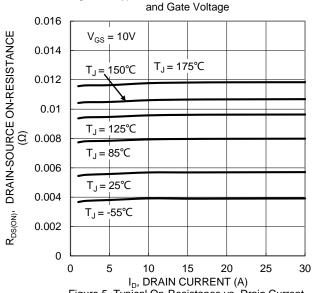
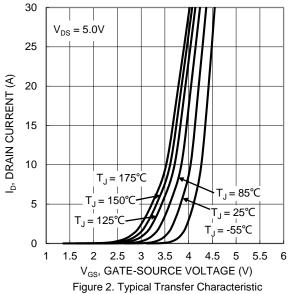
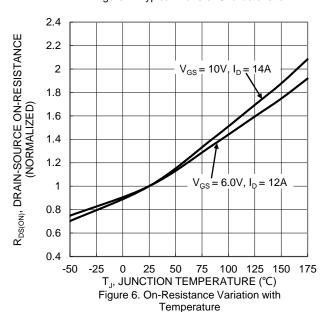




Figure 5. Typical On-Resistance vs. Drain Current and Temperature

0.1 0.08 0.08 0.06 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.05 0

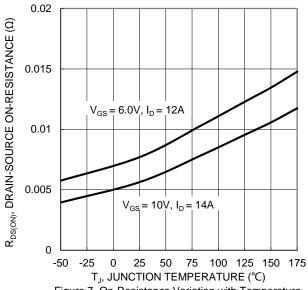
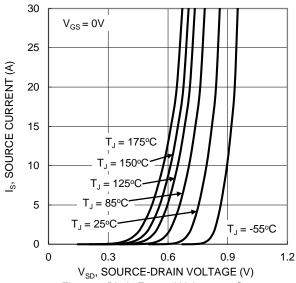
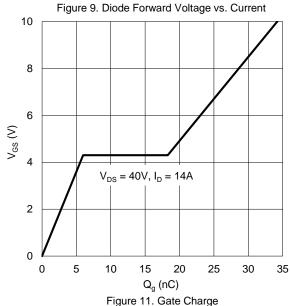




Figure 7. On-Resistance Variation with Temperature

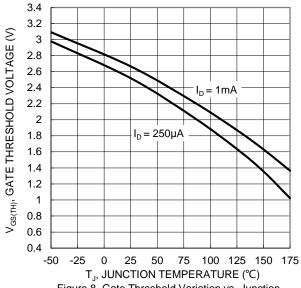
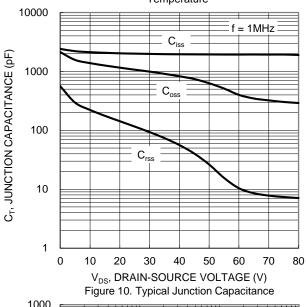
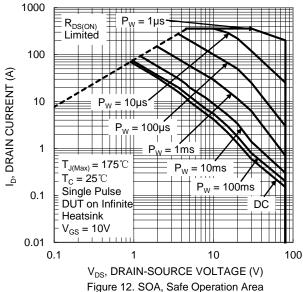
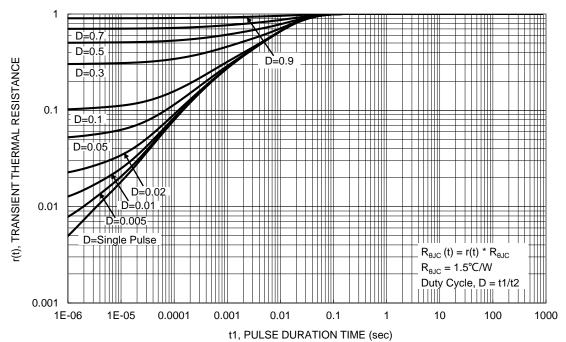
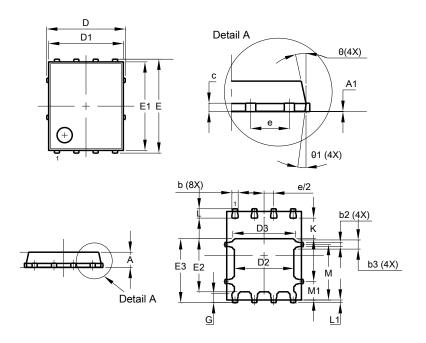




Figure 8. Gate Threshold Variation vs. Junction Temperature

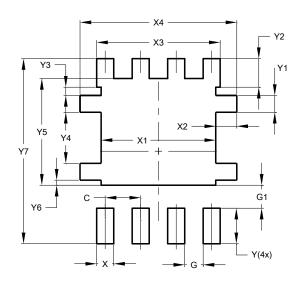



Figure 13. Transient Thermal Resistance

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

PowerDI5060-8



PowerDI5060-8 Dim Min Max Typ						
Dim	Min	Тур				
Α	0.90	1.10	1.00			
A1	0.00					
b	0.33	0.51	0.41			
b2	0.200	0.350	0.273			
b3	0.40	0.80	0.60			
C	0.230	0.330	0.277			
D		5.15 BSC	;			
D1	4.70	5.10	4.90			
D2	3.70	3.90				
D3	3.90 4.30 4.1					
Е		6.15 BSC	;			
E1	5.60	6.00	5.80			
E2	3.28	3.68	3.48			
E3	3.99	4.39	4.19			
е	,	1.27 BSC	;			
G	0.51	0.71	0.61			
K	0.51	-	_			
L	0.51 0.71 0.6					
L1	0.100	0.200	0.175			
М	3.235 4.035 3.6		3.635			
M1	1.00	1.40	1.21			
Θ	10°	12°	11°			
Θ1	6°	8°	7°			
All Dimensions in mm						

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

PowerDI5060-8

Dimensions	value (in mm)
C	1.270
G	0.660
G1	0.820
Х	0.610
X1	4.100
X2	0.755
Х3	4.420
X4	5.610
Υ	1.270
Y1	0.600
Y2	1.020
Y3	0.295
Y4	1.825
Y5	3.810
Y6	0.180
Y7	6.610

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2019, Diodes Incorporated

www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below:

MCH3443-TL-E MCH6422-TL-E NTNS3A92PZT5G IRFD120 JANTX2N5237 2N7000 2SK2464-TL-E 2SJ277-DL-E 2SK2267(Q)

2SK2545(Q,T) 405094E 423220D MCH6646-TL-E TK100A10N1,S4X(S MIC4420CM-TR VN1206L 614234A 715780A 751625C

IRS2092STRPBF-EL IPP60R600P6XKSA1 IPS70R2K0CEAKMA1 RJK60S5DPK-M0#T0 SQD23N06-31L-GE3 BSC884N03MS G

BSF024N03LT3 G 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG P85W28HP2F-7071 DMN1053UCP4-7 NTE2384

NTE6400A DMC2700UDMQ-7 DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO7B IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 IRF40H233XTMA1 IPSA70R950CEAKMA1

IPSA70R2K0CEAKMA1 STU5N65M6 DMN6022SSD-13 DMN13M9UCA6-7