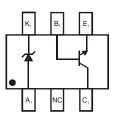


DVR5V0W

COMPLEX ARRAY FOR VOLTAGE REGULATORS

Features

- Epitaxial Planar Die Construction
- Selectively Paired NPN Transistors & Zener Diodes for Series Pass Voltage Regulator Circuits
- Ideally Suited for Automated Assembly Processes
- Lead, Halogen and Antimony Free, RoHS Compliant (Note 1)
- "Green" Device (Note 2)

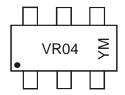

Mechanical Data

- Case: SOT363
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Matte Tin Finish annealed over Alloy 42 leadframe (Lead Free Plating). Solderable per MIL-STD-202, Method 208
- Terminal Connections: See Diagram
- Weight: 0.006 grams (approximate)

SOT363

Top View

Top View Pin Configuration


Ordering Information (Note 3)

Device	Packaging	Shipping
DVR5V0W-7	SOT363	3000/Tape & Reel

Notes:

- 1. No purposefully added lead.
- 2. Diodes Inc's "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.
- 3. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

VR04 = Product Type Marking Code YM = Date Code Marking Y = Year ex: Y = 2011 M = Month ex: 9 = September

Date Code Key

Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Code	R	S	T	U	٧	W	Х	Υ	Z	Α	В	С

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	N	D

Maximum Ratings, Total Device @T_A = 25°C unless otherwise specified

Characteristic		Symbol	Value	Unit
Power Dissipation	(Note 4)	P_d	200	mW
Thermal Resistance, Junction to Ambient	(Note 4)	$R_{ hetaJA}$	625	°C/W
Operating and Storage Temperature Range		T _j , T _{STG}	-55 to +150	°C

Maximum Ratings, NPN Transistor @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	45	V
Collector-Emitter Voltage	V _{CEO}	18	V
Emitter-Base Voltage	V _{EBO}	5	V
Collector Current - Continuous (Note 4	l _C	1	A

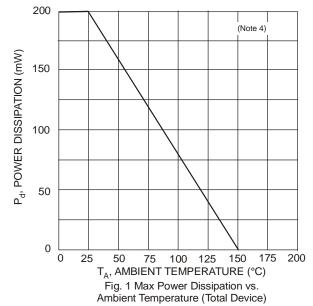
Maximum Ratings, Zener Element @T_A = 25°C unless otherwise specified

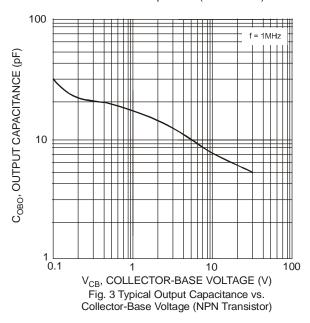
	Characteristic	Symbol	Value	Unit
Forward Voltage	@ I _F = 10mA	V _F	0.9	V

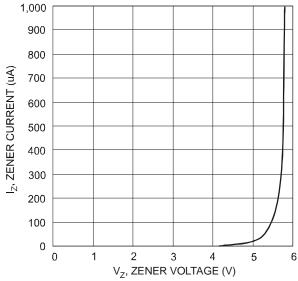
Electrical Characteristics, NPN Transistor @T_A = 25°C unless otherwise specified

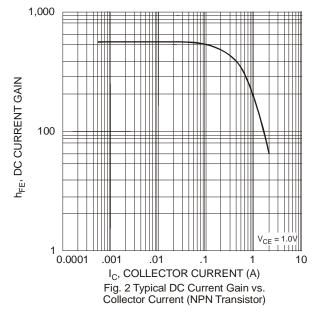
Characteristic	Symbol	Min	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 5)	•				
Collector-Base Breakdown Voltage	V _{(BR)CBO}	45	_	V	$I_C = 100 \mu A, I_E = 0$
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	18	_	V	$I_C = 1 \text{mA}, I_B = 0$
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	5	_	V	$I_E = 100 \mu A, I_C = 0$
Collector Cutoff Current	I _{CBO}	_	1	μΑ	V _{CB} = 40V, I _E = 0
Emitter Cutoff Current	I _{EBO}	_	1	μΑ	$V_{EB} = 4V, I_{C} = 0$
ON CHARACTERISTICS (Note 5)					
DC Current Gain	h _{FE}	150	800	_	$I_C = 100 \text{mA}, V_{CE} = 1 \text{V}$
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	_	0.5	V	$I_C = 300 \text{mA}, I_B = 30 \text{mA}$
SMALL SIGNAL CHARACTERISTICS					
Output Capacitance	C _{obo}		8	pF	$V_{CB} = 10V, f = 1.0MHz, I_E = 0$
Current Gain-Bandwidth Product	f _T	100	_	MHz	$V_{CB} = 10V, I_E = 50mA, f = 100MHz$

Electrical Characteristics, Zener Element @T_A = 25°C unless otherwise specified


	Zener Voltage Range (Note 6)				Reverse Current 5)
	V _Z @ I _{ZT}			I _R @ \	V _R
Nom (V)	Min (V)	Max (V)	mA	μΑ	V
5.1	4.85	5.36	0.05	5	3


Notes: 4. Part mounted on FR-4 board with recommended pad layout, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.


5. Short duration pulse test used to minimize self-heating effect.


6. Nominal Zener voltage is measured with the device junction in thermal equilibrium at $T_T = 30^{\circ}\text{C} \pm 1^{\circ}\text{C}$.

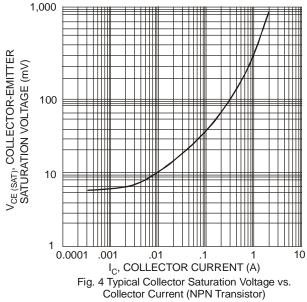
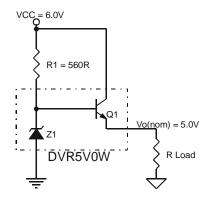
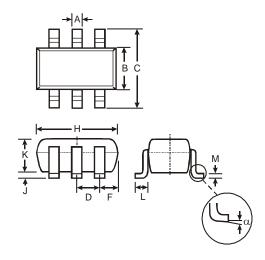



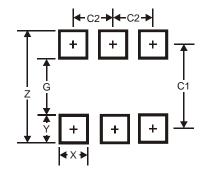
Fig. 5 Typical Zener Breakdown Characteristics

Sample Applications


Sample Application for DVR5V0W:

 $V_{\text{CC}} = 6.0 \text{V}$ R1= 560Ω Vo(nom) = 5.0V $I_O = 100 \text{mA}$

Notes:


- 7. Resistor R1 not included.
- Typical performance shown is under setup and operating conditions specified in the sample applications.
- Recommended $V_{CC}(min) \sim Vo(nom) + 1V$.

Package Outline Dimensions

	SOT363					
Dim	Min	Max				
Α	0.10	0.30				
В	1.15	1.35				
C	2.00	2.20				
D	0.65 Typ					
F	0.40	0.45				
Н	1.80	2.20				
7	0	0.10				
K	0.90	1.00				
L	0.25	0.40				
М	0.10	0.22				
α	0°	8°				
All Di	mensions	in mm				

Suggested Pad Layout

Dimensions	Value (in mm)
Z	2.5
G	1.3
X	0.42
Y	0.6
C1	1.9
C2	0.65

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2011, Diodes Incorporated

www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G

NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T
TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC4731T-AY 2SC5488A-TL-H

2SD2150T100R SP000011176 FJPF5304DTU FMC5AT148 FMMTA92QTA 2N2369ADCSM 2SB1202S-TL-E 2SB1324-TD-E

2SC2412KT146S 2SC3332T 2SC3902S 2SC4618TLN 2SC5231C8-TL-E 2SC5490A-TL-H 2SD1685F 2SD1816S-TL-E 2SD1816T-TL-E

CMXT2207 TR CPH6501-TL-E MCH4021-TL-E TTC012(Q) BULD128DT4 US6T6TR