MMBTH10Q
25V NPN SURFACE MOUNT VHF/UHF TRANSISTOR IN SOT23

Description

This bipolar junction transistor (BJT) is designed to meet the stringent requirements of automotive applications.

Mechanical Data

- Case: SOT23
- Case Material: Molded Plastic, "Green" Molding Compound; UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish-Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 © ${ }^{\text {e3 }}$
- Weight: 0.008 grams (Approximate)
- $\quad \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$ Continuous Collector Current
- Designed for VHF/UHF Amplifier Applications and High Output VHF Oscillators
- High Current Gain Bandwidth Product
- Ideal for Mixer and RF Amplifier Applications with Collector Currents in the $100 \mu \mathrm{~A}$ to 30 mA Range
- Totally Lead-Free \& Fully RoHS Compliant (Notes 1 \& 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability
- PPAP Capable (Note 4)

Top View

Device Symbol

Top View Pin-Out

Ordering Information (Note 5)

Part Number	Compliance	Marking	Reel Size (inches)	Tape Width (mm)	Quantity Per Reel
MMBTH10Q-7-F	Automotive	K3Y	7	8	3000

Notes: \quad 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and <1000ppm antimony compounds.
4. Automotive products are AEC-Q101 qualified and are PPAP capable. Refer to https://www.diodes.com/quality/.
5. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

Marking Information

Date Code Key

Year	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Code	F	G	H	I	J	K	L	M	N	O	P	Q
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	O	N	D

MMBTH10Q

Absolute Maximum Ratings $\left(@ T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	30	V
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	25	V
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	3	V
Collector Current	IC_{C}	50	mA

Thermal Characteristics ${\text { (} @ T_{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

Characteristic		Symbol	Value	Unit
Power Dissipation	(Note 6)	PD	310	mW
	(Note 7)		350	
Thermal Resistance, Junction to Ambient	(Note 6)	$\mathrm{R}_{\text {өJA }}$	403	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	(Note 7)		357	
Thermal Resistance, Junction to Leads	(Note 8)	ReJL	350	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating and Storage Temperature Range		$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Notes: $\quad 6$. For a device mounted on minimum recommended pad layout FR-4 PCB with high coverage of single sided $10 z$ copper; device is measured under still air conditions whilst operating in a steady-state.
7. Same as Note 6 , except mounted on $15 \mathrm{~mm} \times 15 \mathrm{~mm} 10 z$ copper.
8. Thermal resistance from junction to solder-point (at the end of the collector lead).

Thermal Characteristics and Derating Information

MMBTH10Q

Electrical Characteristics (@T $\mathrm{A}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

Characteristic	Symbol	Min	Typ	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 9)						
Collector-Base Breakdown Voltage	$\mathrm{BV}_{\text {CBO }}$	30	-	-	V	$\mathrm{IC}^{\prime}=100 \mu \mathrm{~A}$
Collector-Emitter Breakdown Voltage	BV CEO	25	-	-	V	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$
Emitter-Base Breakdown Voltage	$B V_{\text {EBO }}$	3	-	-	V	l c $=100 \mu \mathrm{~A}$
Collector-Base Cut-Off Current	Icbo	-	-	100	nA	$\mathrm{V}_{\text {CB }}=25 \mathrm{~V}$
Emitter-Base Cut-Off Current	$\mathrm{I}_{\text {Ebo }}$	-	-	100	nA	$\mathrm{V}_{E B}=2 \mathrm{~V}$
ON CHARACTERISTICS (Note 9)						
DC Current Gain	$\mathrm{h}_{\text {FE }}$	60	-	-	-	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}$
Collector-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE(SAT }}$	-	-	0.5	V	$\mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=400 \mu \mathrm{~A}$
Base-Emitter Voltage	$\mathrm{V}_{\text {BE(SAT }}$	-	-	0.95	V	$\mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=400 \mu \mathrm{~A}$
Base-Emitter Turn-on Voltage	$\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})$	-	-	0.95	V	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}$
SMALL SIGNAL CHARACTERISTICS						
Current Gain Bandwidth Product	f_{\top}	650	-	-	MHz	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$
Collector-Base Capacitance	ССв	-	-	0.7	pF	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Collector-Base Feedback Capacitance	$\mathrm{C}_{\text {RBO }}$	-	-	0.65	pF	$\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Collector-Base Time Constant	Rb'Cc	-	-	9	ps	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{f}=31.8 \mathrm{MHz}, \\ & \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA} \end{aligned}$

Note 9: Measured under pulsed conditions. Pulse width $\leq 300 \mu$ s. Duty cycle $\leq 2 \%$.

Typical Electrical Characteristics $\left(@ T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified.)

Fig. 1 Collector Emitter Saturation Voltage vs. Collector Current

Fig. 3 Base Emitter Voltage vs. Collector Current

Fig. 2 DC Current Gain vs. Collector Current

Fig. 4 Gain Bandwidth Product vs. Collector Current

MMBTH10Q

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

Dimensions	Value (in mm)
\mathbf{C}	2.0
\mathbf{X}	0.8
$\mathbf{X 1}$	1.35
\mathbf{Y}	0.9
$\mathbf{Y 1}$	2.9

MMBTH10Q

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2018, Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Bipolar Transistors category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
MAPRST0912-50 MCH4016-TL-H MMBT5551-G MRF10120 15GN01CA-TB-E PH1214-25M MAPRST0912-350 MMBTH10-TP BFP 640F H6327 BFR 360F H6765 MRF10031 NSVF4009SG4T1G BFP 182R E7764 BFP405H6740XTSA1 MRF10350 ASMA201 BFR360FH6765XTSA1 BFP410H6327XTSA1 BFP620FH7764XTSA1 BFP720ESDH6327XTSA1 BFP720FH6327XTSA1 BFR360L3E6765XTMA1 BFP420H6433XTMA1 BFP420H6740XTSA1 BFP420H6801XTSA1 MCH4015-TL-H BF888H6327XTSA1 MMBT2222A-G BFP196WH6327XTSA1 BFP405FH6327XTSA1 BFP640ESDH6327XTSA1 BFR193L3E6327XTMA1 BFS483H6327XTSA1 NSVF4020SG4T1G NSVF6003SB6T1G MRF10005 BFP420FH6327XTSA1 BFP740FESDH6327XTSA1 BFR181E6327HTSA1 BFR181WH6327XTSA1 BFR182E6327HTSA1 BFR193E6327HTSA1 BFP181E7764HTSA1 BFP183WH6327XTSA1 BFP720H6327XTSA1 BFR182WH6327XTSA1 MAPR-000912-500S00 BFR340FH6327XTSA1 STGWT30HP65FB NE68939-T1-A

