Features

- $B V_{\text {CEO }}>-40 \mathrm{~V}$
- $\mathrm{I}_{\mathrm{C}}=-200 \mathrm{~mA}$ High Collector Current
- Epitaxial Planar Die Construction
- Ideal for Medium Power Amplification and Switching
- Ultra-Small Surface Mount Package
- Complementary NPN Type: MMDT3904
- Totally Lead-Free \& Fully RoHS Compliant (Notes 1 \& 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability

Mechanical Data

- Case: SOT363
- Case Material: Molded Plastic, "Green" Molding Compound;

UL Flammability Classification Rating 94V-0

- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish - Matte Tin Finish;

Solderable per MIL-STD-202, Method 208③

- Weight: 0.006 grams (Approximate)
SOT363

Top View

Device Schematic
Top View

Ordering Information (Note 4)

Product	Status	Compliance	Marking	Reel Size (inches)	Tape Width (mm)	Quantity Per Reel
MMDT3906-7-F	Active	AEC-Q101	K 3 N	7	8	3.000

Notes: \quad 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) \& 2011/65/EU (RoHS 2) compliant.
2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green and Lead-free
3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and <1000ppm antimony compounds.
4. For packaging details, go to our website at http://www.diodes.com/products/packages.html.

Marking Information

SOT363

K3N = Product Type Marking Code
YM = Date Code Marking
Y or $\bar{Y}=$ Year (ex: $D=2016$)
M or $\bar{M}=$ Month (ex: $9=$ September)

Date Code Key

MMDT3906

Absolute Maximum Ratings $\left(@ T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	-40	V
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	-40	V
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	-5	V
Collector Current	I_{C}	-200	mA

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 5)	P_{D}	200	mW
Thermal Resistance, Junction to Ambient (Note 5)	$\mathrm{R}_{\text {JJA }}$	625	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{J},}, \mathrm{T}_{\text {STG }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

ESD Ratings (Note 6)

Characteristic	Symbol	Value	Unit	JEDEC Class
Electrostatic Discharge - Human Body Model	ESD HBM	4,000	V	3 A
Electrostatic Discharge - Machine Model	ESD MM	400	V	C

Notes: \quad 5. For the device mounted on minimum recommended pad layout FR-4 PCB with high coverage of single sided 1oz copper, in still air conditions; the device is measured when operating in a steady-state condition.
6. Refer to JEDEC specification JESD22-A114 and JESD22-A115.

MMDT3906

Thermal Characteristic and Derating Information

Fig. 1, Power Dissipation vs.
Ambient Temperature (Total Device)

MMDT3906

Electrical Characteristics ($^{(} T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

Characteristic	Symbol	Min	Max	Unit	Test Condition
OFF CHARACTERISTICS					
Collector-Base Breakdown Voltage	$\mathrm{BV}_{\text {CBO }}$	-40	-	V	$\mathrm{IC}_{\mathrm{C}}=-10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$
Collector-Emitter Breakdown Voltage (Note 7)	BV ${ }_{\text {CEO }}$	-40	-	V	$\mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$
Emitter-Base Breakdown Voltage	$\mathrm{BV}_{\text {EBO }}$	-5	-	V	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$
Collector Cut-Off Current	$\mathrm{I}_{\text {cex }}$	-	-50	nA	$\mathrm{V}_{\text {CE }}=-30 \mathrm{~V}, \mathrm{~V}_{\text {EB(OFF) }}=-3.0 \mathrm{~V}$
Base Cut-Off Current	IBL	-	-50	nA	$\mathrm{V}_{\text {CE }}=-30 \mathrm{~V}, \mathrm{~V}_{\text {EB(OFF) }}=-3.0 \mathrm{~V}$
ON CHARACTERISTICS (Note 7)					
DC Current Gain	$\mathrm{hfe}^{\text {fe }}$	$\begin{gathered} 60 \\ 80 \\ 100 \\ 60 \\ 30 \end{gathered}$	- 300 -	-	$\begin{aligned} & \mathrm{IC}=-100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=-1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=-50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-1 \mathrm{~V} \end{aligned}$
Collector-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE(SAT) }}$	-	$\begin{aligned} & -0.25 \\ & -0.40 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=-50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-5 \mathrm{~mA} \end{aligned}$
Base-Emitter Saturation Voltage	$V_{\text {be(SAT }}$		$\begin{aligned} & -0.85 \\ & -0.95 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=-50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-5 \mathrm{~mA} \end{aligned}$
SMALL SIGNAL CHARACTERISTICS					
Output Capacitance	Сово	-	4.5	pF	$\mathrm{V}_{\mathrm{CB}}=-5.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{I}_{\mathrm{E}}=0$
Input Capacitance	$\mathrm{C}_{\text {IBO }}$	-	10	pF	$\mathrm{V}_{\text {EB }}=-0.5 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{I} \mathrm{I}=0$
Input Impedance	$\mathrm{h}_{\text {ie }}$	2	12	$\mathrm{k} \Omega$	$\begin{aligned} & V_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-1.0 \mathrm{~mA}, \\ & \mathrm{f}=1.0 \mathrm{kHz} \end{aligned}$
Voltage Feedback Ratio	$\mathrm{hr}_{\text {re }}$	0.1	10	$\times 10^{-4}$	
Small Signal Current Gain	$\mathrm{hf}_{\text {fe }}$	100	400	-	
Output Admittance	$\mathrm{h}_{\text {oe }}$	3	60	$\mu \mathrm{S}$	
Current Gain-Bandwidth Product	f_{T}	250	-	MHz	$\begin{aligned} & V_{C E}=-20 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$
Noise Figure	N_{F}	-	4.0	dB	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=-5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{S}}=1.0 \mathrm{k} \Omega, \mathrm{f}=1.0 \mathrm{kHz} \end{aligned}$
SWITCHING CHARACTERISTICS					
Delay Time	tD	-	35	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=-3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=-1.0 \mathrm{~mA} \end{aligned}$
Rise Time	tR	-	35	ns	
Storage Time	ts	-	200	ns	
Fall Time	t_{F}	-	50	ns	

Note: \quad 7. Measured under pulsed conditions. Pulse width $\leq 300 \mu$ s. Duty cycle $\leq 2 \%$.

Typical Electrical Characteristics $\left(@ T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified.)

MMDT3906
Package Outline Dimensions
Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT363

SOT363			
Dim	Min	Max	Typ
A1	0.00	0.10	0.05
A2	0.90	1.00	1.00
b	0.10	0.30	0.25
C	0.10	0.22	0.11
D	1.80	2.20	2.15
E	2.00	2.20	2.10
E1	1.15	1.35	1.30
e	0.650 BSC		
F	0.40	0.45	0.425
L	0.25	0.40	0.30
a	0°	8°	--
All Dimensions in $\mathbf{~ m m}$			

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

Dimensions	Value (in mm)
\mathbf{C}	0.650
\mathbf{G}	1.300
\mathbf{X}	0.420
\mathbf{Y}	0.600
Y1	2.500

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H
2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2N3879 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E 30A02MH-TL-E NSV40301MZ4T1G NTE13 NTE15 NTE16001 NTE16006 NTE26 NTE320

