

NOT RECOMMENDED FOR NEW DESIGN CONTACT US

PAM8902H

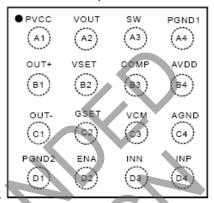
30 VPP MONO CLASS-D AUDIO AMPLIFIER FOR PIEZO/CERAMIC SPEAKERS

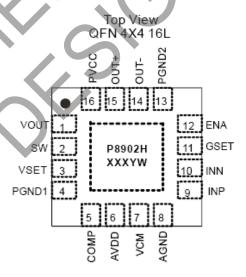
Description

The PAM8902H is a mono, Class-D audio amplifier with integrated boost Converter designed for piezo and ceramic speakers. The PAM8902H is capable of driving a ceramic/ piezo speaker with 30V_{PP} (10.6Vrms) from a 3.6V power supply. The PAM8902H's Boost converter operates at a fixed frequency of 1.5MHz, and provides a 17.5V supply with a minimum number of external components. The PAM8902H features an integrated audio low pass filter that rejects high frequency noise thus improving audio fidelity. And three gain modes of 21dB, 26dB and 32.5dB easy for using. The PAM8902H also provides thermal, short, under and over voltage protection.

The PAM8902H is available in a 16-ball 1.95mm x 1.95mm CSP package and 16-pin QFN4x4 package.

Features

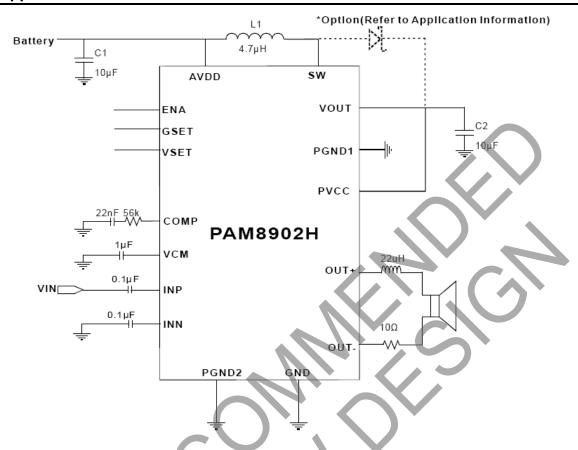

- Supply Voltage Range from 2.5V to 5.5V
- 30 V_{PP} Output Load Voltage from a 2.5V Supply
- Integrated Boost Converter Generates 17.5V Supply
- Programmable Soft-Start
- Small Boost Converter Inductor
- Selectable Gain of 21dB, 26dB, and 32.5dB
- Selectable Boost Output Voltage of 8V, 12V, and 17.5V
- Low Shutdown Current: <1µA
- Built-In Thermal, OCP, OVP, Short Protection
- Available in Space Saving Packages:
 - 16-Ball 1.95mmx1.95mm CSP-16L Package
 - 16-Pin QFN4x4-16L Package


Applications

- Wireless or Cellular Handsets
- Portable DVD Player
- Personal Digital Assistants (PDAs)
- Electronic Dictionaries
- Digital Still Cameras

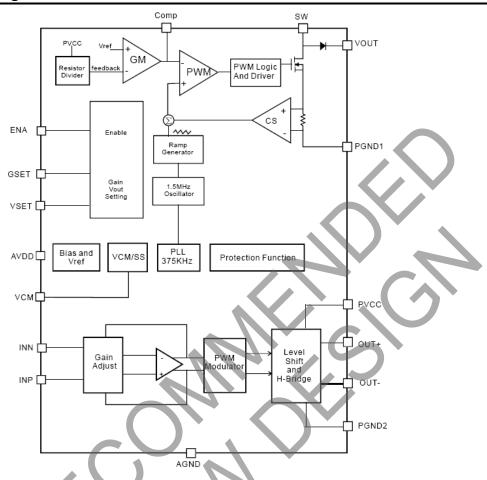
Pin Assignments

16 Ball CSP Top View



: Pin 1 Indicator

Typical Applications Circuit



Pin Descriptions

Pin Name	Bump (CSP-16L)	Pin Number (QFN4x4-16L)	Function		
PVCC	A1	16	Audio Amplifier Power Supply		
VOUT	A2	1	Boost Converter Output		
SW	A3	2	Boost Converter Switching Node		
PGND1	A4	4	Boost Converter Power Ground		
OUT+	B1	15	Positive Differential Audio Output		
VSET	B2	3	Boost Converter Output Voltage Setting (8V, 12V, 17.5V)		
COMP	В3	5	Boost Converter Compensation		
AVDD	B4	6	Power Supply		
OUT-	C1	14	Negative Differential Audio Output		
GSET	C2	11	Amplifier Gain Setting (21dB, 26dB, 32.5dB)		
VCM	C3	7	Common Mode Bypass Cap		
AGND	C4	8	Analog Ground		
PGND2	D1	13	Class D Power Ground		
ENA	D2	12	Whole Chip Enable		
INN	D3	10	Negative Differential Audio Input		
INP	D4	9	Positive Differential Audio Input		

Functional Block Diagram

Absolute Maximum Ratings @T_A = +25°C, unless otherwise specified.)

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability. All voltages are with respect to ground.

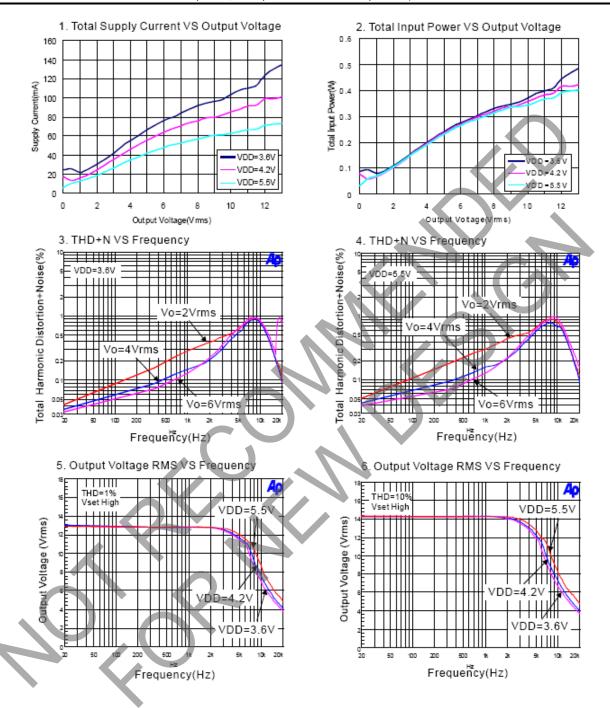
Parameter	Rating	Unit	
Supply Voltage	6.0	V	
Input Voltage	-0.3 to V _{DD} +0.3] v	
Storage Temperature	-65 to +150		
Maximum Junction Temperature	+150	°C	
Soldering Temperature	+250, 10s		

Recommended Operating Conditions (@T_A = +25°C, unless otherwise specified.)

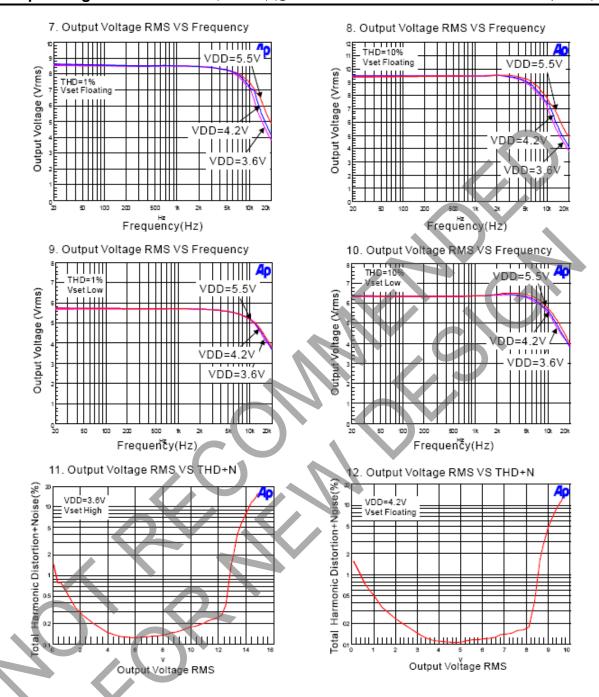
Parameter	Rating	Unit	
Supply Voltage Range	2.5 to 5.5	V	
Ambient Temperature Range	-40 to +85	°C	
Junction Temperature Range	-40 to +125	C	

Thermal Information

Parameter	Symbol	Package	Maximum	Unit	
Thermal Resistance	0	CSP-16L	90	°C/W	
(Junction to Ambient)	θ_{JA}	QFN4x4-16L	52	C/VV	
Thermal Resistance	esistance	CSP-16L	72	°C/\/	
(Junction to Case)	θЈС	QFN4x4-16L	30	°C/W	


$\hline \textbf{Electrical Characteristics} \ (@T_A = \pm 25^{\circ}C, \ V_{DD} = 3.6 \text{V}, \ C_L = 1 \mu\text{F}, \ V_{SET} \ \text{Float, unless otherwise specified.})$

VoD Input Voltage	Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
Independent Ven > 1.2V, Vest = High			Conditions		- A			
Independent Current Ven > 1.2V, Ver = Floating — 10 18 MA Ven > 1.2V, Ver = Floating — 10 18 MA Ven > 1.2V, Ver = GND — 5 12 Ven > 1.2V, Ver = GND — 5 12 Ven > 1.2V Ver = GND — 0.1 1.0 µA Make-Up Time Ven From Low to High — 40 — ms Ven Chip Enable — 0.4 Ven Chip Disable — 0.4 Ven Ven Chip Disable — 0.4 Ven Ven Chip Disable — 0.4 Ven 0.5 — 0.5 Ven Ve	V DD	Input voitage					V	
Isb Shutdown Current Ven > 0V				_			^	
Shutdown Current Ven = 0V	IQ	Quiescent Current					mA	
twu Wake-Up Time V _{EN} From Low to High — 40 — ms VEH Chip Enable — 1,2 — V VEL Chip Disable — — 0.4 V VH GSET/VSET High — V _{DD} -0.5 — V _{DD} -1 V VL GSET/VSET Floating — 1 — V _{DD} -1 V VL GSET/VSET Low — 0 — 0.5 — UVLO Under Voltage Lockout Threshold V _{DD} From Low to High — 0.2 — V OTP Thermal Shutdown Threshold — — +150 — °C OTPH Thermal Shutdown Lockout Hysteresis — — — °C OTPH Thermal Shutdown Lockout Hysteresis — — +150 — °C Bost Converter V V V SET = GND, No Load 7.2 8.0 8.8 V Vo3 V				A				
VEH Chip Enable — 1.2 — — V VEL Chip Disable — — 0.4 V VH GSET/VSET High — VD00-0.5 — VD00 VF GSET/VSET Floating — 1 — VD0-1 V GSET/VSET Low — 0 — 0.5 UVLO Under Voltage Lockout Threshold VD0 From High to Low — 2.2 — V UVLOH Under Voltage Lockout Hysteresis MD0 From Low to High — 0.2 — V OTP Thermal Shutdown Lockout Hysteresis MD0 From Low to High — 0.2 — *C OTPH Thermal Shutdown Lockout Hysteresis MD0 From Low to High — 0.2 — *C OTPH Thermal Shutdown Lockout Hysteresis MD0 From Low to High — 0.2 — *C OTPH Thermal Shutdown Lockout Hysteresis MD0 From Low to High — 0.2 *C *C *C	I _{SD}			3-		1.0	μΑ	
VEL Chip Disable — 0.4 VH GSET/VSET High — V _{DD} -0.5 — V _{DD} -0.5 VF GSET/VSET Floating — 1 — V _{DD} -1.5 V VL GSET/VSET Low — 0.0 — 0.5		· · · · · · · · · · · · · · · · · · ·	V _{EN} From Low to High		40	_	ms	
VEL Chip Disable — — 0.4 VH GSET/VSET High — V _{DD} -0.5 — V _{DD} -1 VF GSET/VSET Low — 0 — 0.5 UVLO Under Voltage Lockout Threshold V _{DD} From High to Low — 2.2 — V UVLOH Under Voltage Lockout Hysteresis M _{DD} From Low to High — 0.2 — V OTP Thermal Shutdown Threshold — — +150 — °C OTPµ Thermal Shutdown Lockout Hysteresis — — +150 — °C OTPµ Thermal Shutdown Lockout Hysteresis — — +150 — °C OTPµ Thermal Shutdown Lockout Hysteresis — — +150 — °C OTPµ Thermal Shutdown Lockout Hysteresis — — +150 — °C Boost Contract — — +150 — * * * * * *<	V _{EH}	Chip Enable	_	1.2		_	V	
VF GSET/VSET Floating — 1 — V _{DD} -1 VL GSET/VSET Low — 0 — 0.5 UVLO Under Voltage Lockout Hysteresis V _{DD} From High to Low — 2.2 — V UVLOH Under Voltage Lockout Hysteresis V _{DD} From Low to High — 0.2 — OTP Themal Shutdown Lockout Hysteresis — +150 — °C OTPH Thermal Shutdown Lockout Hysteresis — +30 — °C Boost Converter V — +30 — °C Boost Converter V VSET = GND, No Load 7.2 8.0 8.8 V VO2 Output Voltage VSET = RVC, No Load 10.8 12.0 13.2 V VSET = AVDD, No Load 10.8 12.0 13.2 V V V VSET = AVDD, No Load 16 17.5 19 V C Low Side MOSFET Research Low Side MOSFET Research Low Side MOSFET Research Low Side MO	V _{EL}	Chip Disable	_			0.4	•	
V_L GSET/VSET Low — 0	V_{H}	GSET/VSET High	_	V _{DD} -0.5	_	V_{DD}		
UVLO Under Voltage Lockout Threshold VDD From High to Low — 2.2 — V UVLOH Under Voltage Lockout Hysteresis VDD From Low to High — 0.2 — V V V V V V V V V	V_{F}	GSET/VSET Floating	- 4		_	V _{DD} -1	V	
UVLOH OTP Under Voltage Lockout Hysteresis VoD From Low to High — 0.2 — OTP Thermal Shutdown Threshold — +150 — °C OTPH Thermal Shutdown Lockout Hysteresis — +30 — °C Boost Converter VO1 VSET = SND, No Load 7.2 8.0 8.8 V VO2 Output Voltage VSET = NC, No Load 10.8 12.0 13.2 V VO3 VSET = AVDD, No Load 16 17.5 19 V CL Current Limit Average Input Current — 1.0 — A RLS Low Side MOSFET Ros(ph) Io = 50mA — 0.5 — Ω fosca Boost Switching Frequency Input AC-GND 225 375 475 kHz Class-D Cammon Mode Reject Ratio V _{IN} ± ±100mV, V _{DD} = 3.6V — 60 — dB Vos Output Offset Voltage Output Offset Voltage — 5 <t< td=""><td>V_L</td><td>GSET/VSET Low</td><td>_</td><td>0</td><td>_</td><td>0.5</td><td></td></t<>	V_L	GSET/VSET Low	_	0	_	0.5		
UVLOH Under Voltage Lockout Hysteresis V _{DD} From Low to High — 0.2 — OTP Thermal Shutdown Threshold — +150 — °C OTPH Thermal Shutdown Lockout Hysteresis — +30 — °C Boost Converter Vo1 VSET = GND, No Load 7.2 8.0 8.8 V Vo2 Output Voltage VSET = NC, No Load 10.8 12.0 13.2 V Vo3 VSET = AVDD, No Load 16 17.5 19 V CL Current Limit Average Input Current — 1.0 — A RLS Low Side MOSFET Rbs(en) Io = 50mA — 0.5 — Ω f _{OSCB} Boost Switching Frequency Io = 50mA — 0.5 — Ω Class-D Class-D Amplifier Switching Frequency Input AC-GND 225 375 475 kHz CMRR Common Mode Reject Ratio V _I = ±100mV, V _{DD} =	UVLO	Under Voltage Lockout Threshold	V _{DD} From High to Low	_	2.2	_	.,	
OTP _H Thermal Shutdown Lockout Hysteresis — +30 — °C	UVLO _H	Under Voltage Lockout Hysteresis	V _{DD} From Low to High	_	0.2	_	V	
	OTP	Thermal Shutdown Threshold	-	_	+150	_	°C	
Vo1 Vo2 Vo2 Output Voltage V set = GND, No Load 7.2 8.0 8.8 V Vo3 Vo3 Vo3 Voset = NC, No Load 10.8 12.0 13.2 V V Set = AVDD, No Load 16 17.5 19 V CL Current Limit Average Input Current — 1.0 — A RLs Low Side MOSFET RDS(ON) Io = 50mA — 0.5 — Ω f _{OSCB} Boost Switching Frequency Io = 50mA — 0.5 — Ω Class-D Class-D Amplifier Switching Frequency Input AC-GND 225 375 475 kHz CMRR Common Mode Reject Ratio V _{IN} = ±100mV, V _{DD} = 3.6V — 60 — dB V _{OS} Output Offset Voltage — 5 50 mV Rp RDS(ON) High Side — 1.5 — Ω Av2 Closed-Loop Voltage Gain GsET = AVDD, Vo = 1V _{RMS} — 26	OTP _H	Thermal Shutdown Lockout Hysteresis		_	+30	_	°C	
Vo2 Output Voltage V _{SET} = NC, No Load 10.8 12.0 13.2 V Vo3 VSET = NC, No Load 16 17.5 19 V CL Current Limit Average Input Current — 1.0 — A RLS Low Side MOSFET Ros(oN) Io = 50mA — 0.5 — Ω f _{OSCB} Boost Switching Frequency — 1.1 1.5 1.9 MHz Class-D Class-D Amplifier Switching Frequency Input AC-GND 225 375 475 kHz CMRR Common Mode Reject Ratio V _{IN} = ±100mV, V _{DD} = 3.6V — 60 — dB V _{OS} Output Offset Voltage Output Offset Voltage — 5 50 mV R _P R _{DS(ON)} High Side — 1.5 — Ω Av1 GSET = AVDD, V _O = 1V _{RMS} — 32.5 — Av2 Closed-Loop Voltage Gain GSET = AVDD, V _O = 1V _{RMS} —	Boost Cor	nverter		•				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _O 1		V _{SET} = GND, No Load	7.2	8.0	8.8	V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _O 2	Output Voltage	V _{SET} = NC, No Load	10.8	12.0	13.2	V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _O 3		V _{SET} = AVDD, No Load	16	17.5	19	V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CL	Current Limit	Average Input Current	_	1.0	_	Α	
$ \begin{array}{ c c c c c c } \hline \textbf{Class-D} & \textbf{Class-D Amplifier Switching Frequency} & \textbf{Input AC-GND} & 225 & 375 & 475 & \textbf{kHz} \\ \hline \textbf{CMRR} & \textbf{Common Mode Reject Ratio} & \textbf{V}_{\text{IN}} = \pm 100 \text{mV}, \textbf{V}_{\text{DD}} = 3.6 \text{V} & - & 60 & - & dB \\ \hline \textbf{V}_{\text{OS}} & \textbf{Output Offset Voltage} & \textbf{Output Offset Voltage} & - & 5 & 50 & \text{mV} \\ \hline \textbf{R}_{\text{P}} & \textbf{R}_{\text{DS(ON)}} & \textbf{High Side} & - & 1.5 & - & \Omega \\ \hline \textbf{Low Side} & - & 0.6 & - & \Omega \\ \hline \textbf{Low Side} & - & 0.6 & - & \Omega \\ \hline \textbf{A}_{\text{V2}} & \textbf{Closed-Loop Voltage Gain} & \textbf{G}_{\text{SET}} = \text{AVDD, V}_{\text{O}} = 1\text{V}_{\text{RMS}} & - & 26 & - & dB \\ \hline \textbf{A}_{\text{V3}} & \textbf{G}_{\text{SET}} = \text{AVDD, V}_{\text{O}} = 1\text{V}_{\text{RMS}} & - & 21 & - \\ \hline \textbf{PSRR} & \textbf{Power Supply Reject Ratio} & 200 \text{m V}_{\text{PP}} \text{Supply Ripple @ 217Hz} & - & 70 & - & dB \\ \hline \textbf{THD+N} & \textbf{Total Harmonious Distortion Plus Noise} & \textbf{V}_{\text{O}} = 5\text{V}_{\text{RMS}} & - & 0.3 & - & \% \\ \hline \end{array}$	R _{LS}	Low Side MOSFET RDS(ON)	I _O = 50mA	_	0.5	_	Ω	
$ \begin{array}{ c c c c c } \hline \textbf{Class-D} & \textbf{Class-D Amplifier Switching Frequency} & \textbf{Input AC-GND} & 225 & 375 & 475 & \textbf{kHz} \\ \hline \textbf{CMRR} & \textbf{Common Mode Reject Ratio} & \textbf{V}_{\text{IN}} = \pm 100 \text{mV}, \textbf{V}_{\text{DD}} = 3.6 \text{V} & - & 60 & - & dB \\ \hline \textbf{V}_{\text{OS}} & \textbf{Output Offset Voltage} & \textbf{Output Offset Voltage} & - & 5 & 50 & \text{mV} \\ \hline \textbf{R}_{\text{P}} & \textbf{R}_{\text{DS(ON)}} & \textbf{High Side} & - & 1.5 & - & \Omega \\ \hline \textbf{Low Side} & - & 0.6 & - & \Omega \\ \hline \textbf{Low Side} & - & 0.6 & - & \Omega \\ \hline \textbf{A}_{\text{V2}} & \textbf{Closed-Loop Voltage Gain} & \textbf{G}_{\text{SET}} = \text{AVDD, V}_{\text{O}} = 1\text{V}_{\text{RMS}} & - & 26 & - & dB \\ \hline \textbf{A}_{\text{V3}} & \textbf{G}_{\text{SET}} = \text{AVDD, V}_{\text{O}} = 1\text{V}_{\text{RMS}} & - & 21 & - \\ \hline \textbf{PSRR} & \textbf{Power Supply Reject Ratio} & 200 \text{m V}_{\text{PP}} \text{Supply Ripple @ 217Hz} & - & 70 & - & dB \\ \hline \textbf{THD+N} & \textbf{Total Harmonious Distortion Plus Noise} & \textbf{V}_{\text{O}} = 5\text{V}_{\text{RMS}} & - & 0.3 & - & \% \\ \hline \end{array}$	fosca	Boost Switching Frequency		1.1	1.5	1.9	MHz	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				I	ı			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f _{OSCD}	Class-D Amplifier Switching Frequency	Input AC-GND	225	375	475	kHz	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CMRR	Common Mode Reject Ratio	$V_{IN} = \pm 100 \text{mV}, V_{DD} = 3.6 \text{V}$	_	60	_	dB	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vos	Output Offset Voltage	Output Offset Voltage	_	5	50	mV	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			High Side	_	1.5	_	Ω	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R _P R _{DS(ON)}		Low Side	_	0.6	_	Ω	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A _V 1		G _{SET} = AVDD, V _O = 1V _{RMS}	_	32.5	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A _V 2	Closed-Loop Voltage Gain	G _{SET} = AVDD, V _O = 1V _{RMS}	_	26	_	dB	
PSRRPower Supply Reject Ratio 200m V_{PP} Supply Ripple @ 217Hz $ 70$ $ dB$ THD+NTotal Harmonious Distortion Plus Noise $V_0 = 5V_{RMS}$ $ 0.3$ $ \%$	A _V 3		G _{SET} = AVDD, V _O = 1V _{RMS}	_	21	_		
THD+N Total Harmonious Distortion Plus Noise V _O = 5V _{RMS} — 0.3 — %		Power Supply Reject Ratio		_	70	_	dB	
C - Tuno				_	0.3	_	%	
	SNR	Signal to Noise Ratio		_	90	_	dB	


Typical Operating Characteristics

 $(@T_A = +25^{\circ}C, V_{DD} = 4.2V, Gain = 26dB, C_{IN} = 1\mu F, C_{LOAD} = 1\mu F, unless otherwise specified.)$

Typical Operating Characteristics (continued) (@T_A = +25°C, V_{DD} = 5V, Gain = 18dB, unless otherwise specified.)

Application Information

Select Boost Converter Output Voltage

Customer can use V_{SET} pin to set boost converter output voltage between 8V, 12V and 17.5V. V_{SET} pin configuration table as below:

V _{SET} Pin Configuration	Min	Max	PVCC Voltage	Audio Amplifier Maximum Output Voltage
Connect to AVDD	AVDD – 0.5V	AVDD	17.5V	11V _{RMS} (V _{PP} = 31.1V)
Floating	1V	AVDD – 1V	12V	5V _{RMS} (V _{PP} = 22.6V)
Connect to GND	GND	0.5V	8V	5V _{RMS} (V _{PP} = 14.1V)

Input Resistance (R_I)

The input resistors ($R_I = R_{IN} + R_{EX}$) set the gain of the amplifier according to Equation 1 when anti-saturation is inactive.

$G = 20 \text{ Log } [12.8*R_F/(R_{IN}+_{REX})] (dB)$

G _{SET}	R _{IN}	R _F
G _{SET} = V _{DD}	36.5kΩ	122.6kΩ
G _{SET} = Floating	59kΩ	100kΩ
G _{SET} = GND	82kΩ	77.4kΩ

Where R_{IN} is a 77.4k Ω internal resistor, R_{EX} is the external input resistor, R_{F} is a 122.6k Ω internal resistor. Resistor matching is very important in fully differential amplifiers. The balance of the output on the reference voltage depends on matched ratios of the resistors. CMRR, PSRR, and cancellation of the second harmonic distortion diminish if resistor mismatch occurs. Therefore, it is recommended to use 1% tolerance resistors or better to keep the performance optimized. Matching is more important than overall tolerance. Resistor arrays with 1% matching can be used with a tolerance greater than 1%.

Place the input resistors very close to the PAM8902H to limit noise injection on the high-impedance nodes. For optimal performance the gain should be set to lower. Lower gain allows the PAM8902H to operate at its best, and keeps a high voltage at the input making the inputs less susceptible to noise. In addition to these features, higher value of R_I minimizes pop noise.

Input Capacitors (C_I)

In the typical application, an input capacitor, C_I , is required to allow the amplifier to bias the input signal to the proper DC level for optimum operation. In this case, C_I and the minimum input impedance R_I form is a high-pass filter with the corner frequency determined in the follow equation:

$$f_C = \frac{1}{2\pi R_1 C}$$

It is important to consider the value of C_l as it directly affects the low frequency performance of the circuit. For example, when R_l is $150k\Omega$ and the specification calls for a flat bass response are down to 150Hz. Equation is reconfigured as followed:

$$C_I = \frac{1}{2\pi R_{IFC}}$$

When input resistance variation is considered, the C_l is 7nF, so one would likely choose a value of 10nF. A further consideration for this capacitor is the leakage path from the input source through the input network (C_l , $R_l + R_F$) to the load. This leakage current creates a DC offset voltage at the input to the amplifier that reduces useful headroom, especially in high gain applications. For this reason, a low-leakage tantalum or ceramic capacitor is the best choice. When polarized capacitors are used, the positive side of the capacitor should face the amplifier input in most applications as the DC level is held at $V_{DD}/2$, which is likely higher than the source DC level. Please note that it is important to confirm the capacitor polarity in the application.

Application Information (continued)

Decoupling Capacitor

The PAM8902H is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to ensure the output Total Harmonic Distortion (THD) as low as possible.

The optimum decoupling is achieved by using two different types of capacitors that target on different types of noise on the power supply leads. For higher frequency transients, spikes or digital hash on the line, a good low Equivalent Series-Resistance (ESR) ceramic capacitor, typically $1\mu F$, is placed as close as possible to the device AVDD pin for the best operation. For filtering lower frequency noise signals, a large ceramic capacitor of $10\mu F$ or greater placed near the AVDD supply trace is recommended.

External Schottky Diode

Use external Schottky diode can get the best driving capability and efficiency. Since internal power diode has limited driving capability, only in following conditions customer can remove the external Schottky diode to reduce the cost.

- 1. V_{SET} = GND or Floating and C_L less than $1\mu F$.
- 2. The signal frequency less than 4kHz.
- 3. Haptic application (50 to 500Hz)

Shutdown Operation

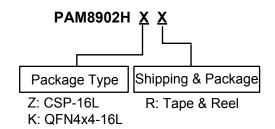
In order to reduce power consumption while not in use, the PAM8902H contains shutdown circuitry amplifier off when a logic low is placed on the ENA pin. By switching the ENA pin connected to GND, the PAM8902H supply current draw will be minimized in idle mode.

Under Voltage Lock-Out (UVLO)

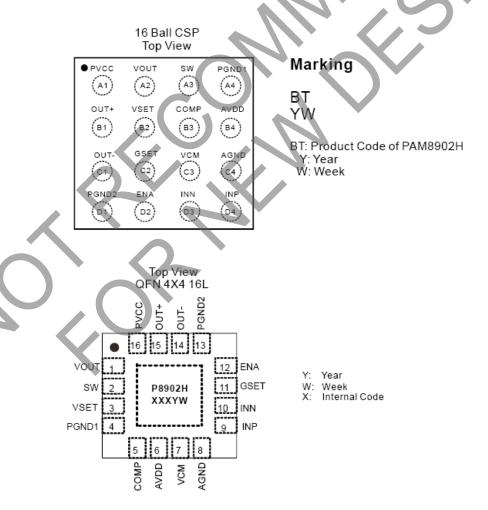
The PAM8902H incorporates circuitry designed to detect supply voltage. When the supply voltage drops to 2.2V or below, the PAM8902H goes into a state of shutdown, and the device comes out of its shutdown state and restore to normal function only when reset the power supply or ENA pin.

Short Circuit Protection (SCP)

The PAM8902H has short circuit protection circuitry on the outputs to prevent the device from damage when output-to-output shorted or output-to-GND shorted occurs. When a short circuit occurs, the device goes into a latch state and must be reset by cycling the voltage on the ENA pin to a logic low and then back to the logic high state for normal operation. This will clear the short-circuit flag and allow for normal operation if the short was removed. If the short was not removed, the protection circuitry will again activate.


Over Temperature Protection (OTP)

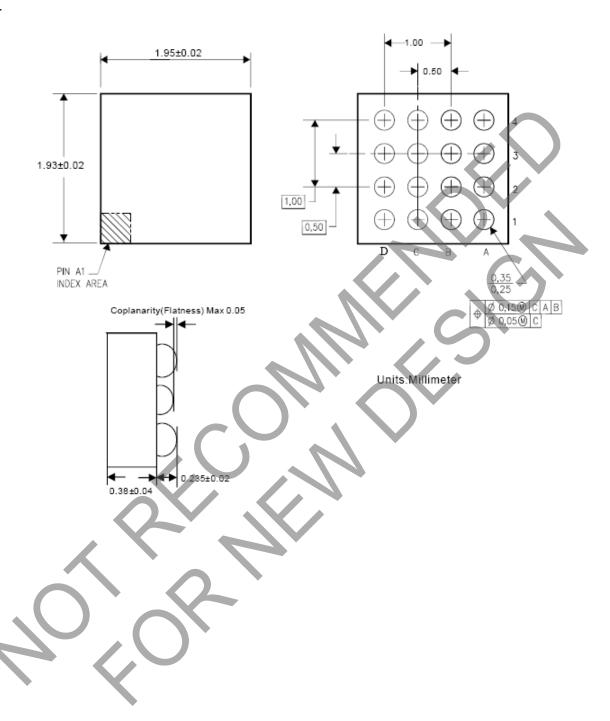
Thermal protection on the PAM8902H prevents the device from damage when the internal die temperature exceeds +150°C. There is a +15°C tolerance on this trip point from device to device. Once the die temperature exceeds the set point, the device will enter the shutdown state and the outputs are disabled, in this condition both OUT+ and OUT- will become high impedance. This is not a latched fault. The thermal fault is cleared once the temperature of the die decreased by +30°C. This large hysteresis will prevent motor boating sound well and the device begins normal operation at this point with no external system interaction.



Ordering Information

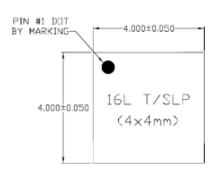
Part Number	Part Marking	Package Type	Standard Package
PAM8902HZER	BT YW	CSP-16L	3000 Units/Tape and Reel
PAM8902HKER	P8902H XXXYW	QFN4x4-16L	3000 Units/Tape and Reel

Marking Information



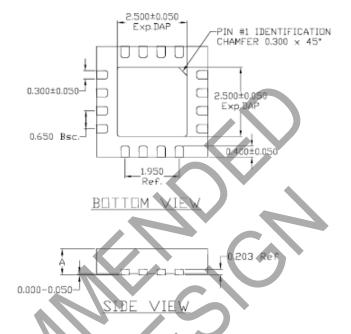
: Pin 1 Indicator

Package Outline Dimensions (All dimensions in mm.)


CSP-16L

Package Outline Dimensions (All dimensions in mm.)

QFN4x4-16L



TOP VIEW

NOTE:

1) TSLP AND SLP SHARE THE SAME EXPOSE DUTLINE BUT WITH DIFFERENT THICKNESS:

		TSLP	SLP
	MAX.	0.800	0.900
LΑ	N□M.	0.750	0.850
	MIN.	0.700	0.800

IMPORTANT NOTICE

- 1. DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

Copyright © 2021 Diodes Incorporated

www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Audio Amplifiers category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below:

LV47002P-E NCP2811AFCT1G NCP2890AFCT2G SSM2377ACBZ-R7 IS31AP4915A-QFLS2-TR NCP2820FCT2G TDA1591T

TDA7563AH SSM2529ACBZ-R7 MAX9890AETA+T TS2012EIJT NCP2809BMUTXG NJW1157BFC2 SSM2375CBZ-REEL7

IS31AP4996-GRLS2-TR STPA002OD-4WX NCP2823BFCT1G MAX9717DETA+T MAX9717CETA+T MAX9724AEBC+TG45

LA4450L-E IS31AP2036A-CLS2-TR TDA7563ASMTR AS3561-DWLT SSM2517CBZ-R7 SABRE9601K THAT1646W16-U

PAM8965ZLA40-13 BD37532FV-E2 BD5638NUX-TR BD37512FS-E2 BD37543FS-E2 BD3814FV-E2 TPA3140D2PWPR TS2007EIJT

IS31AP2005-DLS2-TR AS3410-EQFP-500 FDA4100LV TS4994EIJT NCP2820FCT1G NCP2823AFCT2G NCS2211MNTXG

CPA2233CQ16-A1 OPA1612AQDRQ1 TDA7492 SSM2519ACBZ-R7 ZXCD1210JB16TA TPA3255DDVR TAS5722LRSMT

NCP2823AFCCT2G