

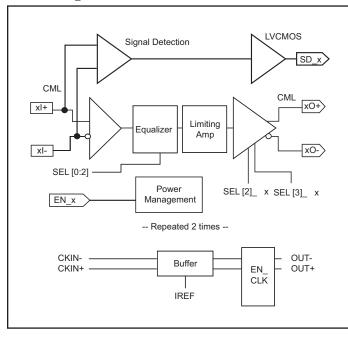
PI2EQX3202B

3.2Gbps, 4 Differential Channel, Serial ReDriverTM with Equalization, De-emphasis, and Squelch

Features

- Supports data rates up to 3.2Gbps on each lane
- Optimized for SATA i/m operation
- Adjustable Transmiter De-Emphasis & Amplitude
- Adjustable Receiver Equalization
- Two Spread Spectrum Reference Clock Buffer Outputs
- · Optimized for SATA applications
- Input signal level detection & output squelch on all channels
- 100-Ohm Differential CML I/O's
- Low Power (100mW per Channel)
- Standby Mode Power Down State
- V_{DD} Operating Range: 1.5V to 1.8V
- Industrial temperture range
- Packaging (Pb-free & Green): 84-ball LFBGA (NB84)

Description


Pericom Semiconductor's PI2EQX3202B is a low power, signal ReDriver[™]. The device provides programmable equalization, amplification, and de-emphasis by using 7 select bits, SEL[0:6], to optimize performance over a variety of physical mediums by reducing Inter-symbol Interference. PI2EQX3202B supports four 100-Ohm Differential CML data I/O's between the Protocol ASIC to a switch fabric, across a backplane, or to extend the signals across other distant data pathways on the user's platform.

The integrated equalization circuitry provides flexibility with signal integrity of the signal before the ReDriver. Whereas the integrated de-emphasis circuitry provides flexibility with signal integrity of the signal after the ReDriver.

A low-level input signal detection and output squelch function is provided for all four channels. Each channel operates fully independently. When a channel is enabled ($EN_x=1$) and operating, that channels input signal level (on xI+/-) determines whether the output is enabled. If the input level of the channel falls below the active threshold level (Vth-) then the outputs are driven to the common mode voltage.

In addition to providing signal re-conditioning, Pericom's PI2EQX3202B also provides power management Stand-by mode operated by an Enable pin.

Block Diagram

Pin Description

	1	2	3	4	5	6	7	8	9	10
A	SD_C	SD_D	SELO_A	SELO_B	SEL4_A	SEL4_B	SEL6_A	SEL6_B	EN_A	EN_B
в	V _{DD}	SD_B	V _{DD}	SEL1_A	SEL2_A	SEL3_A	SEL5_A	V _{DD}	EN_C	V _{DD}
c	BO+	SD_A	Al+	SEL1_B	SEL2_B	SEL3_B	SEL5_B	BI+	EN_D	AO+
D	BO-	V _{DD}	Al-					BI-	GND	AO-
E	GND	v_{DD}	GND					GND	GND	GND
F	V _{DD}	GND	V _{DD}		84-Bal	I LFBGA		V _{DD}	GND	V _{DD}
G	DO+	SEL0_C	CI+					DI+	SEL6_C	CO+
н	DO-	SELO_D	CI–	V _{DD}	CKIN+	CKIN-	GND	DI–	SEL6_D	CO-
L	GND	SEL1_C	GND	SEL2_C	SEL2_D	SEL3_D	IREF	GND	SEL4_D	GND
к	EN_CLK	SEL1_D	SEL3_C	SEL4_C	OUT0+	OUT0-	OUTI +	OUT1-	SEL5_C	SEL5_D

Pin Description

Pin #	Pin Name	I/O	Description
B1, F1, D2, E2, B3, F3, H4, B8, F8, B10, F10	V _{DD}	PWR	Supply Voltage, $1.5V$ to $1.8V \pm 0.1V$
C3 D3	AI+ AI-	Ι	CML Input Channel A with internal 50Ω pull down
E1, J1, F2, E3, J3, H7, E8, J8, D9, E9, F9, E10, J10	GND	PWR	Supply Ground
C8 D8	BI+ BI-	Ι	CML Input Channel B with internal 50Ω pull down
G3 H3	CI+ CI-	Ι	CML Input Channel C with internal 50Ω pull down
G8 H8	DI+ DI-	Ι	CML Input Channel D with internal 50Ω pull down
A3, B4, B5	SEL[0:2]_A	Ι	
A4, C4, C5	SEL[0:2]_B	Ι	Selection pins for equalizer (see Amplifier Configuration Table)
G2, J2, J4	SEL[0:2]_C	Ι	w/ 50k Ω internal pull up
H2, K2, J5	SEL[0:2]_D	Ι	
B6, A5	SEL[3:4]_A	Ι	
C6, A6	SEL[3:4]_B	Ι	Selection pins for amplifier (see Amplifier Configuration Table)
K3, K4	SEL[3:4]_C	Ι	w/ 50k Ω internal pull up
J6, J9	SEL[3:4]_D	Ι	
B7, A7	SEL[5:6]_A	Ι	
C7, A8	SEL[5:6]_B	Ι	Selection pins for De-Emphasis (See De-Emphasis Configuration Table)
K9, G9	SEL[5:6]_C	Ι	w/ 50k Ω internal pull up
K10, H9	SEL[5:6]_D	Ι	
C10 D10	AO+ AO-	0	CML Output Channel A internal 50 Ω pull up to V _{DD} during normal operation and 2k Ω when EN_A=0. Drives to output common mode voltage when input is $<$ V _{TH-} .
C1 D1	BO+ BO-	0	CML Output Channel B with internal 50 Ω pull up to V _{DD} during normal operation and 2k Ω when EN_B=0. Drives to output common mode voltage when input is $.$
G10 H10	CO+ CO-	0	CML Output Channel C with internal 50 Ω pull up to V _{DD} during normal operation and 2k Ω when EN_C=0. Drives to output common mode voltage when input is $.$
G1 H1	DO+ DO-	0	CMLOutput Channel D with internal 50 Ω pull up to V _{DD} during normal operation and 2k Ω when EN_D=0. Drives to output common mode voltage when input is $.$
A9, A10, B9, C9	EN_ [A,B,C,D]	Ι	Active HIGH LVCMOS signal input pins, when HIGH, it enables the CML output. When LOW, it disables the CML output ($x0+$, $x0-$) to HI-z state. Both $x0+$ & $x0-$ outputs will be pulled up to V _{DD} by internal $2k\Omega$ resistor.

(Continued)

PI2EQX3202B 3.2Gbps, 4 Differential Channel, Serial ReDriver™ with Equalization, De-emphasis, and Squelch

Pin #	Pin Name	I/O	Description
H6 H5	CKIN- CKIN+	Ι	Differential Reference Clock Input
K5 K6	OUT0+, OUT0-	0	Differential Deference Cleak Outputs
K7 K8	OUT1+, OUT1-	0	Differential Reference Clock Outputs
J7	IREF	0	External 475Ω resistor connection to set the differential output current
K1	EN_CLK	Ι	Active HIGH LVCMOS signal input pin. When HIGH, it enables the OUTx+/OUTx- outputs. When LOW, it disables these outputs, with 50Ω to ground termination.
C2,B2,A1,A2	SD_A, SD_B, SD_C, SD_D	0	Signal detect output. Provides a LVCMOS high output when a valid input signal is detected. When low, SD_X indicates that the input signal level is below the signal detect threshold level.

Output Swing Control

SEL3_[A:D]	SEL4_[A:D]	Swing
0	0	1x
0	1	0.8x
1	0	1.2x
1	1	1.4x

Output De-emphasis Adjustment

SEL5_[A:D]	SEL6_[A:D]	De-emphasis
0	0	0dB
0	1	-2.5dB
1	0	-3.5dB
1	1	-4.5dB

Equalizer Selection

SEL0_[A:D]	SEL1_[A:D]	SEL2_[A:D]	Compliance Channel @ 1.6GHz
0	0	0	No Equalization
0	0	1	$0.5 dB \pm 0.5 dB$
0	1	0	1.5 dB ± 1.0 dB
0	1	1	2.5 dB ± 1.0 dB
1	0	0	3.5 dB ± 1.0 dB
1	0	1	4.5 dB ± 1.0 dB
1	1	0	5.5 dB ± 1.0 dB
1	1	1	6.5 dB ± 1.0 dB

Note:

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Supply Voltage to Ground Potential	0.5V to +2.5V
DC SIG Voltage	$-0.5V$ to $V_{DD} + 0.5V$
Current Output	25mA to +25mA
Power Dissipation Continous	800mW
Operating Temperature	40 to +85°C

Stresses greater than those listed under MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

AC/DC Electrical Characteristics (V_{DD} = 1.4V to 1.9V)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
D	Cumula Douron	EN = LVCMOS Low			0.1	W	
Ps	Supply Power	EN = LVCMOS High			0.6	W	
t _{PD}	Latency	From input to output		2.0		ns	
CML Receive	r Input						
V _{RX-DIFFP-P}	Differential Input Peak-to- peak Voltage		0.200			V	
V _{RX-CM-ACP}	AC Peak Common Mode Input Voltage				150	mV	
V _{TH} -	Signal Detect Threshold	$E_{N_X} = High$	50		200	mVp-p	
Z _{RX-DIFF-DC}	DC Differential Input Impedance		80	100	120	Ω	
Z _{RX-DC}	DC Input Impedance		40	50	60		
Equalization							
In a	Residual Jitter ^(1,2)	Total Jitter			0.3	I lln n	
J _{RS}		Deterministic jitter			0.2	Ulp-p	
J _{RM}	Random Jitter ^(1,2)			1.5		psrms	

Notes

1. K28.7 pattern is applied differentially at point A as shown in Figure 1.

2. Total jitter does not include the signal source jitter. Total jitter $(TJ) = (14.1 \times RJ + DJ)$ where RJ is random RMS jitter and DJ is maximum deterministic jitter. Signal source is a K28.5 ± pattern (00 1111 1010 11 0000 0101) for the deterministic jitter test and K28.7 (0011111000) or equivalent for random jitter test. Residual jitter is that which remains after equalizing media-induced losses of the environment of Figure 1 or its equivalent. The deterministic jitter at point B must be from media-induced loss, and not from clock source modulation. Jitter is measured at 0V at point C of Figure 1.

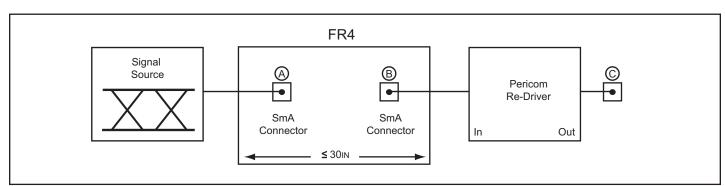


Figure 1. Test Condition Referenced in the Electrical Characteristic Table

AC/DC Electrical Characteristics ($V_{DD} = 1.4V$ to 1.9V)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
CML Transmitt	er Output (100-Ohm differential)					
V _{DIFFP}	Output Voltage Swing V _{TX-D+} - V _{TX-D-}		200		600	mVp-p
V _{TX} -DIFFP-P	Output Voltage Swing V _{TX-D+} - V _{TX-D-}		400 ⁽²⁾		1200 ⁽³⁾	mVp-pd
$V_{TX-C}^{(4)}$	Common-Mode Voltage	V _{TX-D+} - V _{TX-D-} / 2		V _{DD} - 0.3		
t _{F,} t _R	Transition Time	20% to 80% ⁽¹⁾			150	ps
Z _{OUT}	Output Resistance	Single-ended	40	50	60	Ω
Z _{TX-DIFF-DC}	DC Differential TX Impedance		80	100	120	Ω
C _{TX}	AC Coupling Capacitor		75		200	nF
LVCMOS Cont	rol Pins					
V _{IH}	Input High Voltage		0.65 × V _{DD}		V _{DD}	V
V _{IL}	Input Low Voltage				$0.35 \times V_{DD}$	V
I _{IH}	Input High Current				250	
I _{IL}	Input Low Current			1	500	μΑ
LVCMOS Outp	uts		· · · · · · · · · · · · · · · · · · ·			
V _{OH}	Output HIGH Voltage	$I_{OH} = -10 \text{mA}$	V _{DD} - 0.4			V
V _{OL}	Output LOW Voltage	$I_{OL} = 10 \text{mA}$		Ì	0.4	V

Note:

1. Using K28.7 (0011111000) pattern)

2. When 0.8x swing selected

3. When 1.4x swing selected

4. The parameter is determined by device characterization, and is not production tested

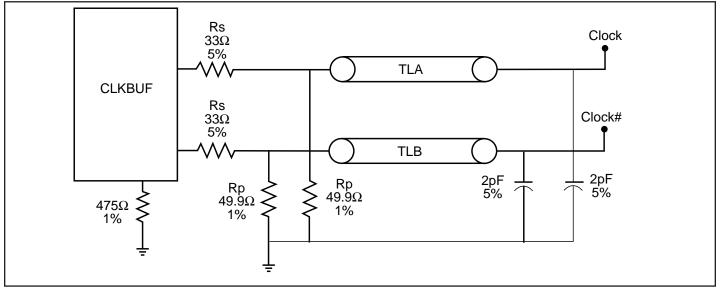
AC Switching Characteristics for Clock Buffer ($V_{DD} = 1.4$ to 1.9V)⁽³⁾

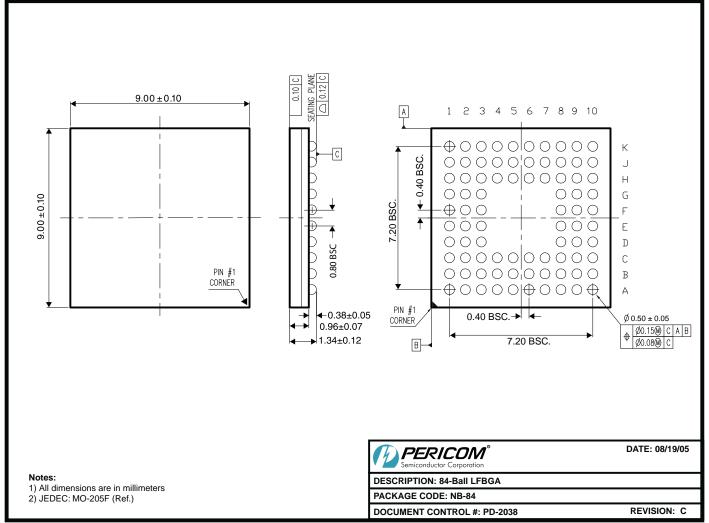
Symbol	Parameters	Min	Max.	Units	Notes
T _{rise} / T _{fall}	Rise and Fall Time (measured between $0.175V$ to $0.525V$) ⁽¹⁾	125	525		1
$\Delta T_{rise} / \Delta T_{fall}$	Rise and Fall Time Variation		75	ps	1
V _{HIGH}	Voltage High including overshoot	660	900		1
V _{LOW}	Voltage Low including undershoot	-150			1
V _{CROSS}	Absolute crossing point voltages	-200	550	mV	1
ΔV_{CROSS}	Total Variation of Vcross over all edges	200	250		1
T _{DC}	Duty Cycle (input duty cycle = 50%) ⁽²⁾	45	55	%	2

Notes:

- 1. Measurement taken from Single Ended waveform.
- 2. Measurement taken from Differential waveform.
- 3. Test configuration is $R_S = 33.2\Omega$, $Rp = 49.9\Omega$, and 2pF.

Configuration Test Load Board Termination




Figure 2. Configuration test load board termination

Note:

• TLA and TLB are 3" transmission lines.

Package Mechanical: 84-ball LFBGA (NB)

05-5338

Ordering Information

Ordering Number	Package Code	Package Description
PI2EQX3202BNBE	NB	Pb-free & Green 84-Ball LFBGA

Notes:

• Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

• E = Pb-free and Green

• X suffix = Tape/Reel

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :

74AUP2G34FW3-7 HEF4043BP NL17SG125DFT2G PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 5962-8982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NLV37WZ17USG NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC1G126FW4-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G LE87100NQC LE87100NQCT LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG