PCI Express ${ }^{\oplus}$ 2.0, 2-lane Exchange Switch

Features

- 8 Differential Channel (2-lane) Exchange Switch
- PCI Express® 2.0 performance, 5.0 Gbps
- Low Bit-to-Bit Skew: 10ps (between +/- signals)
- Low Crosstalk: -28dB @ 2.5 GHz (5Gbps)
- Low Insertion Loss: -2.1dB @ 2.5 GHz (5Gbps)
- V_{DD} Operating Range: +1.5 V to $+1.8 \mathrm{~V} \pm 10 \%$
- ESD Tolerance: 2 kV HBM
- Packaging: 42-contact TQFN (ZH42)

Truth Table

Function	SEL	OE\#
$\mathrm{Ax}=\mathrm{Bx}$ $\mathrm{Cx}=\mathrm{Dx}$	L	0
$\mathrm{Ax}=\mathrm{Dx}$ $\mathrm{Cx}=\mathrm{Bx}$	H	0
$\mathrm{Ax}, \mathrm{Bx}, \mathrm{Cx}, \mathrm{DX}=$ $\mathrm{Hi}-\mathrm{Z}$	x	1

Block Diagram

Description

Pericom Semiconductor's PI2PCIE2442 is a differential exchange switch featuring pass-through pinout. It supports two full PCI Express lanes operating at $5.0 \mathrm{Gbps} \mathrm{PCIe} ®^{\Omega} 2.0$ performance.

With the select control input low, Port A connects to Port B, and Port C connects to port D for an 8-channel differential pass-though. When the select control input is high Port A connects to Port D, and Port B connects to Port C.

Pin Description

Pin \#	Pin Name	I/O	Description
2	$\begin{aligned} & \hline \mathrm{A} 0+ \\ & \mathrm{A} 0- \end{aligned}$	I/O	Signal I/O, Channel 0, Port A
$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & \mathrm{A} 1+ \\ & \mathrm{A} 1- \end{aligned}$	I/O	Signal I/O, Channel 1, Port A
$\begin{aligned} & \hline 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \mathrm{A} 2+ \\ & \mathrm{A} 2- \end{aligned}$	I/O	Signal I/O, Channel 2, Port A
$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{A} 3+ \\ & \mathrm{A} 3- \end{aligned}$	I/O	Signal I/O, Channel 3, Port A
$\begin{aligned} & 38 \\ & 37 \end{aligned}$	$\begin{aligned} & \mathrm{B} 0+ \\ & \mathrm{B} 0- \end{aligned}$	I/O	Signal I/O, Channel 0, Port B
$\begin{aligned} & 34 \\ & 33 \end{aligned}$	$\begin{aligned} & \text { B1+ } \\ & \text { B1- } \end{aligned}$	I/O	Signal I/O, Channel 1, Port B
$\begin{aligned} & 29 \\ & 28 \end{aligned}$	$\begin{aligned} & \mathrm{B} 2+ \\ & \text { B2- } \end{aligned}$	I/O	Signal I/O, Channel 2, Port B
$\begin{aligned} & 25 \\ & 24 \end{aligned}$	$\begin{aligned} & \hline \text { B3+ } \\ & \text { B3- } \end{aligned}$	I/O	Signal I/O, Channel 3, Port B
$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{C} 0+ \\ & \mathrm{C} 0- \end{aligned}$	I/O	Signal I/O, Channel 0, Port C
$\begin{aligned} & \hline 7 \\ & 8 \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} 1+ \\ & \mathrm{C} 1- \end{aligned}$	I/O	Signal I/O, Channel 1, Port C
$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} 2+ \\ & \mathrm{C} 2- \\ & \hline \end{aligned}$	I/O	Signal I/O, Channel 2, Port C
$\begin{aligned} & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & \text { C3+ } \\ & \text { C3- } \end{aligned}$	I/O	Signal I/O, Channel 3, Port C
$\begin{aligned} & 36 \\ & 35 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} 0+ \\ & \mathrm{D} 0- \end{aligned}$	I/O	Signal I/O, Channel 0, Port D
$\begin{aligned} & 32 \\ & 31 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} 1+ \\ & \mathrm{D} 1- \end{aligned}$	I/O	Signal I/O, Channel 1, Port D
$\begin{aligned} & 27 \\ & 26 \end{aligned}$	$\begin{aligned} & \hline \text { D2+ } \\ & \text { D2- } \end{aligned}$	I/O	Signal I/O, Channel 2, Port D
$\begin{aligned} & 23 \\ & 22 \end{aligned}$	$\begin{aligned} & \hline \text { D3+ } \\ & \text { D3- } \end{aligned}$	I/O	Signal I/O, Channel 3, Port D
41	OE\#	I	Output Enable, active low. When OE\# = 0 the device I/O is enabled. When OE\#=1, all I/O are high impedance
9	SEL	I	Operation mode Select (when $\mathrm{SEL}=0: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{C} \rightarrow \mathrm{D}$, when $\mathrm{SEL}=1: \mathrm{A} \rightarrow \mathrm{D}, \mathrm{C} \rightarrow \mathrm{B}$)
18, 20, 30, 40, 42	V_{DD}	Pwr	1.5 V to 1.8 V ($\pm 0.1 \mathrm{~V}$) Positive Supply Voltage
$\begin{gathered} 19,21,39, \text { Center } \\ \text { Pad } \end{gathered}$	GND	Pwr	Power ground

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

$0^{\circ} \mathrm{C}$	Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This
Supply Voltage to Ground Potential............................... -0.5 V to +2.5 V	is a stress rating only and functional operation of the device
DC Input Voltage ... -0.5 V to V DD	at these or any other conditions above those indicated in the
DC Output Current.. 120mA	rational sections of this specification is not implied. Exure to absolute maximum rating conditions for extended
Power Dissipation ... 0.5W	periods may affect reliability.

Power Supply Characteristics

Parameters	Description	Test Conditions ${ }^{(\mathbf{1)}}$	Min.	Typ. ${ }^{(\mathbf{2})}$	Max.	Units
I_{DD}	Quiescent Power Supply Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\mathrm{IN}}=$ GND or V_{DD}			400	$\mu \mathrm{~A}$

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.

DC Electrical Characteristics for Switching over Operating Range

$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$ to $\left.1.8 \mathrm{~V} \pm 10 \%\right)$

Parameter	Description	Test Conditions	Min	Typ ${ }^{(1)}$	Max	Units
V_{IH}	Input HIGH Voltage, SEL and OE\#	Guaranteed HIGH level	$0.65 \times \mathrm{V}_{\text {DD }}$			V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage, SEL and OE\#	Guaranteed LOW level	-0.5		$\begin{gathered} 0.35 \mathrm{x} \\ \mathrm{~V}_{\mathrm{DD}} \end{gathered}$	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage, SEL and OE\#	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		-0.7	-1.2	
IIH	Input HIGH Current, SEL and OE\#	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$			± 5	$\mu \mathrm{A}$
IIL	Input LOW Current, SEL and OE\#	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$			± 5	
	DC Signal Voltage Range, channel$\mathrm{I} / \mathrm{O}\left(\mathrm{~A}_{\mathrm{x}}, \mathrm{~B}_{\mathrm{x}}, \mathrm{C}_{\mathrm{x}}, \mathrm{D}_{\mathrm{x}}\right)$	$\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{I}}>95 \%, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}$-Ohms	-0.4		2.5	V
VIDC		$\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{I}}>80 \%, \mathrm{R}_{\mathrm{L}}=50-\mathrm{Ohms}$	-0.3		1.2	
$\mathrm{R}_{\text {ON }}$	Channel On Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Min., } \mathrm{V}_{\mathrm{IN}}=1.3 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}= \\ & 40 \mathrm{~mA} \end{aligned}$			10	Ohm
$\mathrm{C}_{\text {ON(AB) }}$	Channel On Capacitance	$\mathrm{V}_{\text {IN }}=0, \mathrm{~V}_{\text {DD }}=1.8 \mathrm{~V}$		2.2	3.0	pF

[^0]
Switching Characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$ to $\left.1.8 \mathrm{~V} \pm 10 \%\right)$

Paramenter	Description	Min.	Typ.	Max.	Units
tPZH, tpZL	Line Enable Time - SEL to AN, BN	0.5		8	ns
tPHZ, tPLZ	Line Disable Time - SEL to AN, BN	0.5		8	
$\mathrm{t}_{\mathrm{b}-\mathrm{b}}$	Bit-to-bit skew within same differential pair			4	ps
$\mathrm{t}_{\text {ch }} \mathrm{t}_{\text {ch }}$	Channel-to-channel timing skew			35	

Dynamic Electrical Characteristics Over the Operating Range

$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$ to $1.8 \mathrm{~V} \pm 10 \%$)

Parameter	Description	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Units
BW	Bandwidth (-3dB)			3.4		GHz
$\mathrm{V}_{\text {IF }}$	Max Signal Frequency Range	Insertion loss $1.5 \mathrm{~dB}, \mathrm{~V}_{\mathrm{IN}}=0.6 \mathrm{Vpp}, \mathrm{DC}=0 \mathrm{~V}$	1.6			GHz
		Insertion loss $1.5 \mathrm{~dB}, \mathrm{~V}_{\mathrm{IN}}=0.6 \mathrm{Vpp}, \mathrm{DC}=0.9 \mathrm{~V}$	1.6			
		Insertion loss $3 \mathrm{~dB}, \mathrm{~V}_{\mathrm{IN}}=0.6 \mathrm{Vpp}, \mathrm{DC}=0 \mathrm{~V}$	3.0			
		Insertion loss $3 \mathrm{~dB}, \mathrm{~V}_{\text {IN }}=0.6 \mathrm{Vpp}, \mathrm{DC}=0.9 \mathrm{~V}$	3.0			
$\mathrm{P}-1 \mathrm{~dB}$	1 dB Compression Input Signal	$\mathrm{R}_{\mathrm{L}}=50, \mathrm{f}=625 \mathrm{MHz}$, sin wave, $\mathrm{DC}=0 \mathrm{~V}$	1.2			Vpp
		$\mathrm{R}_{\mathrm{L}}=50, \mathrm{f}=625 \mathrm{MHz}$, sin wave, $\mathrm{DC}=0.45 \mathrm{~V}$	2.0			
		$\mathrm{R}_{\mathrm{L}}=50, \mathrm{f}=625 \mathrm{MHz}$, sin wave, $\mathrm{DC}=0.9 \mathrm{~V}$	2.4			
RLOSS	Return Loss	$\mathrm{f}=2.5 \mathrm{GHz}$		-18		dB
$\mathrm{X}_{\text {TALK }}$	Crosstalk	$\mathrm{f}=2.5 \mathrm{GHz}$		-28		
		$\mathrm{f}=100 \mathrm{MHz}$		-60		
$\mathrm{O}_{\text {IRR }}$	OFF Isolation	$\mathrm{f}=2.5 \mathrm{GHz}$		-22		
		$\mathrm{f}=100 \mathrm{MHz}$		-55		
$\mathrm{I}_{\text {LOSS }}$	Differential Insertion Loss	$\mathrm{f}=2.5 \mathrm{GHz}$		-2.1		

Notes:

1. Guaranteed by design. Typical values are at $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.

Crosstalk ($\left.\mathrm{V}_{\mathrm{DD}}=\mathbf{1 . 8 V}, \mathbf{2 5}^{\circ} \mathrm{C}\right)$

Differential Off Isolation $\left(V_{D D}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Insertion Loss $\left(\mathrm{V}_{\mathrm{DD}}=\mathbf{1 . 8 V}, \mathbf{2 5}^{\circ} \mathrm{C}\right)$

Differential Return Loss ($\mathbf{V}_{\mathrm{DD}}=\mathbf{1 . 8 V}, \mathbf{2 5}^{\circ} \mathrm{C}$)

Test Circuit for Electrical Characteristics ${ }^{(1-5)}$

Switch Positions

Test	Switch
t $_{\text {PLZ }}, \mathrm{t}_{\text {PZL }}$	$2 \times \mathrm{V}_{\text {DD }}$
t $_{\text {PHZ }}, \mathrm{t}_{\text {PZH }}$	GND
Prop Delay	Open

Notes:

1. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance: includes jig and probe capacitance.
2. $\quad \mathrm{R}_{\mathrm{T}}=$ Termination resistance: should be equal to $\mathrm{Z}_{\text {OUT }}$ of the Pulse Generator
3. Output 1 is for an output with internal conditions such that the output is low except when disabled by the output control. output 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
4. All input impulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{R}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{F}} \leq 2.5 \mathrm{~ns}$.
5. The outputs are measured one at a time with one transition per measurement.

Switching Waveforms

Voltage Waveforms Enable and Disable Times

Packaging Mechanical: 42-Contact TQFN (ZH)

12-0529

- For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Description
PI2PCIE2442ZHEX	ZH	42-contact, Thin Fine Pitch Quad Flat No-Lead (TQFN)

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
2. $\mathrm{E}=$ Lead-free and green
3. X suffix $=$ tape and reel

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 CD4053BPWRG4 ADG658TRUZ-EP FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZ-RL7 ADW54003-0 AD7506JNZ AD7506KNZ AD7506SQ AD8170AR AD8183ARUZ AD8184ANZ AD8185ARUZ AD8187ARUZ AD8188ARUZ AD8189ARUZ ADG1208YRUZREEL7 ADG1409YCPZ-REEL7 ADG5209FBRUZ ADG1408YRUZ-REEL7 ADG659YRUZ-REEL7

[^0]: Note:

 1. Typical values are at $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
