

Low-Voltage, 4:1 Mux/Demux with Low-Swing Control Inputs

Features

- → CMOS Technology for Analog Applications
- → Low-swing control inputs
- → Low On-Resistance
- → Wide V_{DD} Range: 1.8V to 3.3V
- → Rail-to-Rail Signal Range
- → Near zero propagation delay
- → Fast Switching Speed
- → Ultra-low quiescent power
- → High Off Isolation: -95dB @ 100kHz
- → Crosstalk Rejection Reduces Signal Distortion: -90dB @ 100kHz
- → Packaging (Pb-free & Green): -10-contact TQFN (1.6×1.3)

Description

Diodes' PI3A114-A is a one-to-four bidirectional multiplier-demultiplier. Specified over a wide operating power supply voltage of 1.8 to 3.3V, the PI3A114-A offer good signal linearity.

The PI3A114-A offers low-swing input voltage on the EN, S1 and S0 inputs allowing the device to operate at 3.3V, and pass 3.3V channel data, while being controlled from a 1.8V device.

Block Diagram

Pin Configuration (top view)

Truth Table⁽¹⁾

Enable	Sel	lect	Function			
EN	S ₁	S ₀	Function			
L	X	X	Y=A _x , Hi-Z			
Н	L	L	$Y = A_0; A_1, A_2, A_3 = Hi-Z$			
Н	L	Н	$Y = A_1; A_{0}, A_2, A_3 = Hi-Z$			
Н	Н	L	$Y = A_2; A_0, A_1, A_3 = Hi-Z$			
Н	Н	Н	$Y = A_3; A_0, A_1, A_2 = Hi-Z$			

Pin Description

Pin Name	Description
A _N	Data I/O
S ₀₋₁	Select Inputs
EN	Enable
Y	Data I/O Common
GND	Ground
V _{DD}	Power

Absolute Maximum Ratings⁽¹⁾

Recommended Operating Conditions⁽³⁾

Supply Voltage V_{DD}	$\label{eq:supply Voltage Operating (V_{DD}) \dots 1.8V \text{ to } 3.3V \pm 5\% \\ \text{Control Input Voltage (V_{IN}) \dots 0V to V_{DD} \\ \text{Switch Input Voltage (V_{INPUT}) \dots -0.3V to V_{DD} \\ \text{Operating Temperature (T_A) \dots -40^{\circ}\text{C to } +85^{\circ}\text{C} \\ \end{array}$
Peak Current NO_NC_COM_ (pulsed at 1ms 50% duty cycle)±400mA Peak Current NO_NC_COM_ (mulsed at 1ms 10% (duty cycle)	Input Rise and Fall Time (t_r, t_f) Control Input $V_{DD} = 2.3V - 3.6V \dots 0ns/V$ to 10ns/V Thermal Resistance $(\theta_{JA}) \dots 350^{\circ}C/W$
(pursed at Tms 10% duty cycle) \pm 500mA Storage Temperature Range (T _{STG})65°C to +150°C Junction Temperature under Bias (T _J)150°C Junction Lead Temperature (T _L)	

Notes:

1. "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed. 2

3. Control input must be held HIGH or LOW; it must not float.

DC Electrical Characteristics +1.8V Supply

Power Dissipation (PD) @ +85°C 250mW

 $(V_{DD} = 1.8V, T_A = -40^{\circ}C \text{ to } 85^{\circ}C, \text{ unless otherwise noted.})$

Parameter	Description	Test Conditions	Min.	Typ. ⁽²⁾	Max.	Units
Analog Swi	tch					
Y, Ax	Analog Signal Range		-0.3		V _{DD}	V
R _{ON}	On-Resistance	$I_{\rm Y}$ = 100mA, $V_{\rm IN}$ = 0 to $V_{\rm DD}$			9	
ΔR_{ON}	On-Resistance Match Between Channels	$I_{\rm Y} = 100 {\rm mA}, V_{\rm IN} = 0.5 {\rm V}_{\rm DD}$			0.6	Ω
R _{ONF}	On-Resistance Flatness	$I_{\rm Y}$ = 100mA, $V_{\rm IN}$ = 0 to $V_{\rm DD}$			5	
THD	Total Harmonic Distortion	Load = 100K Ω , V _{IN} = 0.5V _{DD} , Frequency = 20Hz to 20KHz		0.03		%
Control Inp	uts ⁽¹⁾	•				
V _{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level	1.5			V
V _{IL}	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	v
I _{IH}	Input HIGH Current	$V_{DD} = Max., V_{IN} = V_{DD}$			±1	
I _{IL}	Input LOW Current	$V_{DD} = Max., V_{IN} = GND$			±1	пΔ
I _{OZH}	High Impedance Output Current	$0 \leq I_N, Y_N \leq V_{DD}$			±1	μ
V _{IK}	Clamp Diode Voltage	$V_{DD} = Min., I_{IN} = -18mA$			-1.2	V

Notes:

For digital control inputs EN, S0, S1. 1.

Typical values are at V_{DD} = 1.8V, T_A = 25°C ambient and maximum loading. 2.

For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type. 3.

4. Measured by the voltage drop between A and Y pin at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (I,Y) pins.

Power Supply Characteristics +1.8V Supply

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Units
I _{CC}	Quiescent Power Supply Current	V _{DD} = Max.	$V_{IN} = GND \text{ or } V_{DD}$		0.1	9.0	μΑ

Notes:

Control inputs only; A and Y pins do not contribute to I_{CC}. 1.

Typical values are at V_{DD} = 1.8V, T_A = 25°C ambient and maximum loading. 2.

3. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.

DC Electrical Characteristics +3.3V Supply

 $(V_{DD} = 3.3V, T_A = -40^{\circ}C \text{ to } 85^{\circ}C, \text{ unless otherwise noted.})$

Parameter	Description	Test Conditions	Min.	Typ ⁽²⁾	Max.	Units
Analog Swit	tch					
Y, Ax	Analog Signal Range		-0.3		V _{DD}	V
R _{ON}	On-Resistance	$I_{\rm Y}$ = 100mA, $V_{\rm IN}$ = 0 to $V_{\rm DD}$			5	
ΔR _{ON}	On-Resistance Match Between Channels	$I_{\rm Y} = 100 {\rm mA}, V_{\rm IN} = 0.5 {\rm V}_{\rm DD}$			0.2	Ω
R _{ONF}	On-Resistance Flatness	$I_{\rm Y}$ = 100mA, $V_{\rm IN}$ = 0 to $V_{\rm DD}$			0.6	
THD	Total Harmonic Distortion	Load = $100K\Omega$, $V_{IN} = 0.5V_{DD}$, Frequency = 20Hz to 20KHz		0.03		%
Control Inpu	ıts ⁽¹⁾					
V _{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level	1.5			V
V _{IL}	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	v
I _{IH}	Input HIGH Current	$V_{DD} = Max., V_{IN} = V_{DD}$			±1	
I _{IL}	Input LOW Current	$V_{DD} = Max., V_{IN} = GND$			±1	
I _{OZH}	High Impedance Output Current	$0 \leq I_N, Y_N \leq V_{DD}$			±1	μΛ
V _{IK}	Clamp Diode Voltage	$V_{DD} = Min., I_{IN} = -18mA$			-1.2	V

Notes:

For digital control inputs EN, S0, S1. 1.

For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device. 2.

2. Typical values are at $V_{DD} = 3.3V$, $T_A = 25^{\circ}C$ ambient and maximum loading.

Measured by the voltage drop between A and Y pin at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two 3 (I,Y) pins.

Power Supply Characteristics, 3.3V Supply

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Units
I _{CC}	Quiescent Power Supply Current	$V_{DD} = Max.$	$V_{IN} = GND \text{ or } V_{DD}$		0.1	9.0	μΑ

Notes:

For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device. 1.

2 Typical values are at $V_{DD} = 3.3V$, $+25^{\circ}C$ ambient.

Control inputs only; A and Y pins do not contribute to I_{CC}. 3.

Switch and AC Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
t _{ON}	Turn-On Time			5	15	20
t _{OFF}	Turn-Off Time			35	50	IIS
Q	Charge Injection	$COM = 0, R_S = 0, C_L = 1nF, V_{DD} = 3.3V See Test$ Circuit Figure 4.		15		pC
O _{IRR}	Off-Isolation	$ \begin{array}{l} C_L = 5 p F, \ R_L = 50 \Omega, \ f = 100 k Hz, \\ V_{IN} = 1 \ V_{RMS}, \ V_{DD} = 3.3 V \\ See \ Test \ Circuit \ Figure \ 5. \end{array} $		-95		-ID
X _{TALK}	Crosstalk	$ \begin{array}{l} C_L = 5 p F, \ R_L = 50 \Omega, \ f = 100 k Hz, \\ V_{IN} = 1 \ V_{RMS}, \ V_{DD} = 3.3 V \\ See \ Test \ Circuit \ Figure \ 6. \end{array} $		-90		đВ
f _{3dB}	3dB Bandwidth	See Test Circuit Figure 9., $V_{DD} = 3.3V$		250		MHz
$t_{pd}^{(1)}$	Propogation delay	$C_L = 5pF, R_L = 500km$			0.25	ns

Note:

1. This Parameter is not production tested.

Capacitance

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
C _{NC (OFF)}	Off Capacitance	f = 1MHz, See Test Circuit Figure 7.		15		ъE
C _{NC (ON)}	On Capacitance	f = 1MHz, See Test Circuit Figure 8.		25		рг

Test Circuits and Timing Diagrams

Figure 1. AC Test Circuit

Notes:

Unused input (NC or NO) must be grounded. 1.

Figure 3. Break Before Make Interval Timing

Figure 4. Charge Injection Test

5

Figure 5. Off Isolation

Figure 7. Channel Off Capacitance

Figure 6. Crosstalk

Figure 8. Channel On Capacitance

Figure 9. Bandwidth

Packaging Mechanical: 10-pin TQFN (ZL)

13-0175

For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Code	Packaging Code	Package Type	Top Mark
PI3A114-AZLEX	ZL	10-Contact, Thin Fine Pitch Quad Flat No-Lead (TQFN)	CR

Notes:

· Thermal characteristics can be found on the company web site at www.diodes.com/design/support/packaging/

• E = Pb-free and Green

• X suffix = Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION)

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or

2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multiplexer Switch ICs category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :

NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ SN74LV4051APWR PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 CD4053BPWRG4 ADG658TRUZ-EP FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZ-RL7 ADW54003-0 AD7506JNZ AD7506KNZ AD7506SQ AD8170AR AD8183ARUZ AD8184ANZ AD8185ARUZ AD8187ARUZ AD8188ARUZ AD8189ARUZ ADG1208YRUZ-REEL7 ADG1409YCPZ-REEL7 ADG5209FBRUZ ADG1408YRUZ-REEL7