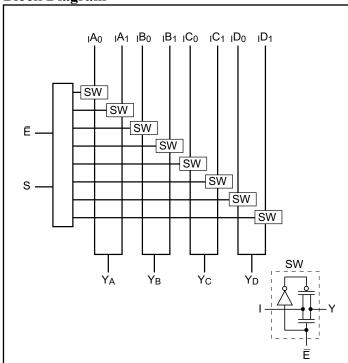


3.3V, Quad 2:1 Mux/DeMux NanoSwitch™

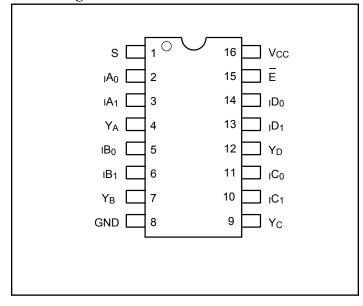

Features

- Near-Zero propagation delay
- 5Ω switches connect inputs to outputs
- Fast Switching Speed: 4.8ns max.
- Ultra-Low Quiescent Power: 0.1 µA typical
 - Ideally suited for notebook applications
- Pin compatible with 74 series 257 logic devices
- Packaging (Pb-free & Green avaliable):
 - 16-pin 150 mil wide plastic QSOP (Q)
 - 16-pin 150 mil wide plastic SOIC (W)
 - 16-pin 173 mil wide plastic TSSOP (L)

Description

Pericom Semiconductor's PI3B3257 is a 3.3 Volt, Quad 2:1 multiplexer/demultiplexer with three-state outputs that is pinout and function compatible with the PI74FCT257T, 74F257, and 74ALS/AS/LS257. Inputs can be connected to outputs with low On-Resistance (5Ω) with no additional ground bounce noise or propagation delay.

Block Diagram


Truth Table⁽¹⁾

E	S	YA	YB	Y _C	YD	Function
Н	X	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Disable
L	L	$_{\rm I}A_0$	$_{\rm I}{ m B}_{ m 0}$	$_{\rm I}{\rm C}_0$	$_{\rm I}{ m D}_0$	S = 0
L	Н	$_{\rm I}A_{\rm 1}$	_I B ₁	$_{\rm I}C_1$	$_{\rm I}{\rm D}_{\rm 1}$	S = 1

Note:

H = High Voltage Level
 L = Low Voltage Level

Pin Configuration

Pin Description

Pin Name	Description
$_{\rm I}A_{\rm N}$ - $_{\rm I}D_{\rm N}$	Data Inputs
S	Select Inputs
Ē	Enable
Y_A - Y_D	Data Outputs
GND	Ground
V_{CC}	Power
NC	No Connect

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Ambient Temperature with Power Applied	40°C to +85°C
Supply Voltage to Ground Potential	0.5V to +4.6V
DC Input Voltage	0.5V to +4.6V
DC Output Current	120mA
Power Dissipation	0.5W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not mplied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $V_{CC} = 3.3\text{V} \pm 10\%$)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
$V_{ m IH}$	Input HIGH Voltage	Guaranteed Logic HIGH Level	2			V
$V_{ m IL}$	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	V
I_{IH}	Input HIGH Current	$V_{CC} = Max., V_{IN} = V_{CC}$			±1	
${ m I}_{ m IL}$	Input LOW Current	$V_{CC} = Max., V_{IN} = GND$			±1	μA
I_{OZH}	High Impedance Output Current	$0 \le In, Yn \le V_{CC}$			±1	
V_{IK}	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18mA$			-1.2	V
R _{ON}	Switch On-Resistance ⁽³⁾	$V_{CC} = Min., V_{IN} = 0.0V,$ Ion = 48mA or 64mA		5	8	Ω
		$V_{CC} = Min., V_{IN} = 2.4V, I_{ON} = 15mA$		8	17	

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{CC} = 3.3V$, $T_A = 25$ °C ambient and maximum loading.
- 3. Measured by the voltage drop between I and Y pin at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (I,Y) pins.

Capacitance $(T_A = 25^{\circ}C, f = 1 \text{ MHz})$

Parameters ⁽¹⁾	Description	Test Conditions	Тур.	Units	
C_{IN}	Input Capacitance		3.0		
C_{OFFYN}	Y _N Capacitance, Switch OFF	V - 0V	17.0		
C _{OFFIN}	I _N Capacitance, Switch OFF	$V_{IN} = 0V$ 8.5		pF	
C _{ON}	I _N /Y _N Capacitance, Switch ON		25		

Notes:

1. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

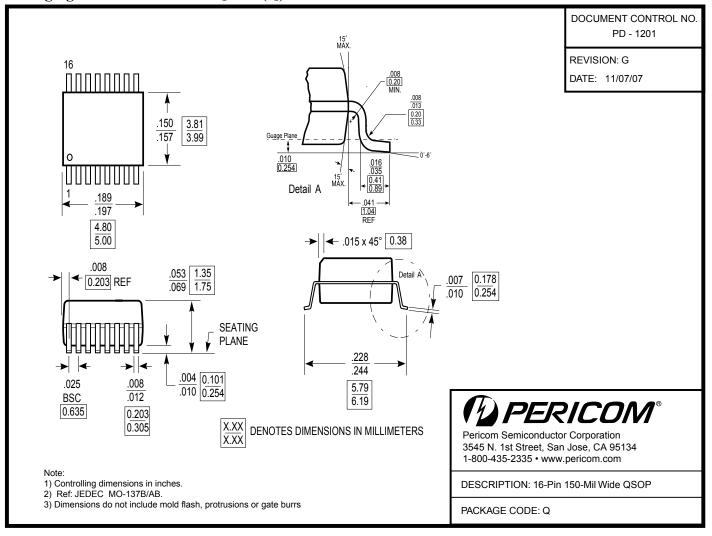
Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Units
I_{CC}	Quiescent Power Supply Current	$V_{CC} = Max.$	V_{IN} = GND or V_{CC}		0.1	3.0	
ΔI_{CC}	Supply Current per Input @ TTL HIGH ^(3, 4)	$V_{CC} = Max.$	$V_{IN} = 3.0$			750	μА

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at $V_{CC} = 3.3V$, $+25^{\circ}C$ ambient.
- 3. Per TTL driven input (control inputs only); I and Y pins do not contribute to I_{CC}.
- 4. This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The I and Y inputs generate no significant AC or DC currents as they transition. This parameter is not tested, but is guaranteed by design.

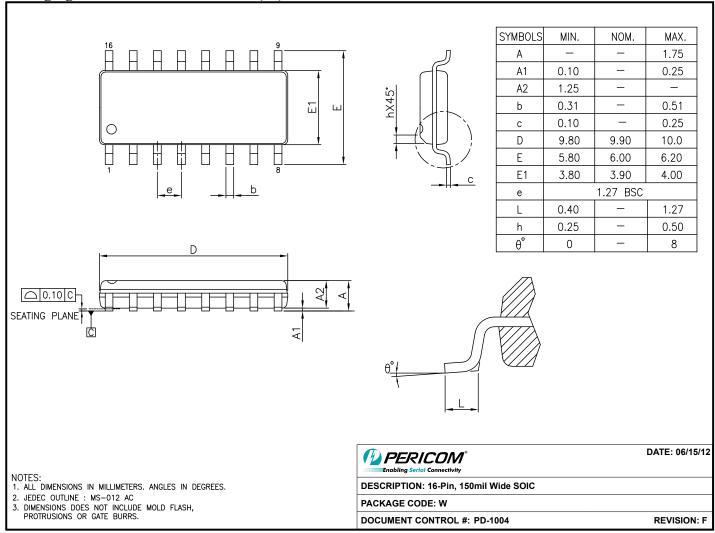
Switching Characteristics Over Operating Range

			PI3F		
Parameters	Description	Conditions	Co	Units	
			Min.	Max.	
t_{IY}	Propagation Delay In to Yn ^(1,2)			0.25	
t_{SY}	Bus Select Time, Sn to Yn		1	4.5	
t _{PZH} t _{PZL}	Bus Enable Time, E to Yn	$C_{L} = 50 \text{pF}$ $R_{L} = 500 \Omega$	1	4.5	ns
t _{PHZ} t _{PLZ}	Bus Disable Time, E to Yn		1	4.8	


Notes:

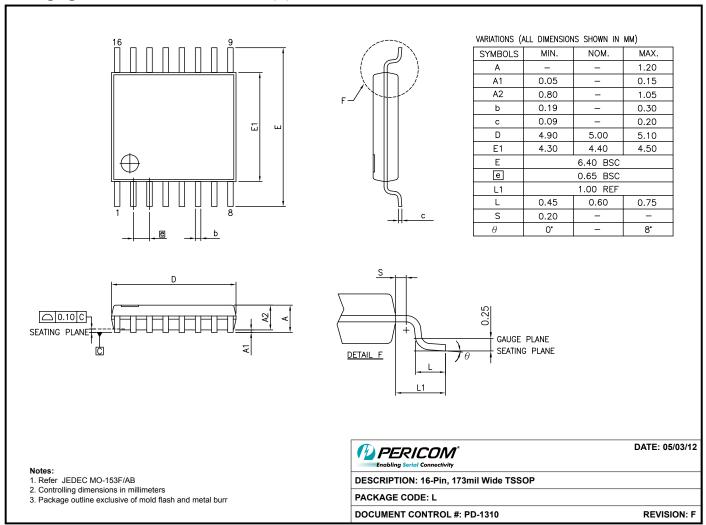
- 1. This parameter is guaranteed but not tested on Propagation Delays.
- 2. The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The switch's time constant alone is of the order of 0.25ns for 50pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

13-0014 3 01/14/13



Packaging Mechanical: 16-Pin QSOP (Q)

Packaging Mechanical: 16-Pin SOIC (W)



2012-0398

13-0014 5 01/14/13

Packaging Mechanical: 16-Pin TSSOP (L)

12-0372

Applications Information

Logic Inputs

The logic control inputs can be driven up to +3.6V regardless of the supply voltage. For example, given a +3.3V supply, IN may be driven low to 0V and high to 3.6V. Driving IN Rail-to-Rail® minimizes power consumption.

Power-Supply Sequencing and Hot-Plug Information

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V_{CC} and GND before applying signals to input/output or control pins.

Rail-to-Rail is a registeredtrademark of Nippon Motorola, Ltd.

Ordering Information

Ordering Code	Packaging Code	Package Description
PI3B3257QE	Q	Pb-Free & Green, 16-pin 150 mil wide plastic QSOP
PI3B3257WE	W	Pb-Free & Green, 16-pin 150-mil wide plastic SOIC
PI3B3257LE	L	Pb-Free & Green, 16-pin 173 mil wide plastic TSSOP

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free & Green
- Adding an X suffix = Tape/Reel

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multiplexer Switch ICs category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below:

NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC
PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX
PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+
PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 CD4053BPWRG4 ADG658TRUZ-EP FSA1256L8X_F113 PI5V330QE
PI5V331QE 5962-8771601EA ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZ-RL7 ADW54003-0 AD7506JNZ AD7506KNZ
AD7506SQ AD8170AR AD8183ARUZ AD8184ANZ AD8185ARUZ AD8187ARUZ AD8188ARUZ AD8189ARUZ ADG1208YRUZ-REEL7 ADG1409YCPZ-REEL7 ADG5209FBRUZ ADG1408YRUZ-REEL7 ADG659YRUZ-REEL7