(Pb

4-Channel 2:1 Mux/DeMux, Enable Low 1.8V/25V/3.3V, High-Bandwidth, Hot Plug

Features

\rightarrow Near-Zero Propagation Delay
$\rightarrow 5 \Omega$ Switches Connect Inputs to Outputs
\rightarrow High Signal Passing Bandwidth (500 MHz)
\rightarrow Beyond Rail-to-Rail Switching -0 to 5V Switching with 3.3V Power Supply -0 to 3.3 V Switching with 2.5 V Power Supply
$\rightarrow 5 \mathrm{~V}$ I/O Tolerant with Supply in OFF and ON State
$\rightarrow \quad 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, and 3.3 V Supply Voltage Operation
\rightarrow Hot Insertion Capable
\rightarrow Industrial Operating Temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\rightarrow \quad 8 \mathrm{kV}$ ESD Protection (Human Body Model)
\rightarrow Latch-up Performance: $>200 \mathrm{~mA}$ per JESD17
\rightarrow Totally Lead-Free \& Fully RoHS Compliant (Notes 1 \& 2)
\rightarrow Halogen and Antimony Free. "Green" Device (Note 3)
$\rightarrow \quad$ Packaging (Pb -free \& Green available):
-16-pin 173-mil Wide Plastic TSSOP (L)
-16-pin 150-mil Wide Plastic QSOP (Q)
-16-pin UQFN3x3-16(ZHD)

Block Diagram

Truth Table

$\overline{\mathbf{E N}}$	S	YA	YB	YC	YD	Function
H	X	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Disable
L	L	IA0	IB0	IC0	ID0	S=0
L	H	IA1	IB1	IC1	ID1	S=1

Note: H=High Voltage Level; L=Low Voltage Level

Description

The PI3CH480 is a 4-channel, 2:1 Multiplexer/De-multiplexer with tri-state outputs. The switch introduces no additional ground bounce noise or propagation delay.

The PI3CH480 device is very useful in switching signals that have high bandwidth (500 MHz).

Pin Configuration

TSSOP/QSOP Top View

UQFN3x3-16 Top View

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br +Cl) and $<1000 \mathrm{ppm}$ antimony compounds

A Product Line of Diodes Incorporated

PI3CH480

Pin Description

Pin No of TSSOP QSOP	Pin No of UQFN3x316	Pin Name	Description
1	15	S	Select Inputs
$\begin{gathered} 2,3,5,6 \\ 11,10,14,13 \end{gathered}$	$\begin{aligned} & 16,1,3,4 \\ & 9,8,12,11 \end{aligned}$		Data Inputs
4, 7, 9, 12	2,5,7,10	$\mathrm{Y}_{\mathrm{A}}, \mathrm{Y}_{\mathrm{B}}, \mathrm{Y}_{\mathrm{C}}, \mathrm{Y}_{\mathrm{D}}$	Data Outputs
8	6	GND	Ground
15	13	EN	Enable
16	14	V_{CC}	Power
-	Center Pad	GND	-

Maximum Ratings

Storage Temperature

\qquad
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied
$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$Supply Voltage to Ground Potential.-0.5 V to +4.6 V
DC Input Voltage -0.5 V to +6.0 VDC Output Curren120 mA
Power Dissipation

\qquad 0.5 W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics

3.3V Supply (Over Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%$, unless otherwise noted)

Symbol	Description	Test Conditions ${ }^{(1)}$	Min	Typ ${ }^{(2)}$	Max	Unit
$\mathrm{V}_{\text {IH }}$	Control Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	Control Input LOW Voltage	Guaranteed Logic LOW Level	-0.5	-	0.8	V
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{V}_{\text {CC }}=$ Min., $\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$	-	-1.3	-1.8	V
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$	-	-	± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$	-	-	± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OZH }}$	High-Impedance Current ${ }^{(3)}$	$0 \leq \mathrm{Y}, \mathrm{In} \leq \mathrm{V}_{\text {CC }}$	-	-	± 1	$\mu \mathrm{A}$
$\mathrm{R}_{\text {ON }}$	Switch On-Resistance ${ }^{(4)}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{ON}}=-48 \mathrm{~mA} \text { or }-64 \mathrm{~mA} \\ \hline \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V} \\ \mathrm{I}_{\mathrm{ON}}=-15 \mathrm{~mA} \end{gathered}$	-	4 5	6 8	Ω

Notes:

1. For maximum or minimum conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
4. Measured by the voltage drop between Y and In pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (Y, In) pins.

A Product Line of Diodes Incorporated
2.5V Supply (Over Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 10 \%$, unless otherwise noted)

Symbol	Description	Test Conditions ${ }^{(1)}$	Min	Typ ${ }^{(2)}$	Max	Unit
V_{IH}	Control Input HIGH Voltage	Guaranteed Logic HIGH Level	1.8	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Control Input LOW Voltage	Guaranteed Logic LOW Level	-0.3	-	0.8	V
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{I}_{\text {IV }}=-6 \mathrm{~mA}$	-	-0.7	-1.8	V
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$	-	-	± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$	-	-	± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OZH }}$	High-Impedance Current ${ }^{(3)}$	$0 \leq \mathrm{Y}, \mathrm{In} \leq \mathrm{V}_{\text {CC }}$	-	-	± 1	$\mu \mathrm{A}$
$\mathrm{R}_{\text {ON }}$	Switch On-Resistance ${ }^{(4)}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{ON}}=-48 \mathrm{~mA} \\ \hline \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}}=2.25 \mathrm{~V} \\ \mathrm{I}_{\mathrm{ON}}=-15 \mathrm{~mA} \\ \hline \end{gathered}$	-	4 7	8 14	Ω

Notes:

1. For maximum or minimum conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
4. Measured by the voltage drop between Y and In pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (Y, In) pins.
1.8 V Supply (Over Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} \pm 10 \%$, unless otherwise noted)

Symbol	Description	Test Conditions ${ }^{(1)}$	Min	Typ ${ }^{(2)}$	Max	Unit
$\mathrm{V}_{\text {IH }}$	Control Input HIGH Voltage	Guaranteed Logic HIGH Level	1.2	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Control Input LOW Voltage	Guaranteed Logic LOW Level	-0.3	-	0.6	V
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$	-	-0.7	-1.8	V
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$	-	-	± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$	-	-	± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OZH }}$	High-Impedance Current ${ }^{(3)}$	$0 \leq \mathrm{Y}, \mathrm{In} \leq \mathrm{V}_{\text {CC }}$	-	-	± 1	$\mu \mathrm{A}$
$\mathrm{R}_{\text {ON }}$	Switch On-Resistance ${ }^{(4)}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\text { Min., } \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{ON}}=-48 \mathrm{~mA} \\ \hline \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}}=1.6 \mathrm{~V} \\ \mathrm{I}_{\mathrm{ON}}=-15 \mathrm{~mA} \\ \hline \end{gathered}$	-	4 10	8 25	Ω

Notes:

1. For maximum or minimum conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
4. Measured by the voltage drop between Y and In pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (Y, In) pins.

Capacitance ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

Symbol ${ }^{(1)}$	Description	Test Conditions	Typ.	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	1.6	2.5	pF
$\mathrm{C}_{\text {OFFIIN }}$	In Capacitance, Switch Off		3.2	4.5	
$\mathrm{C}_{\text {OFF(Y) }}$	Y Capacitance, Switch Off		4.9	6.5	
$\mathrm{C}_{\text {ON }}$	Y/In Capacitance, Switch On		8.4	10	

Note:

1. These parameters are determined by device characterization but are not production tested

Power Supply Characteristics

Symbol	Description	Test Conditions ${ }^{(\mathbf{1})}$	Min	Typ	Max	Unit
I_{CC}	Quiescent Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}$ or V_{CC}	-	0.2	0.5	mA
		-	0.25	0.6	mA	
		-	0.8	1.5	mA	

Note:

1. For maximum or minimum conditions, use appropriate value specified under Electrical Characteristics for the applicable device.

Dynamic Electrical Characteristics

(Over Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%$)

Symbol	Description	Test Conditions	Min	Typ	Max	Unit
$\mathrm{X}_{\text {TALK }}$	Crosstalk	See Test Diagram	-	-60	-	dB
$\mathrm{O}_{\text {IRR }}$	Off-Isolation	See Test Diagram	-	-60	-	
BW	-3dB Bandwidth	See Test Diagram	200	500	-	MHz

Switch Characteristics

Over 3.3V Operating Range

Symbol	Description	Test Conditions ${ }^{(\mathbf{1)}}$	Min	Typ	Max	Unit
$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	Propagation Delay ${ }^{(2,3)}$ Y to In, In to Y	See Test Diagram	-	-	0.3	
$\mathrm{t}_{\text {PZH }} \mathrm{t}_{\text {PZL }}$	Enable Time S or $\overline{\mathrm{EN}}$ to Y or In	See Test Diagram	1.5	-	9.0	ns
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Disable Time S or $\overline{\mathrm{EN}}$ to Y or In	See Test Diagram	1.5	-	9.0	

Note:

1. See test circuit and waveforms.
2. This parameter is guaranteed but not tested on propagation delays.
3. The switch contributes no propagation delay other than the RC delay of the on-resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.30 ns for 10 pF load. Because this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Over 2.5V Operating Range

Symbol	Description	Test Conditions ${ }^{(1)}$	Min	Typ	Max	Unit
$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	Propagation Delay ${ }^{(2,3)} \mathrm{Y}$ to In, In to Y	See Test Diagram	-	-	0.3	ns
$\mathrm{t}_{\text {PZH, }} \mathrm{t}_{\text {PZL }}$	Enable Time S or $\overline{\mathrm{EN}}$ to Y or In	See Test Diagram	1.5	-	15.0	
$\mathrm{t}_{\text {PHZ, }} \mathrm{t}_{\text {PLZ }}$	Disable Time S or $\overline{\mathrm{EN}}$ to Y or In	See Test Diagram	1.5	-	12.0	

Note:

1. See test circuit and waveforms.
2. This parameter is guaranteed but not tested on propagation delays.
3. The switch contributes no propagation delay other than the RC delay of the on-resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.30 ns for 10 pF load. Because this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

A Product Line of Diodes Incorporated

Over 1.8V Operating Range

Symbol	Description	Test Conditions ${ }^{(\mathbf{1)}}$	Min	Typ	Max	Unit
$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	Propagation Delay ${ }^{(2,3)} \mathrm{Y}$ to In, In to Y	See Test Diagram	-	-	0.3	
$\mathrm{t}_{\text {PZH, }} \mathrm{t}_{\text {PZL }}$	Enable Time S or $\overline{\mathrm{EN}}$ to Y or In	See Test Diagram	1.5	-	25.0	ns
$\mathrm{t}_{\text {PHZ }} \mathrm{t}_{\text {PLZ }}$	Disable Time S or $\overline{\mathrm{EN}}$ to Y or In	See Test Diagram	1.5	-	12.0	

Notes:

1. See test circuit and waveforms.
2. This parameter is guaranteed but not tested on propagation delays
3. The switch contributes no propagation delay other than the RC delay of the on-resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.30 ns for 10 pF load. Because this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Test Circuit for Electrical Characteristics

Notes:

1. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance: includes jig and probe capacitance.
2. $\mathrm{R}_{\mathrm{T}}=$ Termination resistance: should be equal to ZouT of the pulse generator.
3. All input impulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{R}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{F}} \leq 2.5 \mathrm{~ns}$.
4. The outputs are measured one at a time with one transition per measurement.

Switch Positions

Test	Switch
t $_{\text {PLZ }}$, t $_{\text {PZL }}$	6.0 V
t $_{\text {PHZ }}$ t $_{\text {PZH }}$	GND
Prop Delay	Open

Test Circuit for Dynamic Electrical Characteristics

Switching Waveforms

Applications Information

Logic Inputs

The logic control inputs can be driven up to 3.6 V regardless of the supply voltage. For example given a +3.3 V supply, $\overline{\mathrm{EN}}$ may be driven LOW to 0 V and HIGH to 3.6 V . Driving $\overline{\mathrm{EN}}$ Rail-to-Rail ${ }^{\circledR}$ minimizes power consumption.

Hot Insertion

For Datacom and Telecom applications that have ten or more volts passing through the backplane, a high voltage from the power supply can be seen at the device input pins during hot insertion. The PI3CH360 devices have maximum limits of 6 V and 120 mA for 20 ns . If the power is higher, applied for a longer time, or repeatedly reaches the maximum limits, the devices can be damaged.

Part Marking

L Package

Z: Fixed Code
Y: Year
W: Workweek
1st X: Assembly Site Code
2nd X: Fab Site Code
Bar above "।" means Fab3 of MGN
Bar above fab code means Cu wire

Q Package

Z: Fixed Code
Y: Year
W: Workweek
1st X: Assembly Site Code
2nd X: Fab Site Code
Bar above fab code means Cu wire Bar above "l" means Fab3 of MGN

ZHD Package
Top mark is not available at this time. To obtain advanced information regarding the top mark, please contact your local sales representative.

Mechanical Information

16-TSSOP (L)

16- QSOP (Q)

A Product Line of Diodes Incorporated
(4) PERICOM

16-UQFN (ZHD)

Top View

Side View

Bottom View

RECOMMENDED LAND PATTERN(unit:mm)

PKG. DIMENSIONS(MM)		
SYMBOL	Min	Max
A	0.50	0.65
A1	0.00	0.05
A3	0.15 REF	
D	2.90	3.10
E	2.90	3.10
D1	1.60	1.90
E1	1.60	1.90
b	0.18	0.30
e	0.50 BSC	
L	0.25	0.55

Note:

1. Comply with MO-248E, except 'L' MIN and 'L' 'D1' 'E1' MAX

PERICOM
anaund setial converimery
DESCRIPTION: 16-Pin, UQFN, 3X3
PACKAGE CODE: ZHD(ZHD16)
DOCUMENT CONTROL\#: PD-2209

16-0092

For latest package information:
Please see http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/.

Ordering Information

Part Numbers	Package Code	Package Description
PI3CH480LEX	L	16-Pin, 173mil Wide (TSSOP)
PI3CH480QEX	Q	16-Pin, 150mil Wide (QSOP)
PI3CH480ZHDEX	ZHD	16-Pin, 3x3 (UQFN)

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and <1000ppm antimony compounds.
4. $\mathrm{E}=\mathrm{Pb}$-free and Green
5. X suffix $=$ Tape $/$ Reel

A Product Line of Diodes Incorporated

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION)

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2018, Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 CD4053BPWRG4 ADG658TRUZ-EP FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZ-RL7 ADW54003-0 AD7506JNZ AD7506KNZ AD7506SQ AD8170AR AD8183ARUZ AD8184ANZ AD8185ARUZ AD8187ARUZ AD8188ARUZ AD8189ARUZ ADG1208YRUZREEL7 ADG1409YCPZ-REEL7 ADG5209FBRUZ ADG1408YRUZ-REEL7 ADG659YRUZ-REEL7

