Lead-free Green

PI3CSW12

High-Speed I3C 1:2 Multiplexer/DeMultiplexer Switch with Signal Enable

Features

$\rightarrow \mathrm{V}_{\mathrm{DD}}$ Operation at 2.5 V and 3.3 V
$\rightarrow \mathrm{V}_{\mathrm{I} / \mathrm{O}}$ Accepts Signals up to 5.5 V
$\rightarrow 1.8-\mathrm{V}$ Compatible Control-Pin Inputs
\rightarrow Low-Power Mode When $\overline{\mathrm{OE}}$ Is Disabled ($2 \mu \mathrm{~A}$)
$\rightarrow \mathrm{r}_{\mathrm{ON}}=6 \Omega$ Maximum
$\rightarrow \Delta \mathrm{r}_{\mathrm{ON}}=0.2 \Omega$ Typical
$\rightarrow \mathrm{Cio}(\mathrm{on})=4 \mathrm{pF}$ Typical
\rightarrow Support Over Voltage Protection
\rightarrow Low Power Consumption ($50 \mu \mathrm{~A}$ Maximum)
\rightarrow ESD Performance

- IO Pins
- 12KV HBM
- 1KV CDM
- +/-8KV contact Discharge (IEC61000-4-2)
- VDD, GND, $\mathrm{S}, \overline{\mathrm{OE}}$ Pins
- 4KV HBM
- 1KV CDM
\rightarrow High Bandwidth (1.6 GHz Typical)
\rightarrow Totally Lead-Free \& Fully RoHS Compliant (Notes 1 \& 2)
\rightarrow Halogen- and Antimony-Free. "Green" Device (Note 3)
\rightarrow For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.
https://www.diodes.com/quality/product-definitions/
\rightarrow Packaging (Pb-free \& Green):
- 10-contact, UQFN (ZUA10)

Applications

\rightarrow Routes Signals for I3C
\rightarrow Mobile Industry Processor Interface (MIPI) Signal Routing

Description

The PI3CSW12 is a high-bandwidth switch specially designed for the switching of high-speed I3C signals in communication and server applications, such as servers, workstations, and notebooks with hubs or controllers with limited I3C I/Os. The wide bandwidth $(1.6 \mathrm{GHz})$ of this switch allows signals to pass with minimum edge and phase distortion. The device multiplexes differential outputs from a I3C host device to one of two corresponding outputs. The switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. It is designed for low bit-to-bit skew and high channel-to-channel noise isolation, and is compatible with various standards, such as high-speed I3C (up to 30Mbps).

Block Diagram

Truth Table

\mathbf{S}	$\overline{\mathbf{O E}}$	Function
X	H	Disconnect
L	L	$\mathrm{D}=1 \mathrm{D}$
H	L	$\mathrm{D}=2 \mathrm{D}$

[^0]
Pin Configuration

Pin Description

Name	Description
$\overline{\mathrm{OE}}$	Active LOW, Output enable
S	Select input
D	COM port
nD	I/O for I3C data path (port 1 and port 2)

PI3CSW12

Absolute Maximum Ratings ${ }^{(1)}$

Over operating free-air temperature range (unless otherwise noted)

$V_{\text {DD }}$ Supply Voltage Range ... -0.5 V to 4.6 V	
	V
$\mathrm{I}_{\mathrm{I} / \mathrm{OK}} \mathrm{I} / \mathrm{O}$ Port Clamp Current ($\mathrm{V}_{\mathrm{I} / \mathrm{O}}<0$).................................... -50 mA	
$\mathrm{I}_{\mathrm{I} / \mathrm{O}}$ ON-state Switch Current ${ }^{(5)}$.. $\pm 120 \mathrm{~mA}$	
Continuous Current through VDD or GND $\pm 100 \mathrm{~mA}$ θ_{JA} Package Thermal Impedance	
A Packag	,
TDFN Packa	$243{ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {stg }}$ Storage Temperature Range	${ }^{\circ} \mathrm{C}$
Tj Junction Temperatu	$.125^{\circ} \mathrm{C}$

Notes:

1. Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. All voltages are with respect to ground, unless otherwise specified.
3. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
4. VI and VO are used to denote specific conditions for VI/O.
5. II and IO are used to denote specific conditions for II/O.
6. The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions ${ }^{(1)}$

Symbol	Description	Parameter	Min.	Max.	Unit
V_{DD}	Supply voltage		2.3	3.6	
$\mathrm{~V}_{\mathrm{IH}}$	High-level control input voltage	$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V	1.3	-	
		$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V	1.4	-	
V_{IL}	Low-level control input voltage	$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V		0.6	
		$\mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V		0.6	
$\mathrm{~V}_{\mathrm{I} / \mathrm{O}}$	Data input/output voltage		0	4.6	
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature		-40	85	${ }^{\circ} \mathrm{C}$

Note:

1. All unused control inputs of the device must be held at V_{DD} or GND to ensure proper device operation.

A Product Line of Diodes Incorporated

PI3CSW12

Electrical Characteristics

Over operating free-air temperature range (unless otherwise noted)

Parameter		Testing Conditions		Min.	Typ.	Max.	Unit	
$\mathrm{V}_{\text {IK }}$		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, 2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.2	V	
IIN	Control Inputs	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, 2.7 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ to 3.6 V				± 1		
$\mathrm{IOZ}^{(3)}$		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, 2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ or GND , $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$, Switch OFF				± 1		
$\mathrm{I}_{\text {(OFF) }}$		$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~V}$ to 3.6 V			± 2		
		$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=0$ to 2.7 V			± 1			
I_{CC}			$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, 2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{GND} \text {, } \\ & \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~V}, \text { Switch ON or OFF } \end{aligned}$			25	50	$\mu \mathrm{A}$
ICC (low power mode)		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, 2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ or GND , Switch disabled, ($\overline{\mathrm{OE}}$ in high state)				4		
$\mathrm{DI}_{C C}{ }^{(4)}$	Control Inputs		$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$, S sweeps from 1.4 V to $3.3 \mathrm{~V}, \mathrm{OE} /=0 \mathrm{~V}$			15		
			$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{OE} /$ sweeps from 1.4 V to $3.3 \mathrm{~V}, \mathrm{~S}=0 \mathrm{~V}$			0.75		
$\mathrm{C}_{\text {IN }}$	Control Inputs	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}$ or 0 V			1	2		
$\mathrm{C}_{\text {io (OFF) }}$		$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, 2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3.3 \mathrm{~V}$ or 0 V , Switch OFF			2	3	pF	
$\mathrm{C}_{\mathrm{io}}(\mathrm{ON})$		$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, 2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3.3 \mathrm{~V}$ or 0 V , Switch ON			4			
$\mathrm{raN}^{(5)}$		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, 2.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}$			4	Ω	
		$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-15 \mathrm{~mA}$			6			
$\mathrm{DrON}^{(6)}$			$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, 2.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}$		0.2		
		$\mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-15 \mathrm{~mA}$			0.2			
ron(flat)		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, 2.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}$		1			
		$\mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-15 \mathrm{~mA}$		1				
$\mathrm{V}_{\text {pass }}$			$\mathrm{V}_{\mathrm{DD}}=2.5-3.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}}>3.8 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{uA}$	2.8	3.8	4.2	V

Notes:

1. V_{IN} and I_{IN} refer to control inputs. VI, VO, II, and IO refer to data pins.
2. All typical values are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. For I/O ports, the parameter IOZ includes the input leakage current.
4. This is the increase in supply current for each input that is at the specified TTL voltage level, rather than $V_{D D}$ or GND.
5. Measured by the voltage drop between the input and output terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two terminals.
6. Dron is delta Ron between channels

A Product Line of Diodes Incorporated

PI3CSW12

Dynamic Electrical Characteristics

Over operating range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$

Symbol	Parameter	Test Conditions	Typ. ${ }^{(1)}$	Unit
$\mathrm{X}_{\text {TALK }}$	Crosstalk	$\mathrm{R}_{\mathrm{L}}=50 \Omega, f=250 \mathrm{MHz}$	-40	dB
		$\mathrm{R}_{\mathrm{L}}=50 \Omega, f=50 \mathrm{MHz}$	-55	
OIRR	OFF isolation	$\mathrm{R}_{\mathrm{L}}=50 \Omega, f=250 \mathrm{MHz}$	-41	
BW	Bandwidth (-3 dB)	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	1.6	GHz

Note:

1. For Max or Min conditions, use the appropriate value specified under Electrical Characteristics for the applicable device type.

Switching Characteristics

Over operating range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$

Symbol	Parameter		Min.	Typ. ${ }^{(1)}$	Max.	Unit
t_{pd}	Propagation Delay ${ }^{(2,3)}$			0.25		ns
t_{ON}	Line enable time	S to D, nD			125	
		$\overline{\mathrm{OE}}$ to D, nD			100	
toff	Line disable time	S to D, nD			12	
		$\overline{\mathrm{OE}}$ to D, nD			12	
$\mathrm{t}_{\text {SK(}}(\mathrm{O})$	Output skew between center port to any other port ${ }^{(2)}$			0.1	0.2	
tSK(P)	Skew between opposite transitions of the same output (tPHL - tPLH) ${ }^{(2)}$			0.1	0.2	
$t^{\text {VPPASS }}$	OVP response time			53		ns

Notes:

1. For Max or Min conditions, use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Specified by design
3. The switch contributes no propagation delay other than the RC delay of the on resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for $10-\mathrm{pF}$ load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interactions with the load on the driven side.

Application Information

Figure 1: HS Eye Test Setup

PI3CSW12

Parameter Measurement Information

${ }^{(1)}$ All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50-\mathrm{Ohm}, \mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$.
${ }^{(2)} C_{L}$ includes probe and jig capacitance.
Figure 2. Turn-On (t_{ON}) and Turn-Off Time ($\mathrm{t}_{\mathrm{OFF}}$)

Figure 3.OFF Isolation ($\mathrm{O}_{\text {Iso }}$)

Figure 4. Crosstalk ($\mathrm{X}_{\text {TALK }}$)

Figure 5. Bandwidth (BW)

Figure 6. Propagation Delay

A Product Line of Diodes Incorporated

Figure 7.Skew Test

Figure 8. ON-State Resistance (r_{on})

Figure 9. OFF-State Leakage Current

Figure 10. Capacitance

Part Marking

xM: PI3CSW12ZUAE
Y: Date Code (Year)
W: Date Code (Workweek)

A Product Line of Diodes Incorporated

PI3CSW12

Packaging Mechanical: 10-UQFN (ZUA)

For latest package info.
please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Number	Package Code	Package Description
PI3CSW12ZUAEX	ZUA	10-Pin, 1.5x2.0 (UQFN) (U-QFN 1520-10)

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm} \mathrm{total} \mathrm{Br}+\mathrm{Cl}$) and $<1000 \mathrm{ppm}$ antimony compounds.
4. $\mathrm{E}=\mathrm{Pb}$-free and Green
5. X suffix $=$ Tape $/$ Reel

IMPORTANT NOTICE

1. DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
5. Diodes products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/ terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
6. Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

Copyright © 2021 Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 CD4053BPWRG4 ADG658TRUZ-EP FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZ-RL7 ADW54003-0 AD7506JNZ AD7506KNZ AD7506SQ AD8170AR AD8183ARUZ AD8184ANZ AD8185ARUZ AD8187ARUZ AD8188ARUZ AD8189ARUZ ADG1208YRUZREEL7 ADG1409YCPZ-REEL7 ADG5209FBRUZ ADG1408YRUZ-REEL7 ADG659YRUZ-REEL7

[^0]: Notes:

 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
 3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and $<1000 \mathrm{ppm}$ antimony compounds.
