A product Line of Diodes Incorporated
(1) PERICOM

PI3EQX12908A2

8-channel PCI Express Gen 3, 10GbE, SATA3 ReDriver ${ }^{\text {TM }}$ with Linear Equalization

Features

\rightarrow High-speed serial link with linear equalizer
\rightarrow Support PCIe Gen $1 / 2 / 3$ protocol, 10 GbE , SATA3, SAS3
\rightarrow Supporting 8 differential channels
\rightarrow Independent channel configuration of receiver equalization, output swing and flat gain
\rightarrow Per Channel Activity Detector with selectable input termination between 50Ω to V_{DD} and $200 \mathrm{~K} \Omega$ to V_{DD}
\rightarrow Per Channel Output Termination Detector on power up with selectable output termination between 50Ω to $V_{D D}$ and High impedance
\rightarrow Very linear transfer function
\rightarrow Fully compliant to PCISIG Link Training
\rightarrow Single-ended mode receiver detection for PCIe
\rightarrow Input Threshold detection
\rightarrow Pin strap and $\mathrm{I}^{2} \mathrm{C}$ master/slave selectable device programming with external EEPROM
$\rightarrow 4$-bit selectable address bit for $\mathrm{I}^{2} \mathrm{C}$
\rightarrow Supply Voltage: $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
\rightarrow Industrial Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
\rightarrow Packaging (Pb -free \& Green):

```
\square 54-contact TQFN (10mm x 5.5mm x 0.5mm pitch) - flowthrough pinout
```


Description

The PI3EQX12908A2 is an 8-channel PCIe Gen 2, 10GbE, SATA3, ReDriver ${ }^{\text {m" }}$. The device provides programmable linear equalization, output swing and gain, by either pin strapping option or $I^{2} \mathrm{C}$ Control, to optimize performance over a variety of physical mediums by reducing Inter-symbol interference.
The PI3EQX12908A2 supports eight 100 -Ohm Differential CML data I/O's and extends the signals across other distant data pathways on the user's platform.
The programmable settings can be applied easily via pins, software ($\mathrm{I}^{2} \mathrm{C}$) or loaded via an external EEPROM. When operating in the EEPROM mode, the configuration information is automatically loaded on power up, which eliminates the need for an external microprocessor or software driver.
The PI3EQX12908A2 offers fully Linear Transfer function to fully comply with all PCIe 3 Link Training signals.

Eye Diagram

Before Channel Loss

Before ReDriver

After ReDriver

PI3EQX12908A2

Block Diagram

Pin Configuration - Top View (54-TQFN)

A product Line of
Diodes Incorporated
(4) PERICOM

PI3EQX12908A2

Pin Description

(Flow-Thru Pinout)

Pin \# (54-TQFN)	Pin Name	Type	Description
Data Signals			
10 11	$\begin{aligned} & \text { A0RX+ } \\ & \text { A0RX- } \end{aligned}$	I	Differential inputs for Channel A0, with internal $50-\mathrm{Ohm}$ pull-up and $>200 \mathrm{~K}$-Ohm otherwise.
35 34	$\begin{aligned} & \text { A0TX+, } \\ & \text { A0TX- } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	Differential outputs for Channel A0
12 13	AlRX+ A1RX-	I	Differential inputs for Channel A1, with internal $50-\mathrm{Ohm}$ pull-up and $>200 \mathrm{~K}$-Ohm otherwise.
33 32 15	$\begin{aligned} & \text { A1TX+, } \\ & \text { A1TX- } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	Differential outputs for Channel A1
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \mathrm{A} 2 \mathrm{RX}+, \\ & \mathrm{A} 2 \mathrm{RX}- \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { I } \\ & \hline \end{aligned}$	Differential inputs for Channel A2, with internal $50-\mathrm{Ohm}$ pull-up and $>200 \mathrm{~K}$-Ohm otherwise.
$\begin{aligned} & 31 \\ & 30 \end{aligned}$	$\begin{aligned} & \text { A2TX+, } \\ & \text { A2TX- } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	Differential outputs for Channel A2
$\begin{aligned} & 17 \\ & 18 \end{aligned}$	A3RX+, A3RX-	I	Differential inputs for Channel A3, with internal $50-\mathrm{Ohm}$ pull-up and $>200 \mathrm{~K}$-Ohm otherwise.
$\begin{aligned} & 29 \\ & 28 \end{aligned}$	$\begin{aligned} & \text { A3TX+, } \\ & \text { A3TX- } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	Differential outputs for Channel A3
2	$\begin{aligned} & \text { B0RX+, } \\ & \text { B0RX- } \end{aligned}$	I	Differential inputs for Channel B0, with internal $50-\mathrm{Ohm}$ pullup and $>200 \mathrm{KOhm}$ otherwise.
$\begin{aligned} & 45 \\ & 44 \end{aligned}$	$\begin{aligned} & \text { B0TX+, } \\ & \text { B0TX- } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	Differential outputs for Channel B0
3 4	$\begin{aligned} & \text { BIRX+, } \\ & \text { BIRX- } \end{aligned}$	I	Differential inputs for Channel B1, with internal $50-\mathrm{Ohm}$ pullup and $>200 \mathrm{KOhm}$ otherwise.
$\begin{aligned} & 43 \\ & 42 \end{aligned}$	$\begin{aligned} & \text { B1TX+, } \\ & \text { B1TX- } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	Differential outputs for Channel B1
$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & \mathrm{B} 2 \mathrm{RX}+, \\ & \mathrm{B} 2 \mathrm{RX}- \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { I } \\ & \hline \end{aligned}$	Differential inputs for Channel B2, with internal $50-\mathrm{Ohm}$ pullup and $>200 \mathrm{KOhm}$ otherwise.
40 39	$\begin{aligned} & \text { B2TX+, } \\ & \text { B2TX- } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	Differential outputs for Channel B2
7 8	$\begin{aligned} & \text { B3RX+, } \\ & \text { B3RX- } \end{aligned}$	I	Differential inputs for Channel B3, with internal $50-\mathrm{Ohm}$ pullup and $>200 \mathrm{KOhm}$ otherwise.
38 37	$\begin{aligned} & \mathrm{B} 3 \mathrm{TX}+, \\ & \mathrm{B} 3 \mathrm{TX}- \end{aligned}$	O	Differential outputs for Channel B3

A product Line of Diodes Incorporated

Pin Description Cont.

Pin \# (54-TQFN)	Pin Name	Type	Description
Control Signals			
48	ENI2C	I	$I^{2} \mathrm{C}$ Enable Pin. When tied to Low, each channel is programmed by the external pin voltage (Pin Mode). When tied to High, each channel is programmed by the data stored in the $\mathrm{I}^{2} \mathrm{C}$ bus (Slave Mode). When FLOAT, data is accesses from external EEPROM (Master Mode). ENI2C has pull-up / pull-down 90k-Ohm resistance (Default $\left.=V_{D D} / 2\right)$.
When ENI2C = 1 ($\mathbf{I}^{\mathbf{2}} \mathbf{C}$ Mode)			
50	SCL	I/O	$\mathrm{I}^{2} \mathrm{C}$ SCL clock input in $\mathrm{I}^{2} \mathrm{C}$ Slave Mode (ENI2C $=$ High). This pin becomes clock output when loading from EEPROM in $\mathrm{I}^{2} \mathrm{C}$ Master Mode (ENI2C = FLOAT).
49	SDA	I/O	$\mathrm{I}^{2} \mathrm{C}$ SDA data input/output in $\mathrm{I}^{2} \mathrm{C}$ Master or Slave Mode.
54, 53, 47, 46	$\mathrm{AD}[0: 3]$	I	$\mathrm{I}^{2} \mathrm{C}$ programmable address bits in $\mathrm{I}^{2} \mathrm{C}$ Master or Slave Mode. $\mathrm{AD}[0: 2]$ have pullup 90 k -Ohm resistance. AD[3] have pull-up / pull-down 90k-Ohm resistance. $\left(\right.$ Default $\left.=\mathrm{V}_{\mathrm{DD}} / 2\right)$
25	I2C_RESET\#	I	Reset Pin for $\mathrm{I}^{2} \mathrm{C}$. When Low, the registers are reset to default value. $\mathrm{I}^{2} \mathrm{C}$ _RESET\# has pull-up 90k-Ohm resistance
When ENI2C = 0 (Pin mode)			
21,20, 19	EQA[0:2]	I	These pins set the level of Equalizer in Bank A channels when ENI2C is Low. When ENI2C is High, the I2C registers provide independent control of each channel. See Table 1: Equalizer Settings. EQA[1] has pull-up 90k-Ohm resistance. EQA[0] and EQA[2] have pull-up / pull-down 90k-Ohm resistance $($ Default $=$ $V_{D D} / 2$).
46, 47, 23	EQB[0:2]	I	These pins set the level of Equalizer in Bank B channels when ENI2C is Low. When ENI2C is High, the I2C registers provide independent control of each channel, and the $\mathrm{EQB}[1: 0]$ pins are converted to $\mathrm{I}^{2} \mathrm{C} A D[2: 3]$ inputs. See Table 1: Equalizer Settings. EQB [1] has pull-up 90k-Ohm resistance. $\mathrm{EQB}[0]$ and $\mathrm{EQB}[2]$ have pull-up / pull-down 90k-Ohm resistance (Default = $\mathrm{V}_{\mathrm{DD}} / 2$).
49, 50	FGA[0:1]	I	These pins control the level of Flat Gain in Bank A channels when ENI2C is Low. When ENI2C is High, the $\mathrm{I}^{2} \mathrm{C}$ registers provide independent control of each channel, and the FGA[1:0] pins are converted to $\mathrm{I}^{2} \mathrm{C}$ SCL/SDA. See Table 2: Flat Gain Settings.
53, 54	FGB[0:1]	I	These pins control the level of Flat Gain in Bank B channels when ENI2C is Low. When ENI2C is High, the $\mathrm{I}^{2} \mathrm{C}$ registers provide independent control of each channel, and FGB[1:0] pins are converted to $\mathrm{AD}[0: 1]$ inputs. See Table 2: Flat Gain Settings. FGB[0] and FGB[1] have pull-up 90k-Ohm resistance.
25	SW0	I	This pins sets the Output Voltage Swing level in all channels when $\mathrm{ENI}^{2} \mathrm{C}$ is Low. SW0 has pull-up 90k-Ohm resistance.
26	SD_TH0	I	Internal Signal Detect Threshold. This pin should be tied to V_{DD} for normal operation. Refer to Table 4 for more options. SD_TH0 has pull-up 90k-Ohm resistance.
In both I2C and Pin modes			
22	RXDET	I	Receiver Detection Control Pin. When High, receiver detection is enabled to support PCIe Mode. When Low, receiver detection is disabled to support 10 GbE and SATA3 Modes and input is $50-\mathrm{Ohm}$ to V_{DD}. RXDET has pull-up 90k-Ohm resistance.

PI3EQX12908A2

Pin Description Cont.

Pin \# (54-TQFN)	Pin Name	Type	Description
52	PRSNT\#		Cable Present Detect Input. When High, a cable is not present per PCIe Cabling Specification 1.0, and the device is put in lower power mode. When Low, the device is enabled and in normal operation. PRSNT\# has pull-up 90k-Ohm resis- tance.
Output			
27	ALL_DONE	O	Valid Register Load Status Output. When LOW, the external EEPROM load has failed. When HIGH, the external EEPROM load is successful.
Power Pins			
$9,14,36,41,51$	VDD	PWR	$3.3 \mathrm{~V} \pm 10 \%$ Supply Voltage
Center Pad, 24	GND	PWR	Supply GND

A product Line of Diodes Incorporated
(4) PERICOM

Description of Operation

Output Receiver Detector:

On power up or when PRSNT\# becomes low, the output resistance is set to high impedance, and the input resistance is set to 200 K ohms. The device continually looks to detect an external 50 ohm termination resistor on a per channel basis. If no 50 ohms is detected in the first 40us of time, the channel is continually polled with 40 us detection cycle until detection occurs. This operation can only be reinitiated when PRSNT\# or I2C_RESET\# are toggled again.

Input Activity Detector:

When the input voltage on individual channel basis falls below Vth-, the output is driven to the common mode voltage so as to eliminate output chatter. When the input voltage is higher than $\mathrm{Vth}+$, the channel is resumed immediately.

Power Enable function:

One pin control or I2C control, when PRSNT\# is set to high, the IC goes into power down mode, both input and output termination set to 200 K and high impedance respectively. Individual channel enabling is done through the I 2 C register programming.

Equalization Setting:

$\operatorname{EQA}[2: 0]$ and $\mathrm{EQB}[2: 0]$ are the selection pins for the equalization selection for each of the channels of A and B respectively.

Table 1. Equalization Setting

Equalizer setting (dB)											
EQ2	EQ1	EQ0	EQ 4 Bits	@ 1.25GHz	@ 2.5GHz	@ 3GHz	@ 4GHz	@ 5GHz	@ 6GHz		
0	0	0	0000	0	0.6	1.0	1.5	2.4	2.8		
0	0	1	0001	0.15	1.2	1.7	2.4	3.5	4		
0	1	0	0010	0.4	1.9	2.5	3.3	4.5	5		
0	1	1	0011	0.6	2.5	3.2	4.2	5.3	5.8		
1	0	0	0100	1.8	3.4	4.1	4.9	6.0	6.4		
1	0	1	0101	2.1	3.9	4.7	5.6	6.7	7.1		
1	1	0	0110	2.3	4.4	5.2	6.2	7.3	7.7		
1	1	1	0111	2.5	4.9	5.7	6.8	7.9	8.2		
HIZ	0	0	1000	3.4	5.6	6.4	7.3	8.4	8.7		
HIZ	0	1	1001	3.6	6.0	6.9	7.8	8.9	9.1		
HIZ	1	0	1010	3.8	6.4	7.3	8.3	9.3	9.5		
HIZ	1	1	1011	4.1	6.8	7.7	8.7	9.7	9.9		
0	0	HIZ	1100	5.1	7.5	8.3	9.2	10.1	10.2		
0	1	HIZ	1101	5.3	7.8	8.6	9.5	10.4	10.5		
1	0	HIZ	1110	5.4	8.1	8.9	9.8	10.7	10.8		
1	1	HIZ	1111	5.6	8.4	9.2	10.1	11	11.1		

A product Line of Diodes Incorporated

PI3EQX12908A2

Flat Gain Setting:

Flat Gain settings: $\mathrm{FGA}[0: 1]$ and $\mathrm{FGB}[0: 1]$ are the selection bits for Flat Gain value for A and B channels.

Table 2. Flat Gain Setting

$\begin{aligned} & \text { FGA1 } \\ & \text { FGB1 } \end{aligned}$	$\begin{aligned} & \text { FGA0 } \\ & \text { FGB0 } \end{aligned}$	(dB)
0	0	-4
0	1	-2
1	0	0
1	1	2

Output Swing Setting:

SW0 is the selection bit for output swing for A and B channels.

Table 3. Output Swing Setting

SW0	mVp-p
0	900
1	1,000

Signal Detect Threshold Level:

Table 4. Signal Detect Threshold Level Setting via $I^{2} \mathrm{C}$ Bus Mode

SD_TH1 $\left\langle\mathbf{I}^{\mathbf{2}} \mathbf{C}\right.$ bit $>$	SD_TH0	Threshold ON (mVppd)	Threshold OFF (mVppd)
0	0	130	30
0	1	150	50
1	0	170	70
1	1	210	110

A product Line of Diodes Incorporated
(1) PERICOM

PI3EQX12908A2

I^{2} C Programming

Address assignment

A6	A5	A4	A3	A2	A1	A0	R/W
1	1	1	AD3	AD2	AD1	AD0	$1=\mathrm{R}, 0=\mathrm{W}$

BYTE 0

Bit	Type	Power up condition	Control affected	Comment
7	R		A3 Signal Detector Output	
6	R		A2 Signal Detector Output	
5	R		A1 Signal Detector Output	
4	R		A0 Signal Detector Output	1 $=$ Activity $0=$ no
3	R		B3 Signal Detector Output	activity
2	R		B2 Signal Detector Output	
1	R		B1 Signal Detector Output	
0	R		B0 Signal Detector Output	

BYTE 1

Bit	Type	Power up condition	Control affected	Comment
7	R		A3 RX Detector Output	
6	R		A2 RX Detector Output	
5	R		A1 RX Detector Output	
4	R		A0 RX Detector Output	
3	R		B3 RX Detector Output	Far-end 50
2	R		B2 RX Detector Output	$0=$ detected
1	R		B1 RX Detector Output	
0	R		B0 RX Detector Output	

BYTE 2

Bit	Type	Power up condition	Control affected	Comment
7	R/W	0	A3 Power down	
6	R/W	0	A2 Power down	
5	R/W	0	A1 Power down	
4	R/W	0	A0 Power down	
3	R/W	0	B3 Power down	
2	R/W	0	B2 Power down	
1	R/W	0	B1 Power down	
0	R/W	0	B0 Power down	

A product Line of Diodes Incorporated
(1) PERICOM

PI3EQX12908A2

I^{2} C Programming Cont.

BYTE 3

Bit	Type	Power up condition		Control affected	Comment
7	R/W	0	Channel A0 configuration	EQ3	Equalizer See Table 1
6	R/W	0		EQ2	
5	R/W	0		EQ1	
4	R/W	0		EQ0	
3	R/W	0		FG1	Flat Gain
2	R/W	0		FG0	See Table 2
1	R/W	0		Reserved	Swing
0	R/W	0		SW0	See Table 3

BYTE 4

Bit	Type			Control affected	Comment
7	R/W	0	Channel A1 configuration	EQ3	Equalizer See Table 1
6	R/W	0		EQ2	
5	R/W	0		EQ1	
4	R/W	0		EQ0	
3	R/W	0		FG1	Flat Gain
2	R/W	0		FG0	See Table 2
1	R/W	0		Reserved	Swing
0	R/W	0		SW0	See Table 3

BYTE 5

Bit	Type			Control affected	Comment
7	R/W	0	Channel A2 configuration	EQ3	Equalizer See Table 1
6	R/W	0		EQ2	
5	R/W	0		EQ1	
4	R/W	0		EQ0	
3	R/W	0		FG1	Flat Gain
2	R/W	0		FG0	See Table 2
1	R/W	0		Reserved	Swing
0	R/W	0		SW0	See Table 3

A product Line of Diodes Incorporated

PI3EQX12908A2

$I^{2} \mathrm{C}$ Programming Cont.

BYTE 6

BYTE 7

Bit	Type			Control affected	Comment
7	R/W	0	Channel B0 configuration	EQ3	Equalizer See Table 1
6	R/W	0		EQ2	
5	R/W	0		EQ1	
4	R/W	0		EQ0	
3	R/W	0		FG1	Flat Gain
2	R/W	0		FG0	See Table 2
1	R/W	0		Reserved	Swing
0	R/W	0		SW0	See Table 3

BYTE 8

Bit	Type			Control affected	Comment
7	R/W	0	Channel B1 configuration	EQ3	Equalizer See Table 1
6	R/W	0		EQ2	
5	R/W	0		EQ1	
4	R/W	0		EQ0	
3	R/W	0		FG1	Flat Gain
2	R/W	0		FG0	See Table 2
1	R/W	0		Reserved	Swing
0	R/W	0		SW0	See Table 3

A product Line of Diodes Incorporated

PI3EQX12908A2

I^{2} C Programming Cont.

BYTE 9

Bit	Type			Control affected	Comment
7	R/W	0	Channel B2 configuration	EQ3	Equalizer See Table 1
6	R/W	0		EQ2	
5	R/W	0		EQ1	
4	R/W	0		EQ0	
3	R/W	0		FG1	Flat Gain
2	R/W	0		FG0	See Table 2
1	R/W	0		Reserved	Swing
0	R/W	0		SW0	See Table 3

BYTE 10

Bit	Type			Control affected	Comment
7	R/W	0	Channel B3 configuration	EQ3	Equalizer See Table 1
6	R/W	0		EQ2	
5	R/W	0		EQ1	
4	R/W	0		EQ0	
3	R/W	0		FG1	Flat Gain
2	R/W	0		FG0	See Table 2
1	R/W	0		Reserved	Swing
0	R/W	0		SW0	See Table 3

BYTE 11

Bit	Type	Power up condition	Control affected	Comment
7	R $/$ W	0	A3 Signal Detector	
6	R/W	0	A2 Signal Detector	
5	R/W	0	A1 Signal Detector	
4	R/W	0	A0 Signal Detector	$1=$ Power Down
3	R/W	0	B3 Signal Detector	
2	R/W	0	B2 Signal Detector	
1	R/W	0	B1 Signal Detector	
0	R/W	0	B0 Signal Detector	

A product Line of Diodes Incorporated

TOPERICOM
PI3EQX12908A2

$I^{2} \mathrm{C}$ Programming Cont.

BYTE 12

Bit	Type	Power up condition	Control affected	
7	R/W	0	A3 RX Detector	Comment
6	R/W	0	A2 RX Detector	
5	R/W	0	A1 RX Detector	
4	R/W	0	A0 RX Detector	
3	R/W	0	B3 RX Detector	
2	R/W	0	B2 RX Detector	
1	R/W	0	B1 RX Detector	
0	R/W	0	B0 RX Detector	

BYTE 13

Bit	Type	Power up condition	Control affected		Comment
7	R/W	0			
6	R/W	0			
5	R/W	0			
4	R/W	0			
3	R/W	0			
2	R/W	0			
1	R/W	0			
0	R/W	0	SD_TH1	Signal Derved	

BYTE 14 to 15 have '0' as Power-up condition

Reset and $\mathbf{I}^{\mathbf{2}} \mathbf{C}$ Master Timing Diagram

Recommended minimum reset pulse width $\mathrm{T}_{\mathrm{rstpw}}=1 \mu \mathrm{~s}$
$\mathrm{I}^{2} \mathrm{C}$ master cycle start from I2C_RESET\# pulse go high, Trstd $=200 \mu \mathrm{~s}$
ENI2C $=$ HIZ to I2C_RESET\#(high) (min), Ti2 $\mathrm{cm} _$rst $=1 \mathrm{uS}$.

$\mathbf{I}^{\mathbf{2}} \mathrm{C}$ Operation

The integrated I2C interface operates as a master or slave device depending on the pin ENI2C being HIZ or HIGH respectively. Standard mode (100 Kbps) is supported with 7 -bit addressing. The data byte format is 8 -bit bytes, and supports the format of indexing to be compatible with other bus devices. In the Slave mode (ENI2C $=\mathrm{HIGH}$), the device supports Read/Write. The bytes must be accessed in sequential order from the lowest to the highest byte with the ability to stop after any complete byte has been transferred.
Address bits A3 to A0 are programmable to support multiple chips environment. The Data is loaded until a Stop sequence is issued.

In the master mode (ENI2C $=$ HIZ), PI3EQX12908A2 supports up to 16 masters connected in daisy chain through connecting I2C_ DONE pin to I2C_RESET\# pin of the next part.

Master EEPROM data starting address of the device address is indicated in the table below:

AD3, AD2,AD1,AD0	EEPROM Data Starting Location
0000	00 h
0001	10 h
0010	20 h
0011	30 h
0100	40 h
0101	50 h
0110	60 h
0111	70 h
1000	80 h
1001	90 h
1010	A0h
1011	B0h
1100	C0h
1101	D0h
1110	E0h
1111	F0h

PI3EQX12908A2

When tying multiple PI3EQX12908A2 devices to the SDA and SCL bus, use the guidelines below to configure the devices. The user also can refer the application notes for detail information.

- Use $\mathrm{AD}[3: 0]$ address bits so that each device can loaded it's configuration from the EEPROM.

Example below is for 4 devices. The first device in the sequence must be address $0 x 00 \mathrm{~h}$; subsequent devices must follow the address order listed below.
$-\mathrm{U} 1: \mathrm{AD}[3: 0]=0000=0 \mathrm{x} 00 \mathrm{~h}$,
$-\mathrm{U} 2: \mathrm{AD}[3: 0]=0001=0 \mathrm{x} 10 \mathrm{~h}$,

- U3: $\mathrm{AD}[3: 0]=0010=0 \times 20 \mathrm{~h}$,
- U4: $\mathrm{AD}[3: 0]=0011=0 \times 30 \mathrm{~h}$
- For I2C Slave Mode operation, use a 2 Kohms pull-up resistor on SDA and SCL pins. For I2C Master Mode operation, use a 1 Kohm pull-up resistor on SDA and SCL pins.
- Daisy-chain I2C_RESET\# and ALL_DONE from one device to the next device in the sequence so that they do not compete for the EEPROM at the same time.

1. Tie ALL_DONE of U1 to I2C_RESET\# of U2
2. Tie ALL_DONE of U2 to I2C_RESET\# of U3
3. Tie ALL_DONE of U3 to I2C_RESET\# of U4
4. Optional: Tie ALL_DONE output of U4 to a LED to show the devices has been loaded successfully

Below is an example of a 2 kbits (256×8-bit) EEPROM in hex format for 4pcs PI3EQX12908A2 device. Bold fonts in yellow are register setting from Byte0 to Byte 15 for each device in each line. Bold fonts in red is the EEPROM data location.
$: 10000000000000 F F 0000 F F F F F F F F F F 0000 F F 620194$
$: 10001000000000 F F F F 0000 F F F F F F F F 0000 F F 620184$
$: 10002000000000 F F F F F 50000 F F F F F F 0000 F F 620174$
$: 10003000000000 F F F F F F F 50000 F F F F 0000 F F 620164$
$: 100040000000000000000000000000000000000 \mathrm{~B} 0$
$: 1000500000000000000000000000000000000000 \mathrm{~A} 0$
$: 100060000000000000000000000000000000000090$
$: 10007000000000000000000000000000000000080$
$: 100080000000000000000000000000000000000070$
$: 10009000000000000000000000000000000000060$
$: 1000 \mathrm{~A} 0000000000000000000000000000000000050$
$: 1000 \mathrm{~B} 00000000000000000000000000000000000040$
$: 1000 \mathrm{C} 0000000000000000000000000000000000030$
$: 1000 \mathrm{D} 0000000000000000000000000000000000020$
$: 1000 \mathrm{E} 0000000000000000000000000000000000010$
$: 1000 \mathrm{~F} 0000000000000000000000000000000000000$
$: 00000001 \mathrm{FF}$

2k bits (256 x 8-bit) EEPROM Date Example
Below is the sample of the I2C master reading waveform based on the setup above.

PI3EQX12908A2

SCL Synchronization

When more than one I2C device becomes a master device and drives the SCL line, each device senses the state of SCL line and automatically adjust the the drive timing by adjusting the timing to the timing to the slowest one.

Transferring Data

Every byte put on the SDA line must be 8-bits long. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first (see the I2C Data Transfer diagram). The PI3EQX12908A2 will never hold the clock line SCL LOW to force the master into a wait state.

Acknowledge

Data transfer with acknowledge is required from the master. When the master releases the SDA line (HIGH) during the acknowledge clock pulse, the PI3EQX12908A2 will pull down the SDA line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse as indicated in the I2C Data Transfer diagram. The PI3EQX12908A2 will generate an acknowledge after each byte has been received.

Data Transfer

A data transfer cycle begins with the master issuing a start bit. After recognizing a start bit, the PI3EQX12908A2 will watch the next byte of information for a match with its address setting. When a match is found it will respond with a read or write of data on the following clocks. Each byte must be followed by an acknowledge bit, except for the last byte of a read cycle which ends with a stop bit. For a write cycle, the first data byte following the address byte is an index byte that is used by the PI3EQX12908A2. Data is transferred with the most significant bit (MSB) first.

$\mathbf{I}^{\mathbf{2} \mathbf{C} \text { Data Transfer }}$

Start \& Stop Conditions

A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition, as shown in the figure below. When a STOP condition is detected, index byte value will be reset to 0 .

$\mathrm{I}^{2} \mathrm{C}$ START and STOP conditions.

$\mathbf{I}^{\mathbf{2} \mathbf{C} \text { Data Transfer Sequence }}$

A product Line of
Diodes Incorporated
T/ PERICOM
PI3EQX12908A2

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Supply Voltage	$\ldots-0.5 \mathrm{~V}$ to +4.0 V
LVCMOS Input/Output Voltage	. . -0.5 V to +4.0 V
CML Input Voltage	-0.5 V to $\left(\mathrm{V}_{\mathrm{DD}}+0.5\right)$
CML Input Current.	$\ldots-30$ to +30 mA
$\mathrm{I}^{2} \mathrm{C}$ pins	$\ldots \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Storage Temperature .	.$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Max. Junction Temperature $125^{\circ} \mathrm{C}$
ESD HBM	. 2 kV

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

LVCMOS I/O DC Specifications ($V_{D D}=3.3 \pm 10 \%, T_{A}=-40$ to $85^{\circ} \mathrm{C}$)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
V_{IH}	DC input logic high		$\mathrm{V}_{\mathrm{DD}} / 2+$ 0.7		$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{IL}}$	DC input logic low		-0.3		$\mathrm{~V}_{\mathrm{DD}} / 2-0.7$	V
$\mathrm{~V}_{\mathrm{OH}}$	DC output logic high	At $\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{DD}}-0.2$			V
$\mathrm{~V}_{\mathrm{OL}}$	DC output logic low	At $\mathrm{I}_{\mathrm{OL}}=+200 \mu \mathrm{~A}$			0.2	V
$\mathrm{~V}_{\text {hys }}$	Hysteresis of Schmitt trigger input		0.8			V

SDA and SCL I/O for $\mathbf{I}^{\mathbf{2}} \mathbf{C - b u s}\left(V_{D D}=3.3 \pm 10 \%, T_{A}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
V_{IH}	DC input logic high		$\mathrm{V}_{\mathrm{DD}} / 2+$ 0.7		$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{IL}}$	DC input logic low		-0.3		$\mathrm{~V}_{\mathrm{DD}} / 2-0.7$	V
$\mathrm{~V}_{\mathrm{OL}}$	DC output logic low	$\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$			0.4	V
$\mathrm{~V}_{\text {hys }}$	Hysteresis of Schmitt trigger input		0.8			V
$\mathrm{t}_{\text {of }}$	Output fall time from $\mathrm{V}_{\text {IHmin }}$ to $\mathrm{V}_{\text {ILmax }}$	Bus capacity $=10$ to 400 pF		250		ns
$\mathrm{f}_{\text {SCLK }}$	SCLK clock frequency			100		kHz

High Speed I/O AC/DC Specifications ($V_{D D}=3.3 \pm 10 \%, T_{A}=-40$ to $85^{\circ} \mathrm{C}$)

Receiver Input (100Ω differential)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
C_{RX}	RX AC coupling capacitance			220		nF
S_{11}	Input return loss	10 MHz to 4 GHz differential		13		dB
		1 GHz to 4 GHz common mode		4		

A product Line of Diodes Incorporated

PI3EQX12908A2

High Speed I/O AC/DC Specifications Cont.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
S_{22}	Output return loss	10 MHz to 4 GHz differential		21		dB
		1 GHz to 4 GHz common mode		4		
$\mathrm{R}_{\text {IN }}$	DC single-ended input impedance			50		Ω
	DC differential input impedance			100		
Rout	DC single-ended output impedance			50		Ω
	DC differential output impedance			100		
$\mathrm{Z}_{\text {RX-HIZ }}$	DC input CM input impedance during reset or power down			200		$\mathrm{k} \Omega$
VRX-DIFF-PP	Differential Input Peak-to-peak Voltage	Operational			1.2	$\mathrm{V}_{\text {ppd }}$
	Input source common-mode noise	DC -200 MHz			150	mV ppd
$\mathrm{T}_{\text {TX-IDLE-SET-TO- }}$ IDLE	Max time to electrical idle after sending an EIOS			4	8	ns
TTX-IDLE-TO-DIFFDATA	Max time to valid diff signal after leaving electrical idle			4	8	ns
$\mathrm{V}_{\text {th }+}$	On threshold of signal detector	Signal swing @ 4GHz	130		210	mV ppd
$\mathrm{V}_{\text {th }}$ -	Off threshold of signal detector	Signal swing @ 100MHz	30		110	mV ppd
$\mathrm{V}_{\text {DD }}$	Power supply voltage		3	3.3	3.6	V
$\mathrm{P}_{\text {max }}$	Max Supply power	PRSNT\#=0			1	W
$\mathrm{I}_{\text {max }}$	Max Supply current				330	mA
$\mathrm{P}_{\text {idle }}$	Supply power	PRSNT\#=1			36	mW
GP5GHZ	Peaking gain (Compensation at 5 GHz , relative to $100 \mathrm{MHz}, 100 \mathrm{mVp}-\mathrm{p}$ sine wave input) $\mathrm{SW}<1: 0>=01, \mathrm{FG}<1: 0>=10$	$\begin{aligned} & \mathrm{EQ}<3: 0>=1111 \\ & \mathrm{EQ}<3: 0>=1000 \\ & \mathrm{EQ}<3: 0>=0000 \end{aligned}$		$\begin{gathered} 16.1 \\ 13.5 \\ 8.0 \end{gathered}$		dB
		Variation around typical	-3		+3	
GP6GHZ	Peaking gain (Compensation at 6 GHz , relative to $100 \mathrm{MHz}, 100 \mathrm{mVp}-\mathrm{p}$ sine wave input) SW $<1: 0>=01, \mathrm{FG}<1: 0>=10$	$\begin{aligned} & \mathrm{EQ}\langle 3: 0>=1111 \\ & \mathrm{EQ}\langle 3: 0>=1000 \\ & \mathrm{EQ}\langle 3: 0>=0000 \end{aligned}$		$\begin{gathered} 17.2 \\ 14.8 \\ 9.0 \end{gathered}$		dB
		Variation around typical	-3		+3	
GF_{F}	Flat gain $(100 \mathrm{MHz}, \mathrm{EQ}<3: 0>=1000$, SW $<1: 0>=01$)	$\begin{aligned} & \mathrm{FG}<1: 0>=11 \\ & \mathrm{FG}<1: 0>=10 \\ & \mathrm{FG}<1: 0>=01 \\ & \mathrm{FG}<1: 0>=00 \end{aligned}$		$\begin{gathered} \hline+2.0 \\ -0.5 \\ -2.0 \\ -4.0 \end{gathered}$		dB
		Variation around typical	-3		+3	
$\mathrm{V}_{1 \mathrm{~dB} \text { _ } 100 \mathrm{M}}$	-1 dB compression point of output swing (at 100 MHz)	$\begin{aligned} & \mathrm{SW} 0=1 \\ & \mathrm{SW} 0=0 \end{aligned}$		$\begin{gathered} 1000 \\ 900 \end{gathered}$		mV ppd
$\mathrm{V}_{1 \mathrm{~dB} \text { _6G }}$	-1 dB compression point of output swing (at $6 \mathrm{GHz}) \mathrm{FG}=0 \mathrm{~dB}, \mathrm{EQ}=0000$ or $0(\mathrm{~h})$	$\begin{aligned} & \text { SW0 }=1 \\ & \text { SW0 }=0 \end{aligned}$		$\begin{aligned} & 600 \\ & 540 \end{aligned}$		mV ppd
PI3EQX12908A2 Document Number DS40411 Rev 1-2		18	www.diodes.com		November 2017 (1) Diodes Incorporated	

High Speed I/O AC/DC Specifications Cont.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {Coup }}$	Channel isolation	100 MHz to 5 GHz , Figure 1 (Note 1)		28		dB
Vnoise_input	Input-referred noise	$\begin{aligned} & 100 \mathrm{MHz} \text { to } 5 \mathrm{GHz} \\ & \mathrm{FG}<1: 0>=11, \mathrm{EQ}<3: 0> \\ & =0000 \text {, Figure } 2 \end{aligned}$		0.5		$m V_{\text {RMS }}$
		$\begin{aligned} & 100 \mathrm{MHz} \text { to } 5 \mathrm{GHz} \\ & \mathrm{FG}<1: 0>=11, \mathrm{EQ}<3: 0> \\ & =1010 \text {, Figure } 2 \end{aligned}$		0.4		
V ${ }_{\text {noise_output }}$	Output-referred noise (Note 2)	$\begin{aligned} & 100 \mathrm{MHz} \text { to } 5 \mathrm{GHz}, \\ & \mathrm{FG}<1: 0>=11, \mathrm{EQ}<3: 0> \\ & =0000 \text {, Figure } 2 \end{aligned}$		0.7		$m V_{\text {RMS }}$
		$\begin{aligned} & 100 \mathrm{MHz} \text { to } 5 \mathrm{GHz}, \\ & \mathrm{FG}<1: 0>=11, \mathrm{EQ}<3: 0> \\ & =1010 \text {, Figure } 2 \end{aligned}$		0.8	1.6	
Latency						
t_{pd}	Latency	From input to output		0.2		ns
Jitter						
R_{j}	Additive Random Jitter at 8 Gb /s (worst case)	PRBS31@24hrs 36" 5mils FR4 $\begin{aligned} & \mathrm{VID}=0.8 \mathrm{mVp}-\mathrm{p} \\ & \mathrm{DE}=0 \mathrm{~dB} \\ & \mathrm{EQ}=0100 \end{aligned}$		0.0258		UI

Note 1: Measured using a vector-network analyzer (VNA) with - 15 dBm power level applied to the adjacent input. The VNA detects the signal at the output of the victim channel. All other inputs and outputs are terminated with 50Ω.
Note 2: Guaranteed by design and characterization.

Characteristics of the SDA and SCI bus lines for Standard Mode $I^{2} \mathbf{C}$-bus devices ${ }^{(1)}$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{f}_{\text {SCL }}$	SCL clock frequency			100	-	kHz
$\mathrm{t}_{\text {HD } \text {; STA }}$	Hold time (repeated) START condition. After this period, the first clock pulse is generated.		4.0		-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {LOW }}$	LOW period of the SCL clock		4.7		-	
$\mathrm{t}_{\text {HIGH }}$	HIGH period of the SCL clock		4.0		-	
$\mathrm{t}_{\text {SU; }}$ STA	Set-up time for a repeated START condition		4.7		-	
$\mathrm{t}_{\mathrm{HD} ; \mathrm{DAT}}$	Data hold time		10		-	ns
$\mathrm{t}_{\text {SU; }}$ DAT	Data set-up time		250		-	ns
t_{r}	Rise time of both SDA and SCL signals		-		1000	
t_{f}	Fall time of both SDA and SCL signals				300	
$\mathrm{t}_{\text {SU; }}$ STO	Set-up time for STOP condition		4.0		-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {BUF }}$	Bus free time between a STOP and STOP condition		4.7		-	
C_{b}	Capacitive load for each bus line		-		400	pF

Notes:

1. All values referred to VIH min and VIL max levels

A product Line of Diodes Incorporated

Channel-Isolation Test Configuration

Noise Test Configuration

AC Test Circuit Referenced in the Electrical Characteristic Table

$I^{2} \mathrm{C}$ Timing

Definition of Differential Voltage and Differential Voltage Peak-to-Peak

PI3EQX12908A2

Application Diagrams

Applications Information

GENERAL RECOMMENDATIONS

The PI3EQX12908A2 is a high performance circuit capable of delivering excellent performance. Careful attention must be paid to the details associated with high-speed design as well as providing a clean power supply. Refer to the information below and Revision 4 of the LVDS Owner's Manual for more detailed information on high speed design tips to address signal integrity design issues.

PCB LAYOUT CONSIDERATIONS FOR DIFFERENTIAL PAIRS

The Differential inputs and LPDS outputs have been optimized to work with interconnects using a controlled differential impedance of $85-100 \Omega$. It is preferable to route differential lines exclusively on one layer of the board, particularly for the input traces. The use of vias should be avoided if possible. If vias must be used, they should be used sparingly and must be placed symmetrically for each side of a given differential pair. Whenever differential vias are used the layout must also provide for a low inductance path for the return currents as well. Route the differential signals away from other signals and noise sources on the printed circuit board.

POWER SUPPLY BYPASSING

Two approaches are recommended to ensure that the PI3EQX12908A2 is provided with an adequate power supply. First, the supply (VDD) and ground (GND) pins should be connected to power planes routed on adjacent layers of theprinted circuit board. The layer thickness of the dielectric should be minimized so that the VDD and GND planes create a low inductance supply with distributed capacitance. Second, careful attention to supply bypassing through the proper use of bypass capacitors is required. A $0.1 \mu \mathrm{~F}$ bypass capacitor should be connected to each VDD pin such that the capacitor is placed as close as possible to the PI3EQX12908A2. Smaller body size capacitors can help facilitate proper component placement. Additionally, capacitor with capacitance in the range of $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ should be incorporated in the power supply bypassing design as well. These capacitors can be either tantalum or an ultra-low ESR ceramic.

Notes:

Hot Plug Detect feature operation is dependent on certain channel conditions, such as length.
For hot plug detect, reset will automatically go back to receiver detect (RXDET) cycle.

A product Line of Diodes Incorporated
T) PERICOM

PI3EQX12908A2

Application Schematics

A product Line of Diodes Incorporated
T) PERICOM

Packaging Information 54-TQFN (ZF)

Thermal Resistance - 54-contact ZF Package/72-contact ZL Package:
ӨJC \qquad $11.5^{\circ} \mathrm{C} / \mathrm{W}$
$\theta \mathrm{JA}$ No Airflow, 4 layer JEDEC $19.1^{\circ} \mathrm{C} / \mathrm{W}$

For latest package info.
please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Number	Package Code	Package Description
PI3EQX12908A2ZFEX	ZF	54-Contact, Very Thin Quad Flat No-Lead (TQFN)

Notes:

- Thermal characteristics can be found on the company web site at www.diodes.com/design/support/packaging/
- $\mathrm{E}=\mathrm{Pb}$-free and Green
- X suffix = Tape/Reel

A product Line of Diodes Incorporated

PI3EQX12908A2

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Interface - Signal Buffers, Repeaters category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
PI6ULS5V9509UEX PI3HDMI101-BZHEX PI3EQX12904AZHEX PI6ULS5V9306WEX PI3EQX1004EZTFEX PI6ULS5V9509WEX 48705-3001R2 48705-6501R2 DS280BR820ZBLT PCA9617ADPJ PI6ULS5V9515AWEX PI3HDMI101ZHE LTC4315CDE\#PBF LTC4300-1CMS8\#PBF DS110DF1610FB/NOPB LTC4301LCDD\#PBF LTC4303IDD\#PBF LTC4315IMS\#TRPBF LTC4304IMS\#PBF DS280DF810ABVT LTC4315IDE\#PBF LTC4300-1IMS8\#PBF LTC4313IMS8-3\#TRPBF LTC4300-2IMS8\#PBF LTC4300A-1CMS8\#PBF PCA9515AD, 118 LTC4307CMS8-1\#TRPBF LTC4304CDD\#PBF PI3EQX1002B1ZLEX LTC4301LIMS8 LTC4313IDD-3\#TRPBF LTC4309IGN\#PBF LTC4309CGN\#PBF MAX9169EUE+ LTC4302IMS-2\#PBF LTC4302CMS-1\#PBF PI6ULS5V9306UEX LTC4300A1CMS8\#TRPBF P82B715TD,112 PCA9507DP,118 PCA9509DP,118 PCA9509GM,125 PCA9515ADP,118 PCA9517AD,118 PCA9517ADP,118 PCA9517DP,118 P82B715TD,118 PI6ULS5V9511AWEX PI1EQX512AXUAEX PI2EQX502TZHEX

