

5.0 Gbps, 2-port, USB 3.0 ReDriver™ with Digital Confguration

Features

- → USB 3.0 compatible
- → Four 5.0 Gbps differential signal pairs
- → Adjustable Receiver Equalization
- → 100Ω Differential CML I/O's
- → Pin Configured Output Emphasis Control
- → Input signal level detect and squelch for each channel
- → Automatic Receiver Detect with digital enable/disable
- → Low Power ~660mW
- → Auto "Slumber" mode for adaptive power management
- → Stand-by Mode Power Down State
- → Industrial Temp Support (-40°C to 85°C)
- → Single Supply Voltage: 3.3V
- → Packaging: 42-Pin TQFN (3.5x9mm)

Pin Diagram (Top Side View)

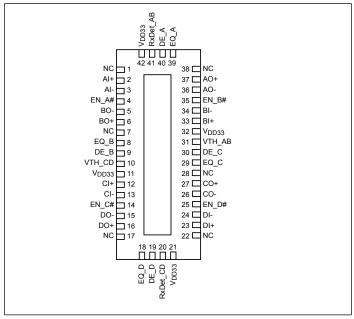
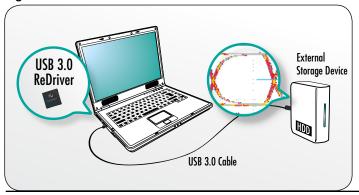
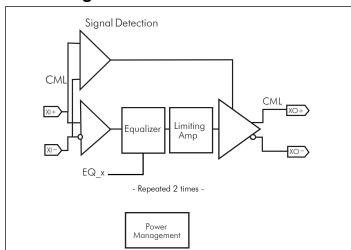



Figure1


Description

Pericom Semiconductor's PI3EQX7742AI is a low power, high performance 5.0 Gbps signal ReDriver designed specifically for the USB 3.0 protocol. The device provides programmable equalization, De-Emphasis, and input threshold controls to optimize performance over a variety of physical mediums by reducing Inter-Symbol Interference. PI3EQX7742AI supports four 100Ω Differential CML data I/O's between the Protocol ASIC to a switch fabric, over cable, or to extend the signals across other distant data pathways on the user's platform.

The integrated equalization circuitry provides flexibility with signal integrity of the signal before the ReDriver. A low-level input signal detection and output squelch function is provided for each channel.

Each channel operates fully independently. When the channels are enabled $EN_x\#=0$ and operating, that channels' input signal level (on xI+/-) determines whether the output is active. If the input signal level of the channel falls below the active threshold level (Vth-) then the outputs are driven to the common mode voltage. In addition to signal conditioning, when $EN_x\#=1$, the device enters a low power standby mode. The PI3EQX7742AI also includes a fully programmable receiver detect function. When the RxDet pin is pulled high, automatic receiver detection will be active. The device will then move to power down due to inactivity.

Block Diagram

13-0005 1 www.pericom.com PS-0.2 09/26/2012

Pin Description

Pin #	Pin Name	Туре	Description
1, 7, 17, 22, 28, 38	NC	NC	No Connect
2, 3	AI+, AI-	Input	CML input channels. With Selectable input termination between 50Ω to internal V_{BIAS} and Hi-Z.
5, 6	BO-, BO+	Output	Selectable output termination between 50Ω to internal Vbias and $2k\Omega$ to internal Vbias, and Hi-Z.
12, 13	CI+, CI-	Input	CML input channels. With Selectable input termination between 50Ω to internal V_{BIAS} and Hi-Z.
15, 16	DO-, DO+	Output	Selectable output termination between 50Ω to internal Vbias and $2k\Omega$ to internal Vbias, and Hi-Z.
23, 24	DI+, DI-	Input	CML input channels. With Selectable input termination between 50Ω to internal V_{BIAS} and Hi-Z.
26, 27	CO-, CO+	Output	Selectable output termination between 50Ω to internal Vbias and $2k\Omega$ to internal Vbias, and Hi-Z.
33, 34	BI+, BI-	Input	CML input channels. With Selectable input termination between 50Ω to internal V_{BIAS} and Hi-Z.
36, 37	AO-, AO+	Output	Selectable output termination between 50Ω to internal Vbias and $2k\Omega$ to internal Vbias, and Hi-Z.
11, 21, 32, 42	VDD33	Power	3.3V Voltage Supply
39, 8, 18, 29	EQ_A, EQ_B, EQ_D, EQ_C	Input	Equalization Adjustment. Tri-level input pin. When set to "high", the pin becomes logic "1"; when set to "open", the pin becomes "open"; when set to "low", the pin becomes logic "0". Please refer to Mode Adjustment on page 3.
40, 9, 19, 30	DE_A, DE_B, DE_D, DE_C	Input	Set the de-emphasis of the output CML buffer. Tri-level input pin. When set to "high", the pin becomes logic "1"; when set to "open", the pin becomes "open"; when set to "low", the pin becomes logic "0". Please refer to Mode Adjustment on page 3.
10, 31	VTH_CD, VTH_AB	Input	Set the voltage threshold of two channels. "Low" means VTH at (50mV, 110mV); "High" means VTH at (80mV, 150mV)
4, 14, 25, 35	EN_A#, EN_C#, EN_D#, EN_B#	Input	Channel Enable. "Low" = Channel is in normal operation. "High" = Channel is in power down mode. With internal $200k\Omega$ pull-down resistor.
20, 41	RXDET_CD, RXDET_AB	Input	Set the state of receiver detection of two channels. "Low" means no receiver detection and "high" means the receiver detection is active. With internal $200k\Omega$ pull-up resistor.
Center Pad	GND	GND	Supply Ground.

Adaptive Auto Power Down or "Slumber" Mode

Notebooks, netbooks, and other power sensitive consumer devices require judicious use of power in order to maximize battery life. In order to minimize the power consumption of our devices, Pericom has added an additional adaptive auto power down feature. When a signal detector is idle for longer than 5ms, the corresponding channel will move to low power mode ONLY. (It means both channels will move to low power mode individually).

In the low power mode, the signal detector will still be monitoring the input channel. If the channel is in low power mode and the input signal is detected, the corresponding channel will wake up .

The device can also be forced into power down mode through the use of the EN_x# pins however this would require the use of GPIO pins to control.

13-0005 2 www.pericom.com PS-0.2 09/26/2012

Configuration Table

EN_x#	R _X Det_xx	Function	Input R	Output R
1	X	Channel disable if EN_A#, EN_B#, EN_C#, and EN_D# are high, Chip Power Down	Hi-Z	Hi-Z
0	1	Chip and channel enabled, receiver detect is active	50Ω / Hi-Z*	50Ω / Hi-Z*
0	0	Chip and channel enabled, receiver detect is not active	50Ω	50Ω

^{*} Refer to pin 20 & 41 description

Mode Adjustment

Equalization Setting:

EQ_A/B/C/D are the selection pins for the equalization selection for each direction.

Equalizer setting			
EQ_A/B/C/D	@ 2.5GHz		
0	3 dB		
open	6dB (Default)		
1	9dB		

De-emphasis Setting:

DE_A/B/C/D are the selection pins for the de-emphasis selection for each direction.

Output de-emphasis setting			
DE_A/B/C/D	De-emphasis		
0	0 dB		
open	-3.5 dB		
1	-6 dB		

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Supply Voltage to Ground Potential	0.5V to +4.6V
DC SIG Voltage	0.5V to V _{DD} +0.5V
Current Output	25mA to +25mA
Power Dissipation Continuous	1.0W
Operating Temperature	-40°C to +85°C
ESD, Human Body Model	
ESD, Machine Model	200V to +200V

Note:

Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units		
DEVICE PARAMET	DEVICE PARAMETERS							
maximum date rate					5	Gbps		
	D : 11 ::	sleep mode exit time ENA/B# H->L		100				
t _{ENB}	Device enable time	with Rx termination present	100			ns		
t _{DIS}	Device disable time	sleep mode entry time ENA/B# L->H		7		ns		
CONTROL LOGIC	CONTROL LOGIC							
I _{IH}	Input High Current				50	A		
I_{IL}	Input LOW Current		-50			uA		
Tri-level Control Pins (Pins: 39, 8, 18, 29, 40, 9, 19, 30)								
V _{IH}	Input High Voltage		0.8Vpp			37		
V _{IL}	Input Low Voltage				0.2Vpp	V		

AC/DC Electrical Characteristics

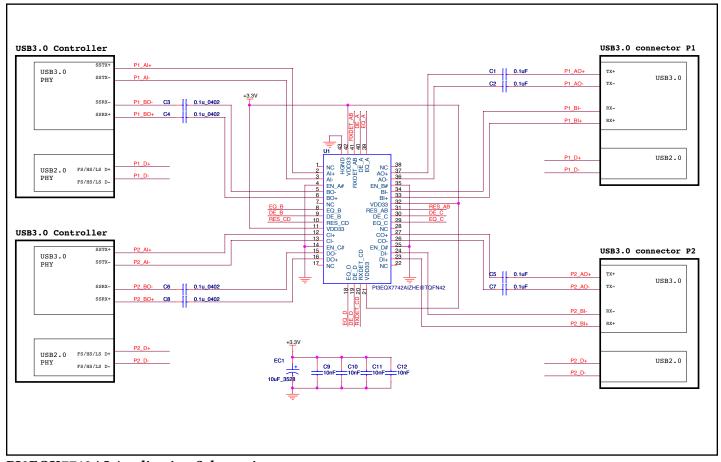
3.3V Power Supply Characteristics **Symbol Conditions** Units **Parameter** Min. Typ. Max. V V_{DD33} 3.0 3.6 Power Supply Voltage 0.3 P_{STANDBY33} Supply Power Standby $EN_[A:B:C:D]# = 1$ 3.6 92 P_{SLUMBER33} Supply Power Slumber $EN_[A:B:C:D]$ # = 0, No Input Signal 130 mW 14 PDEVICE_UNPLUG Supply Power Device Unplug $EN_[A:B:C:D]$ # = 0, Output unterminated 656 900 PACTIVE33 Supply Power Active $EN_{A:B:C:D}$ # = 0, $V_{RX-DIFF-P} \ge V_{TH-SD}$ Supply Current Standby $EN_[A:B:C:D]# = 1$ 1 mA I_{DD-STANDBY33} Supply Current Slumber $EN_[A:B:C:D]$ # = 0, No Input Signal 36 mA I_{DD-SLUMBER33} Supply Current Device Unplug $EN_[A:B:C:D]$ # = 0, Output unterminated 4.3 IDD-DEVICE UNPLUG mASupply Current Active $EN_[A:B:C:D] x#=0, V_{RX-DIFFP-P} \ge V_{TH-SD}$ 250 IDD-ACTIVE33

AC/DC Electrical Characteristics (Continued..)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
Receiver AC/l	DC				,		
V _{RX-DIFFP-P}	Differential Peak-to-Peak Input Voltage	AC coupled differential RX peak to peak signal	100		1200	mVpp	
V _{RX-C}	Common Mode Voltage			1		V	
V_{cm_ac}	RX AC Common Mode Voltage	Measured at Rx pins with termination enabled			150	mVP	
Z _{DC_RX}	DC commmon mode inpedance		18	26	30		
Z _{diff_RX}	DC differential input impendance		72	80	120	Ω	
Z _{RX_HIGH_} IMP+	DC Input high impedance	Device in sleep mode RX termination not powered measured with respect to GND over 500mV max		67		kΩ	
DI	Diff. (i.l. 1	50 MHz-1.25GHz		23		11	
RL _{RX-DIFF}	Differential return loss	1.25 GH-2.5 GHz		13		db	
RL _{RX-CM}	Common mode return loss	50 MHz-2.5 GHz		8		db	
TH-SD	Signal detect Threshold	$EN_A/B/C/D\# = 0$	65		175	mVppd	
Transmitter (Output AC/DC $(100\Omega \text{ differential})^1$						
V _{TX-DIFFP-P}	Differential Peak-to-peak Output Voltage	$V_{TX-DIFFP-P} = 2 * V_{TX-D+} - V_{TX-D-} $	400		1200		
V _{TX-LFPS}	LFPS Differential Peak-to-peak Output Voltage		800			mV	
V _{TX-C}	Common-Mode Voltage	V _{TX-D+} + V _{TX-D-} /2	0.5		1.2	V	
V _{cm_ac}	TX AC common mode voltage				100	mVpp	
		DE A/B/C/D = 0		0			
DE		DE A/B/C/D = NC	-3.0	-3.5	-4.0	dB	
		DE A/B/C/D = 1		-6.0			
Z_{diff_TX}	DC differential impedance		72	90	120		
Z_{CM_TX}	DC common mode impedance	Measured w.r.t to AC ground over 0-500mV	18	23	30	Ω	
D.T.	D:#t:-1t 1	f= 50MHz-1.25 GHz		12		JD.	
RL_{diff_TX}	Differential return loss	f= 1.25 GHz-2.5 GHz		8		dB	
RL _{CM_TX}	Common mode return loss	f= 50 MHz-2.5GHz		10		dB	
I _{TX_SC}	TX short circuit current	TX± shorted to GND		26		mA	
V	Transmitter DC common-mode voltage V			1		V	
V _{TX_CM_AC_}	TX AC common mode voltage active			30	100	mVpp	

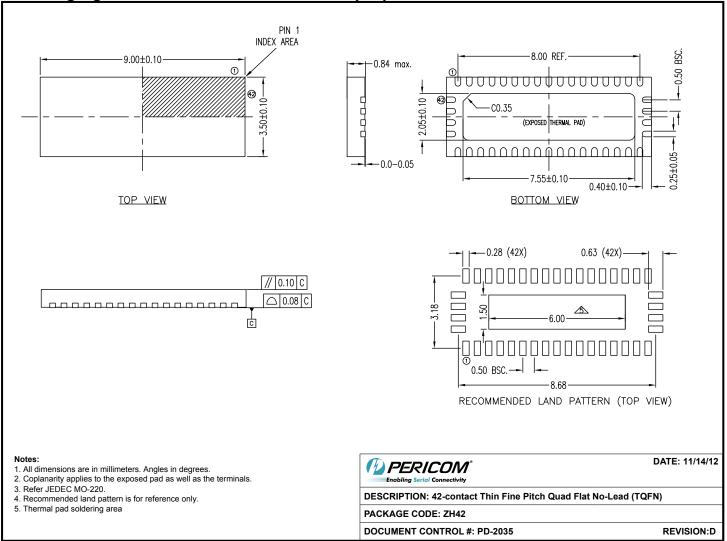
AC/DC Electrical Characteristics (Continued..)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
V _{detect}	Voltage change to allow receiver	Positive voltage to sense receiver termination			600	mV	
t_{R,t_F}	Output rise/fall time	20%-80% of differental voltage measured 1" from the output pin		90		ps	
T _{diff_LH} , T _{diff_HL}	Differential propagation delay	Propagation delay between 50% level at input and output		305	370	ps	
Equalization							
T _{TX-EYE} ⁽¹⁾⁽²⁾	Total jitter(Tj)			0.2	0.5	(3)	
$\mathrm{DJ_{TX}}^{(2)}$	Deterministic jitter(Dj)	with 36 inch of inputFR4 trace		0.1	0.3	UI ⁽³⁾	
$RJ_{TX}^{(2)(4)}$	Random jitter(Rj)			0.09	0.2	Pp	


Note:

- 1.Includes RJ at 10⁻¹² BER
- 2.Determininstic jitter measured with PRBS31 pattern, Random jitter measured with 1010 pattern VID=1000mVpp, 5Gbps,
- 3.UI = 200ps
- 4.Rj calculated as 14.069 times the RMS random jitter for 10⁻¹² BER

Test Condition Referenced in the Electrical Characteristic Table



PI3EQX7742AI Application Schematic

Note: For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Number	Package Code	Package Description
PI3EQX7742AIZHE	ZH	Pb-Free and Green 42-pin TQFN (3.5 x 9mm)

Notes:

12-0529

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free and Green
- X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com

All trademarks are property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Interface - Signal Buffers, Repeaters category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below:

PI6ULS5V9509UEX PI3HDMI101-BZHEX PI3EQX12904AZHEX PI6ULS5V9306WEX PI3EQX1004EZTFEX PI6ULS5V9509WEX 48705-3001R2 48705-6501R2 DS280BR820ZBLT PCA9617ADPJ PI6ULS5V9515AWEX PI3HDMI101ZHE P82B715TD.112 LTC4315CDE#PBF LTC4300-1CMS8#PBF DS110DF1610FB/NOPB LTC4301LCDD#PBF LTC4303IDD#PBF LTC4315IMS#TRPBF LTC4304IMS#PBF DS280DF810ABVT LTC4315IDE#PBF LTC4300-1IMS8#PBF LTC4313IMS8-3#TRPBF LTC4300-2IMS8#PBF LTC4300A-1CMS8#PBF PCA9515AD,118 LTC4307CMS8-1#TRPBF LTC4304CDD#PBF PI3EQX1002B1ZLEX LTC4301LIMS8 LTC4313IDD-3#TRPBF LTC4309IGN#PBF LTC4309CGN#PBF MAX9169EUE+ LTC4302IMS-2#PBF LTC4302CMS-1#PBF PI6ULS5V9306UEX LTC4300A-1CMS8#TRPBF P82B715TD,112 PCA9507DP,118 PCA9509DP,118 PCA9509GM,125 PCA9515ADP,118 PCA9517ADP,118 PCA9517DP,118 P82B715TD,118 PI6ULS5V9511AWEX PI2EQX502TZHEX