A product Line of Diodes Incorporated

PI3HDX1204E

HDMI 2.0 6Gbps Linear Redriver Level Shifter Near to the Sink/DFE-side application

Description

PI3HDX1204E is the HDMI 2.0 Linear Redriver with the Level Shifter, supporting the minimum additive jitters. The linear Redriver provides the easiness of handling the signal integrity issues known in the component placement and the setting parameters of Equalization and Flat Gain compensation between Source-side and Sink-side link system.

The advantage of Linear Redriver does not block the original source differential signals to maximize the Sink-side Receiver Digital Feedback Equalization (DFE) Feedback circuits to improve the high-speed linked signal quality. The output swing range can set by Swing control for the power saving.
The optimization of the signal quality over a variety of physical mediums by reducing Inter-symbol Interference (ISI) jitters can be done by the pin-strapping or I2C programming.

In EEPROM mode, the Equalization, Voltage Swing and Gain controls can be automatically loaded during the system power-up to eliminate the need of external microprocessor or software driver.

Features

\rightarrow HDMI 2.0 Compliant TMDS Linear Redriver with 2x Improved Jitter Performance than conventional technology
\rightarrow DP++ Level Shifting for HDMI output
\rightarrow Linear Redriver increases TMDS Link Margin supporting Sink-side DFE (Decision Feedback Equalizers) receiver
\rightarrow Every Channel's Equalizations, Swings and Gains are programmable Independently
\rightarrow Support Pin- strap and I2C Programming
\rightarrow Flexible 4-bit I2C address selectable (42-pin, ZH package)
\rightarrow Power supply: 3.3 V
\rightarrow Package (Pb-Free \& Green):

- 32-pin TQFN (3x6mm)
- 42-pin TQFN (3.5x9mm)

Applications

\rightarrow TVs and Monitors near to the Sink-side Devices

Figure 1. Monitor for sink-side with Rx DFE receiver

Ordering Information

Ordering Number	Package Code	Eco Plan
PI3HDX1204E ZLEX	ZL	Pb-free \& Green, 32-pin TQFN
PI3HDX1204E ZHEX	ZH	Pb-free \& Green, 42pin TQFN

A product Line of Diodes Incorporated

PI3HDX1204E

2. General Information

2.1 Revision History

Revision	Description
March 2016	Pin-out (p8): FGx(x=0,1) Pin name typo fixed.
April 2016	Electrical(p17): tSK_INTRA_OUT changed 5 typ, 10 max ps
May 2016	Application(p30): More informative system EE contents added. DDC source-side pull-up changed to 10 kOhm from 2 kOhm
June 2016	Mechanical (p39): EPAD outline changed
Oct 2016	Diodes Disclaimer added
Aug 2017	Clarified Output Swing range control in functional description. PI3HDX1204B1 limiting and PI3HDX1204E linear pin-out comparison added in generic information session
Dec 2017	Updated package mechanical drawing with latest (p46).

2.2 PI3HDX1204D to PI3HDX1204E PDN Notice

PI3HDX1204E is a production part number of PI3HDX1204D. The detail comparison is summarized below.

	PI3HDX1204E	PI3HDX1204D
Changes	32-pin TQFN package added	
Pin-out	No change	EOL (End of Life).
Function control	No change	PI3HDX1204D was engineering version of PI3H- DX1204E
Application Note	PI3HDX1204D application note and schematics are applicable to the PI3HDX1204E.	

2.3 Similar Products Comparison

	PI3HDX1204B1	PI3HDX1204E
Redriver Type	Limiting type	Linear type
EQ at 6Gbps	22 dB	10 dB
Output TMDS peak-to- peak Swing	Output Swing Amplitude / Pre-Emphasis control. Blocking type	Follow Source Swing Amplitude. Non-blocking type.
DDC Switch/Buffer	No	No
HDMI1.4/2.0 Type ID	No	No
Ioff Protection	External Power Switch	External Power Switch
Data Rate (Gbps)	6 Gbps	6 Gbps
Application	Near to Source-side device	Near to Sink-side device
Availability	Production	Production

A product Line of Diodes Incorporated

PI3HDX1204E

A product Line of Diodes Incorporated

PI3HDX1204E

2.4 Related Products

Part Numbers	Products Description
Retimers / Jitter Cleaner	
PI3HDX2711B	HDMI 2.0 and DP++ Retimer (Jitter Cleaner)
PI3HDX711B	HDMI 1.4 and DP++ ReTimer (Jitter Cleaner)
Redrivers	DisplayPort 1.4 Redriver for Source/Sink/Cable Application, Linear-type
PI3DPX1203B	HDMI 2.0 Redriver (DP++ Level Shifter), High EQ, place near to the source-side, Limiting type
PI3HDX1204B1	HDMI 2.0 Linear Redriver (DP++ Level Shifter), Link transparent, place near to the sink-side
PI3HDX1204E	DisplayPort 1.4 Alt Type-C Redriver, 8.1 Gbps and USB3.1 10 Gbps, Link Transparent
PI3DPX1207B	Low Power DisplayPort 1.2 Redriver with built-in AUX Listener, Limiting-type
PI3DPX1202A	High EQ HDMI 1.4b Redriver and DP++ Level Shifter for Sink/Source Application, Limiting-type
PI3HDX511F	DisplayPort 1.4 Alt Type-C Mux Redriver, 8.1 Gbps and USB3.1 10 Gbps, Link Transparent
Active Switches \& Splitters	
PI3DPX1205A	HDMI 2.0 3:1 ports Mux Redriver, Linear-type
PI3HDX231	HDMI 1.4b 1:4 Demux Redriver \& Splitter for 3.4 Gbps Application, Limiting-type
PI3HDX414	HDMI 1.4b 1:2 Demux Redriver \& Splitter for 3.4 Gbps Application, Limiting-type
PI3HDX412BD	HDMI 1.4 Redriver 2:1 Active Switch with built-in ARC and Fast Switching support, Limiting-type
PI3HDX621	

A product Line of Diodes Incorporated

PI3HDX1204E

Contents

1. Product Brief 1
2. General Information 2
2.1 Revision History 2
2.2 PI3HDX1204D to PI3HDX1204E PDN Notice 2
2.3 Similar Products Comparison 2
2.4 Related Products 4
3. Pin Configuration 6
3.1 Package Pin-out 6
3.2 Pin Description 7
4. Functional 11
4.1 Functional Block 11
4.2 Function Description 12
5. I2C Programming. 16
5.1 Programming registers 16
5.2 I2C operation 18
6. Electrical Specification 20
6.1 Absolute Maximum ratings 20
6.2 Recommended operating conditions 20
6.3 Electrical characteristics 20
6.4 I2C Interface Bus 25
7. Applications 27
7.1 DC/AC-coupled Application 27
7.2 Sink-side Redriver Application 28
7.3 Channels/Polarity Swap 28
7.4 Output Eye Diagram 29
7.5 Layout Guidelines 33
7.6 HDMI 2.0 Compliance Test 39
8. Mechanical/Packaging 42
8.1 Mechanical Outline 42
8.2 Part Marking Information 45
8.3 Tape \& Reel Materials and Design 46
9. Important Notice 49

A product Line of
Diodes Incorporated
PI3HDX1204E

3. Pin Configuration

3.1 Package Pin-out

Figure 3-1 32/42-pin package pin-out
Note: In TMDS Data and Clock Differential Pairs of Input and Output, the polarity ($+/-$ or P / N) of each pairs and high-speed data channels A[3:0] can use interchangeably. Output pins of polarity and data channel will always follow the input polarity and data channel assignment changes.

A product Line of Diodes Incorporated

PI3HDX1204E

3.2 Pin Description

3.2.1 32-pin package

Pin \#	Pin Name	Type	Description
Data Signals			
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { A0RX+ } \\ & \text { A0RX- } \end{aligned}$	I	TMDS differential positive/negative input for Channel A0, with internal 50Ω Pull-Up and $\sim 200 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 27 \\ & 26 \end{aligned}$	$\begin{aligned} & \text { A0TX+, } \\ & \text { A0TX- } \end{aligned}$	O	TMDS differential positive/negative outputs for Channel A0, with internal 50Ω Pull-Up and $\sim 2 k \Omega$ Pull-Up otherwise.
$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { A1RX+, } \\ & \text { A1RX- } \end{aligned}$	I	TMDS differential positive/negative inputs for Channel A1, with internal 50Ω Pull-Up and $\sim 200 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 24 \\ & 23 \end{aligned}$	$\begin{aligned} & \text { A1TX+, } \\ & \text { AlTX- } \end{aligned}$	O	TMDS differential positive/negative outputs for Channel A1, with internal 50Ω Pull-Up and $\sim 2 k \Omega$ Pull-Up otherwise.
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { A2RX+, } \\ & \text { A2RX- } \end{aligned}$	I	TMDS differential positive/negative inputs for Channel A2, with internal 50Ω Pull-Up and $\sim 200 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 21 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { A2TX+, } \\ & \text { A2TX- } \end{aligned}$	O	TMDS differential positive/negative outputs for Channel A2, with internal 50Ω Pull-Up and $\sim 2 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { A3RX+, } \\ & \text { A3RX- } \end{aligned}$	I	TMDS differential positive/negative inputs for Channel A3, with internal 50Ω Pull-Up and $\sim 200 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & \hline 18 \\ & 17 \end{aligned}$	$\begin{aligned} & \text { A3TX+, } \\ & \text { A3TX- } \end{aligned}$	O	TMDS differential positive/negative outputs for Channel A3, with internal 50Ω Pull-Up and $\sim 2 \mathrm{k} \Omega$ Pull-Up otherwise.
Control Signals			
12	SDA	I/O	$\mathrm{I}^{2} \mathrm{C}$ Serial Data line
13	SCL	I/O	$\mathrm{I}^{2} \mathrm{C}$ Serial Clock line In Master mode (ENI2C pin floating), SCL is an output. Otherwise it is an input as a slave mode.
14	PRSNT\#	I	Cable Present Detect input. This pin has internal $100 \mathrm{~K} \Omega$ pull-up. The pin is active when both PIN mode (ENI2C = LOW) and I2C mode (ENI2C $=\mathrm{HIGH}$). When High, a cable is not present, and the device is put in lower power mode. When Low, the device is enabled and in normal operation.
15	ENI2C	I	I2C Enable pin. When LOW, each channel is programmed by the external pin voltage. When HIGH, each channel is programmed by the data stored in the $\mathrm{I}^{2} \mathrm{C}$ bus. When floating, master mode (Read External EEPROM)
32,31,30	EQ[3:1]	I	EQ Control pin. Inputs with internal $100 \mathrm{k} \Omega$ pull-up. This pins set the amount of Equalizer Boost in all channels when ENI2C is low.
	$\mathrm{AD}[3: 1]$	I	Address bits control pins for I2C programming with internal $100 \mathrm{k} \Omega$ pullup.

A product Line of
Diodes Incorporated

Pin \#	Pin Name	Type	Description
29	FG1/I2C_RE- SET\#	I	Shared pin for Gain Control bit-1 and I2C Reset pin. Inputs with internal $100 \mathrm{k} \Omega$ pull up resistor. (1) Sets the output flat gain level bit-1 on all channels when ENI2C is Low. (2) I2C Reset pin. Active Low to reset the registers to default state.
28	FG0	I	Flat Gain control bit-0 pin. Inputs with internal 100k Ω pull up resistor. Sets the output flat gain level on all channels when ENI2C is low.
16	I2C_DONE	O	I2C Done pin. Valid register load status output for using the daisy chain I2C master. Low = External EEPROM load failed High = External EEPROM load passed
Power Pins		VDD	PWR
$3,6,9,19,22,25$	V.3V Power supply pins		
Center Pad	GND	GND	Exposed Ground pad.

PI3HDX1204E

3.2.2 42-pin package

Pin \#	Pin Name	Type	Description
Data Signals			
$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { A0RX+ } \\ & \text { A0RX- } \end{aligned}$	I	TMDS differential positive/negative input for Channel A0, with internal 50Ω Pull-Up and $\sim 200 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 35 \\ & 34 \end{aligned}$	$\begin{aligned} & \text { A0TX+, } \\ & \text { A0TX- } \end{aligned}$	O	TMDS differential positive/negative outputs for Channel A0, with internal 50Ω Pull-Up and $\sim 2 \mathrm{k} \Omega$ Pull-Up otherwise.
	$\begin{aligned} & \text { A1RX+, } \\ & \text { A1RX- } \end{aligned}$	I	TMDS differential positive/negative inputs for Channel A1, with internal 50Ω Pull-Up and $\sim 200 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 32 \\ & 31 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { A1TX+, } \\ & \text { A1TX- } \end{aligned}$	O	TMDS differential positive/negative outputs for Channel A1, with internal 50Ω Pull-Up and $\sim 2 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{array}{\|l\|} \hline 10 \\ 11 \end{array}$	$\begin{aligned} & \text { A2RX+, } \\ & \text { A2RX- } \end{aligned}$	I	TMDS differential positive/negative inputs for Channel A2, with internal 50Ω Pull-Up and $\sim 200 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 29 \\ & 28 \end{aligned}$	$\begin{aligned} & \text { A2TX+, } \\ & \text { A2TX- } \end{aligned}$	O	TMDS differential positive/negative outputs for Channel A2, with internal 50Ω Pull-Up and $\sim 2 k \Omega$ Pull-Up otherwise.
$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & \text { A3RX+, } \\ & \text { A3RX- } \end{aligned}$	I	TMDS differential positive/negative inputs for Channel A3, with internal 50Ω Pull-Up and $\sim 200 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 26 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { A3TX+, } \\ & \text { A3TX- } \end{aligned}$	O	TMDS differential positive/negative outputs for Channel A3, with internal 50Ω Pull-Up and $\sim 2 \mathrm{k} \Omega$ Pull-Up otherwise.
Control Signals			
16,17,23	DNC		Do Not Connect
19	SCL	I/O	$\mathrm{I}^{2} \mathrm{C}$ Serial Clock line In Master mode (ENI2C pin floating), SCL is an output. Otherwise it is an input as a slave mode.
18	SDA	I/O	$\mathrm{I}^{2} \mathrm{C}$ Serial Data line
20	PRSNT\#	I	Cable Present Detect input. This pin has internal $100 \mathrm{~K} \Omega$ pull-up. The pin is active when both PIN mode $($ ENI2C $=$ LOW $)$ and I2C mode $($ ENI2C $=\mathrm{HIGH})$. When High, a cable is not present, and the device is put in lower power mode. When Low, the device is enabled and in normal operation.
21	ENI2C	I	I2C Enable pin. When LOW, each channel is programmed by the external pin voltage. When HIGH, each channel is programmed by the data stored in the $\mathrm{I}^{2} \mathrm{C}$ bus. When floating, master mode (Read External EEPROM)

A product Line of Diodes Incorporated

PI3HDX1204E

Pin \#	Pin Name	Type	Description
39,40,41,42	EQ[3:0]	I	EQ Control pin. Inputs with internal $100 \mathrm{k} \Omega$ pull-up. This pins set the amount of Equalizer Boost in all channel when ENI2C is LOW.
	AD[3:0]	I	$\mathrm{I}^{2} \mathrm{C}$ address bits control pins for programming with internal $100 \mathrm{k} \Omega$ pullup.
1,2	SW[1:0]	I	Output Swing control pins. Inputs with internal $100 \mathrm{k} \Omega$ pull-up. This pin sets the output Voltage Level in all channel when ENI2C is LOW.
37	FG0	I	Gain Control pin bit 0 Inputs with internal $100 \mathrm{k} \Omega$ pull up resistor. Sets the output flat gain level on all channels when ENI2C is low.
38	$\begin{aligned} & \text { FG1/I2C_RE- } \\ & \text { SET\# } \end{aligned}$	I	Shared pin for Flat Gain control bit-1 or I2C Reset pin. Inputs with internal $100 \mathrm{k} \Omega$ pull up resistor. (1) Sets the output flat gain level bit-1 on all channels when ENI2C is Low. (2) I2C Reset pin. Active Low to reset the registers to default state.
22	I2C_DONE	O	I2C Done pin. Valid register load status output, use for daisy chain master Low = External EEPROM load failed High = External EEPROM load passed
Power Pins			
3, 9, 15, 24, 27, 33, 36	VDD	PWR	3.3V Power Supply pins
$6,12,30,$ Center Pad	GND	GND	Exposed Ground pad.

A product Line of Diodes Incorporated

PI3HDX1204E

4. Functional

4.1 Functional Block

Figure 4-1 Functional Block Diagram

A product Line of Diodes Incorporated

4.2 Function Description

4.2.1 Power-Down/Enable

When PRSNT\# is set to " 1 ", device enter to the power-down mode. When Input $200 \mathrm{k} \Omega$ and Output High Impedance (HIZ) termination resisters set, each individual channels $\operatorname{Ax}(x=0,1,2,3)$ can program the I2C register.

4.2.2 Input Equalization Setting

The EQx $(\mathrm{x}=0,1,2,3)$ pins are the pin-strap option for each $\operatorname{Ax}(\mathrm{x}=0,1,2,3)$ channels. It can also be programmable by the I2C mode.
Table 4-1. Equalization Setting for 42-pin

EQ3	EQ2	EQ1	EQ0	6Gbps Input(dB)
0	0	0	0	3.6
0	0	0	1	4.0
0	0	1	0	4.4
0	0	1	1	4.7
0	1	0	0	5.1
0	1	0	1	5.5
0	1	1	0	5.9
0	1	1	1	6.2
1	0	0	0	6.6
1	0	0	1	6.9
1	0	1	0	7.3
1	0	1	1	7.6
1	1	0	0	8.0
1	1	0	1	8.2
1	1	1	0	8.6
1	1	1	1	8.9

A product Line of Diodes Incorporated

PI3HDX1204E

Table 4-2. Equalization Setting for 32-pin

EQ3	EQ2	EQ1	6 Gbps Input EQ(dB)	Notes
0	0	0	4.0	(1) EQ0 pin always tied to "1" inter-
nally in 32-pin package.				
0	0	1	4.7	
0	1	0	5.5	6.2
0	1	1	6.9	
1	0	0	7.6	
1	0	1	8.2	
1	1	0	8.9	
1	1	1		

4.2.3 Output -1 dB Compression Swing setting

SWx $(x=0,1)$ affects the linearity of the output when input amplitude changes.
Table 4-3. SW[1:0] Output Swing Setting

SW1	SW0	Voltage Swing mVpp @100MHz	Voltage Swing mVpp @ 6Gbps	Notes
0	0	920	1100	
0	1	1040	1200	
1	0	1280	1300	
1	1	1370	1400	Default Setting. Internally $100 \mathrm{k} \Omega$ pull-up.

Note
(1) $\mathrm{SW}[1: 0]=11$ setting support by I2C programming in 32-pin package

4.2.4 Flat Gain Setting

$\mathrm{FGx}(\mathrm{x}=0,1)$ two pins are the selection 2 bits for the DC Flat Gain value.
Table 4-4. Flat Gain FG[1:0] Control

FG1	FG0	Gain (dB)
0	0	-3.5 dB
0	1	-1.5 dB
1	0	+0.5 dB
1	1	+2.5 dB

A product Line of Diodes Incorporated

PI3HDX1204E

Figure 4-2 Example of Output voltage swing with different SW setting

Figure 4-3 Power dissipation mA vs. SW[1:0] setting

A product Line of Diodes Incorporated

TA PERICOM
PI3HDX1204E

Figure 4-4 Illustration of EQ, Gain and Swing setting

A product Line of Diodes Incorporated

PI3HDX1204E

5. I2C Programming

5.1 Programming registers

5.1.1 I2C address

A6	A5	A4	A3	A2	A1	A0	R/W
1	1	1	AD3	AD2	AD1	AD0 $0^{(1)}$	$1=\mathrm{R}, 0=\mathrm{W}$

Note:
(1) Address A0 is always " 1 " tied high for 32 -pin package.

5.1.2 Configuration Registers

BYTE 0

Bit	Type	Power up condition	Description	Control affected	Comment
$7: 0$	R		Reserved		

BYTE 1

Bit	Type	Power up condition	Description	Control affected	Comment
$7: 0$	R		Reserved		

BYTE 2

Bit	Type	Power up condition	Description	Control affected	Comment
7	R/W	0		A3 Power down	1 = Power down
6	R/W	0		A2 Power down	
5	R/W	0		A1 Power down	
4	R/W	0		A0 Power down	
3	R/W	0		Reserved	
2	R/W	0		Reserved	
1	R/W	0		Reserved	
0	R/W	0		Reserved	

BYTE 3

Bit	Type	Power up condition	Description	Control affected	Comment
7	R/W	0	Channel A0 configuration	EQ3	Equalizer
6	R/W	0		EQ2	
5	R/W	0		EQ1	
4	R/W	0		EQ0	
3	R/W	0		FG1	Flat gain
2	R/W	0		FG0	
1	R/W	0		SW1	Swing
0	R/W	0		SW0	

A product Line of Diodes Incorporated

PI3HDX1204E

BYTE 4

Bit	Type	Power up condition	Description	Control affected	Comment
7	R/W	0	Channel A1 configuration	EQ3	Equalizer
6	R/W	0		EQ2	
5	R/W	0		EQ1	
4	R/W	0		EQ0	
3	R/W	0		FG1	Flat gain
2	R/W	0		FG0	
1	R/W	0		SW1	Swing
0	R/W	0		SW0	

Bit	Type	Power up condition	Description	Control affected	Comment
7	R/W	0	Channel A2 configuration	EQ3	Equalizer
6	R/W	0		EQ2	
5	R/W	0		EQ1	
4	R/W	0		EQ0	
3	R/W	0		FG1	Flat gain
2	R/W	0		FG0	
1	R/W	0		SW1	Swing
0	R/W	0		SW0	

BYTE 6

Bit	Type	Power up condition	Description	Control affected	Comment
7	R/W	0	Channel A3 configuration	EQ3	Equalizer
6	R/W	0		EQ2	
5	R/W	0		EQ1	
4	R/W	0		EQ0	
3	R/W	0		FG1	Flat gain
2	R/W	0		FG0	
1	R/W	0		SW1	Swing
0	R/W	0		SW0	
BYTE 7					
Bit	Type	Power up condition	Description	Control affected	Comment
7:0	R/W		Reserved		
BYTE 8-15					
Bit	Type	Power up condition	Description	Control affected	Comment
power up condition : "0"					

5.2 I2C operation

The integrated I2C interface operates as a slave device mode. Standard I2C mode (100 Kbps) is supported with 7-bit addressing and data byte format 8 -bit.
The device supports Read/Write. The bytes must be accessed in sequential order from the lowest to the highest byte with the ability to stop after any complete byte has been transferred. Address bits A3 to A0 are programmable to support multiple chips environment. The Data is loaded until a Stop sequence is issued.

Figure 5-1 I2C Reset, Enable and SCL/SDA Timing Diagram

Transferring Data

Every byte put on the SDA line must be 8-bit long. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first (see the I2C Data Transfer diagram). It will never hold the clock line SCL LOW to force the master into a wait state.

Acknowledge

Data transfer with acknowledge is required from the master. When the master releases the SDA line (HIGH) during the acknowledge clock pulse, it will pull down the SDA line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse as indicated in the I2C Data Transfer diagram. It will generate an acknowledge after each byte has been received.

Data Transfer

A data transfer cycle begins with the master issuing a start bit. After recognizing a start bit, it will watch the next byte of information for a match with its address setting. When a match is found it will respond with a read or write of data on the following clocks. Each byte must be followed by an acknowledge bit, except for the last byte of a read cycle which ends with a stop bit. Data is transferred with the most significant bit (MSB) first.

Start \& Stop Conditions

A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition.

Table 5-1. I2C Address Setting with 4-bits AD[3:0]

I2C address: AD3, AD2, AD1, AD0	Data starting location
0000	00 H
0001	10 H
0010	20 H
0011	30 H
0100	40 H
0101	50 H
0110	60 H
0111	70 H
1000	80 H
1001	90 H
1010	A0H
1011	B0H
1100	C0H
1101	D0H
1110	E0H
1111	F0H

Read Sequence

S	Slave Address	R	A	DATA	A

Write Sequence

\square	From master to slave	A= acknowledge	$\bar{A}=$ not acknowledge
	From slave to master	$\mathrm{S}=$ start condition	$\mathrm{P}=$ stop condition

Figure 5-2 I2C Read / Write Timing Sequence

A product Line of Diodes Incorporated

PI3HDX1204E

6. Electrical Specification

6.1 Absolute Maximum ratings

Supply Voltage to Ground Potential. 0.5 V to +4.6 V
DC SIG Voltage . -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Output Current . 25 mA to +25 mA
Power Dissipation Continuous . 2.1 W
ESD, HBM . 2 . 2 kV to +2 kV
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Note
Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

6.2 Recommended operating conditions

Parameter	Min.	Typ.	Max	Units
Power supply voltage (VDD to GND) ${ }^{(1)}$	3.0	3.3	3.6	V
I2C (SDA, SCL)			3.6	V
Supply Noise Tolerance up to $25 \mathrm{MHz}^{(2)}$			100	$\mathrm{mVp}-\mathrm{p}$
Ambient Temperature	-40	25	85	${ }^{\circ} \mathrm{C}$

Note
(1) Typical parameters are measured at $\mathrm{VCC}=3.3 \pm 0.3 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$. They are for the reference purposes, and are not production-tested
(2) Allow supply noise (mVp-p sine wave) under typical condition

6.3 Electrical characteristics

Over recommend operating supply and temperature range unless otherwise specified.

6.3.1 LVCMOS DC specifications

Symbol	Parameter	Conditions	Min.	Typ.	Max	Unit
V_{IH}	DC input logic high		$\mathrm{V}_{\mathrm{DD}} / 2+0.7$		$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{IL}}$	DC input logic low		-0.3		$\mathrm{~V}_{\mathrm{DD}} / 2-0.7$	V
$\mathrm{~V}_{\mathrm{OH}}$	At $\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$		$\mathrm{~V}_{\mathrm{DD}}+0.2$			V
$\mathrm{~V}_{\mathrm{OL}}$	At $\mathrm{I}_{\mathrm{OL}}=-200 \mu \mathrm{~A}$			0.2	V	
$\mathrm{~V}_{\text {hys }}$	Hysteresis of Schmitt trigger input			0.8		V

6.3.2 Power Dissipation

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
I_{DD}	Supply current	PRSNT\#=0, SW=1000mVdiff, FG=2.5		256	290	mA
		PRSNT\#=0, SW=900mVdiff, FG=2.5		240		mA
		PRSNT\#=0, SW=800mVdiff, FG=2.5		233		mA
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent supply current	PRSNT\#=1, TMDS Output Disable		2.0	4.2	mA

A product Line of Diodes Incorporated

PI3HDX1204E

6.3.3 Package power ratings

Package	Theta Ja(still air) $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	Theta Jc $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	Max. Power Dissipation Rating $\mathrm{Ta} \leq 70^{\circ}$
32-pin TQFN (ZL32)	37.05	11.3	1.48 W
42-pin TQFN (ZH42)	33.69	15.17	1.63 W

6.3.4 Switching I/O characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {RX-DIF- }}$ Fp-p	Peak to peak differential input voltage			200		mV
T_{R}	Rise Time	Input signal with 30 ps rise time, 20% to 80\%		31		ps
T_{F}	Falling Time	Input signal with 30 ps rise time, 20% to 80\%		31		ps
T PLH	Low-to-High Propagation Delay			65		ps
$\mathrm{T}_{\text {PHL }}$	High-to-Low Propagation Delay			65		ps
TSK_INTRA_IN	Input Intra-pair Differential Skew tolerance				0.15	UI
TSK_IN- TRA_OUT	Output Intra-pair Differential Skew			5	10	ps
TSK_INTER_OUT	Output Inter-pair Differential Skew			8		ps
R_{J}	Add-in Random Jitter	at 6 Gbps		0.57		RMS ps
D_{J}	Add-in Deterministic Jitter	at 6 Gbps		6.57		ps
$\mathrm{T}_{\text {SX }}$	Select to Switch Output				10	ns
S_{22}	Output return loss	10 MHz to 6 Gbps differential		13		dB
		2 Gbps to 6 Gbps common mode		8		
$\mathrm{R}_{\text {IN }}$	DC single-ended input impedance			50		Ω
	DC Differential Input Impedance			100		
Rout	DC single-ended output impedance			50		Ω
	DC Differential output Impedance			100		
$\mathrm{Z}_{\text {RX-HIZ }}$	DC input CM input impedance during reset or power down			200		$\mathrm{k} \Omega$
VRX-DIFF- PP	Differential Input Peak-to-peak Voltage	Operational			1.4	Vppd

A product Line of Diodes Incorporated

PI3HDX1204E

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
V_{CM} NOISE	Input source common-mode noise	DC - 200 MHz			150	mVpp
$\mathrm{T}_{\text {TX-IDLE- }}$ SET-TO- IDLE	Max time to electrical idle after sending an EIOS			4	8	ns
TTX-IDLE- TO-DIFF- DATA	Max time to valid differential signal after leaving electrical idle			4	8	ns
T_{PD}	Latency	From input to output		0.5		ns
Gp	Peaking gain (Compensation at 6 Gbps , relative to 100 MHz , $100 \mathrm{mVp}-\mathrm{p}$ sine wave input)	$\begin{aligned} & \mathrm{EQ}\langle 3: 0>=1111 \\ & \mathrm{EQ}\langle 3: 0>=1000 \\ & \mathrm{EQ}\langle 3: 0>=0000 \end{aligned}$		$\begin{aligned} & 8.9 \\ & 6.6 \\ & 3.6 \end{aligned}$		dB
		Variation around typical	-3		+3	dB
GF_{F}	Flat gain ($100 \mathrm{MHz}, \mathrm{EQ}<3: 0>=$ $1000, \mathrm{SW}\langle 1: 0\rangle=10$)	$\begin{aligned} & \mathrm{FG}<1: 0>=11 \\ & \mathrm{FG}<1: 0>=10 \\ & \mathrm{FG}<1: 0>=01 \\ & \mathrm{FG}<1: 0>=00 \end{aligned}$		$\begin{gathered} -3.5 \\ -1.5 \\ 0.5 \\ 2.5 \end{gathered}$		dB
		Variation around typical	-3		+3	dB
$\mathrm{V}_{1 \mathrm{~dB} \text { _100M }}$	-1dB compression point of output swing (at 100 MHz)	$\begin{aligned} & \text { SW }\langle 1: 0\rangle=11 \\ & \mathrm{SW}\langle 1: 0\rangle=10 \\ & \mathrm{SW}\langle 1: 0\rangle=01 \\ & \mathrm{SW}\langle 1: 0\rangle=00 \end{aligned}$		$\begin{aligned} & 1400 \\ & 1300 \\ & 1200 \\ & 1100 \end{aligned}$		mVppd
$\mathrm{V}_{1 \mathrm{~dB} \text { _6G }}$	-1 dB compression point of output swing (at 6 Gbps)	$\begin{aligned} & \text { SW }\langle 1: 0\rangle=11 \\ & S W<1: 0\rangle=10 \\ & S W<1: 0\rangle=01 \\ & S W<1: 0\rangle=00 \end{aligned}$		$\begin{aligned} & 1300 \\ & 1200 \\ & 1100 \\ & 1000 \end{aligned}$		mVppd
$\mathrm{V}_{\text {Coup }}$	Channel isolation	100 MHz to 6 Gbps		40		dB
Vnoise_input	Input-referred noise ${ }^{(2)}$	100 MHz to $6 \mathrm{Gbps}, \mathrm{FG}<1: 0>=11$, $\mathrm{EQ}<3: 0>=0000$		0.5		mVRMS
		100 MHz to $6 \mathrm{Gbps}, \mathrm{FG}<1: 0>=11$, $\mathrm{EQ}<3: 0>=1010$		0.4		
Vnoise_ output	Output-referred noise ${ }^{(2)}$	100 MHz to $6 \mathrm{Gbps}, \mathrm{FG}<1: 0>=11$, $\mathrm{EQ}<3: 0>=0000$		0.7		$m V_{\text {RMS }}$
		100 MHz to $6 \mathrm{Gbps}, \mathrm{FG}<1: 0>=11$, $\mathrm{EQ}<3: 0>=1010$		0.8	1.6	

[^0]PI3HDX1204E

Figure 6-1 Electrical parameter test setup

Figure 6-2 Intra and Inter-pair Differential Skew definition
Common Mode Voltage
$V_{C M}=(|V D++V D-| / 2)$
$V_{C M P}=(\max |V D++V D-| / 2)$

V_D + -V_D-

Symmetric Differential Swing
$\mathrm{V}_{\text {DIFFp-p }}=\left(2 * \max \mid \mathrm{V}_{\mathrm{D}+}-\mathrm{V}_{\mathrm{D} .}\right)$
Asymmetric Differential Swing
$\mathrm{V}_{\mathrm{DIFFb}-\mathrm{D}}=\left(\max \left|\mathrm{V}_{\mathrm{D}+}-\mathrm{V}_{\mathrm{D} .}\right|\left\{\mathrm{V}_{\mathrm{D}+}>\mathrm{V}_{\mathrm{D} .}\right\}\right.$

Figure 6-3 Definition of Peak-to-peak Differential voltage

A product Line of
Diodes Incorporated
TA PERICOM
PI3HDX1204E

Figure 6-4 Noise test configuration

Figure 6-5 Channel-isolation test configuration

Figure 6-6

A product Line of Diodes Incorporated

PI3HDX1204E

6.4 I2C Interface Bus

Symbol	Parameter	Conditions	Min.	Typ.	Max	Units
VDD	Nominal Bus Voltage		3.0		3.6	V
Freq	Bus Operation Frequency				400	kHz
$\mathrm{V}_{\text {IH }}$	DC input logic high		$\mathrm{V}_{\mathrm{DD}} / 2+0.7$		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	DC input logic low		-0.3		$\begin{gathered} \mathrm{V}_{\mathrm{DD}} / 2 \\ -0.7 \end{gathered}$	V
$\mathrm{V}_{\text {OL }}$	DC output logic low	$\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$			0.4	V
Ipullup	Current Through Pull-Up Resistor or Current Source	High Power specification	3.0		3.6	mA
Ileak-bus	Input leakage per bus segment		-200		200	uA
Ileak-pin	Input leakage per device pin			-15		uA
CI	Capacitance for SDA/SCL				10	pF
tBUF	Bus Free Time Between Stop and Start condition		1.3			us
tHD:STA	Hold time after (Repeated) Start condition. After this period, the first clock is generated.	At pull-up, Max	0.6			us
TSU:STA	Repeated start condition setup time		0.6			us
TSU:STO	Stop condition setup time		0.6			us
THD:DAT	Data hold time		0			ns
TSU:DAT	Data setup time		100			ns
tLOW	Clock low period		1.3			us
tHIGH	Clock high period		0.6		50	us
tF	Clock/Data fall time				300	ns
tR	Clock/Data rise time				300	ns
tPOR	Time in which a device must be operation after power-on reset				500	ms

Note:

(1) Recommended maximum capacitance load per bus segment is 400 pF .
(2) Compliant to I2C physical layer specification.
(3) Ensured by Design. Parameter not tested in production.

Figure 6-7 I2C Timing definition

A product Line of Diodes Incorporated

PI3HDX1204E

7. Applications

7.1 DC/AC-coupled Application

DC-Coupled Differential Signaling Application Circuits

AC-Coupled Differential Signaling Application Circuits
Figure 7-1 DC/AC-coupled application diagram

A product Line of Diodes Incorporated

PI3HDX1204E

7.2 Sink-side Redriver Application

Figure 7-2 HDMI Sink-side application

7.3 Channels/Polarity Swap

Linear Redriver does not have built-in internal channel/polarity switch. Transmitter can send swapped polarity signal to the Redriver.

Figure 7-3 Polarity Swap Connection

7.4 Output Eye Diagram

7.4.1 Trace Card Loss Informations

Frequency	3 GHz	6 GHz	Units
6 inch Input Trace	-1.43	-4	dB
12 inch Input Trace	-6.1	-11	dB
18 inch Input Trace	-8.34	-15	dB
30 inch Input Trace	-10.14	-18	dB
36 inch Input Trace	-12.13	-22	dB
48 inch Input Trace	-16.42	-29	dB

Table 7-1. Characterization Trace Card dB Loss Information

Figure 7-4 Trace board photo

A product Line of Diodes Incorporated

PI3HDX1204E

7.4.2 Output Eye Diagram measurement

Figure 7-5 Eye Width vs. EQ plots at 6 Gbps, PRBS2^23-1, FG=11 (Gain +2.5dB)
Eye Width vs EQ, FG $=1000 \mathrm{mV}$, Gain $=+2.5 \mathrm{~dB}$ (Input Swing $=800 \mathrm{mVd}$)

Figure 7-6 Eye Width vs. EQ plots at 6 Gbps, PRBS2^23-1, FG=10 (Gain +0.5dB) Eye Height vs EQ, FG $=1000 \mathrm{mV}$, Gain $=+2.5 \mathrm{~dB}$ (input swing $=800 \mathrm{mVd}$)

PI3HDX1204E

Figure 7-7 Frequency response vs EQ
with $\mathrm{FG}=11(+2.5 \mathrm{~dB})$, Output Swing $=1000 \mathrm{mV}, \mathrm{Vdd}=3.0 \mathrm{~V}, 25 \mathrm{C}$, Input Power=-15dBm, No Input Trace

7.4.3 Output Eye diagram

Condition: PRBS 2^23-1 pattern, Input Swing=800mVdiff, Output Swing= 1000mVdiff
Table 7-2. Output Eye diagram by EQ changes at FG 0.5dB

No Trace, FG=0.5dB	6 -in trace, FG=0.5dB	12-in trace, FG=0.5dB	18 -in trace, FG=0.5dB
24-in trace, FG=0.5dB	30 -in trace, $\mathrm{FG}=0.5 \mathrm{~dB}$	36-in trace, FG=0.5dB	48 -in trace, $\mathrm{FG}=0.5 \mathrm{~dB}$

Table 7-3. Output Eye Diagram by EQ changes at FG 2.5dB

No Trace, FG=2.5dB	6-in trace, $\mathrm{FG}=2.5 \mathrm{~dB}$	12-in trace, $\mathrm{FG}=2.5 \mathrm{~dB}$	18-in trace, $\mathrm{FG}=2.5 \mathrm{~dB}$
$\mathrm{EQ}=3 \mathrm{~dB}$	$\mathrm{EQ}=3 \mathrm{~dB}$	$\mathrm{EQ}=5 \mathrm{~dB}$	
24-in trace, $\mathrm{FG}=2.5 \mathrm{~dB}$	30 -in trace, $\mathrm{FG}=2.5 \mathrm{~dB}$	36 -in trace, $\mathrm{FG}=2.5 \mathrm{~dB}$	48-in trace, $\mathrm{FG}=2.5 \mathrm{~dB}$
$\mathrm{EQ}=13 \mathrm{~dB}$	$\mathrm{EQ}=15 \mathrm{~dB}$	$\mathrm{EQ}=15 \mathrm{~dB}$	

7.5 Layout Guidelines

As transmission data rate increases rapidly, any flaws and/or mis-matches on PCB layout are amplified in terms of signal integrity. Layout guideline for high-speed transmission is highlighted in this application note.

7.5.1 Power and Ground

To provide a clean power supply for high-speed device, few recommendations are listed below:

- Power (VDD) and ground (GND) pins should be connected to corresponding power planes of the printed circuit board directly without passing through any resistor.
- The thickness of the PCB dielectric layer should be minimized such that the VDD and GND planes create low inductance paths.
- One low-ESR 0.1uF decoupling capacitor should be mounted at each VDD pin or should supply bypassing for at most two VDD pins. Capacitors of smaller body size, i.e. 0402 package, is more preferable as the insertion loss is lower. The capacitor should be placed next to the VDD pin.
- One capacitor with capacitance in the range of 4.7 uF to 10 uF should be incorporated in the power supply decoupling design as well. It can be either tantalum or an ultra-low ESR ceramic.
- A ferrite bead for isolating the power supply for Pericom high-speed device from the power supplies for other parts on the printed circuit board should be implemented.
- Several thermal ground vias must be required on the thermal pad. 25 -mil or less pad size and 14 -mil or less finished hole are recommended.

Figure 7-8 Decoupling Capacitor Placement Diagram

7.5.2 High-speed signal Routing

Well-designed layout is essential to prevent signal reflection:

- For 90Ω differential impedance, width-spacing-width micro-strip of 6-7-6 mils is recommended; for 100Ω differential impedance, width-spacing-width micro-strip of 5-7-5 mils is recommended.
- Differential impedance tolerance is targeted at $\pm 15 \%$.

Single-ended mode:			
	Microstrip	Stripline	
impedance:	$\mathrm{Zo}=50.7$	32.9	Ω
Capacitance:	$\mathrm{Co}=2.70$	6.30	pf/in
Delay:	Tpd= 137.1	171.6	$p s / \mathrm{in}$
Speed:	$v=185.4$	148.2	$\mathrm{mm} / \mathrm{ns}$

Differential mode:
Microstrip
Differential impedance:$\quad Z_{0}=$
90.8

1. Microstrip Zo formula accurate if $0.1<\mathrm{W} / \mathrm{h}<2$)
2. Stripline Zo formula accurate if (W / b) <0.35
3. Stripline Zo formula accurate if (b/t)>4

Figure 7-9 Trace Width and Clearance of Micro-strip and Strip-line

A product Line of Diodes Incorporated

PI3HDX1204E

- For micro-strip, using $1 / 2 \mathrm{oz} \mathrm{Cu}$ is fine. For strip-line in $6+\mathrm{PCB}$ layers, 1 oz Cu is more preferable.

Figure 7-10 4-Layer PCB Stack-up Example

Figure 7-11 6-Layer PCB Stack-up Example

PI3HDX1204E

- Ground referencing is highly recommended. If unavoidable, stitching capacitors of $0.1 u F$ should be placed when reference plane is changed.

Figure 7-12 Stitching Capacitor Placement

- To keep the reference unchanged, stitching vias must be used when changing layers.
- Differential pair should maintain symmetrical routing whenever possible. The intra-pair skew of micro-strip should be less than 5 mils.
- To keep the reference unchanged, stitching vias must be used when changing layers.
- Differential pair should maintain symmetrical routing whenever possible. The intra-pair skew of micro-strip should be less than 5 mils.

Figure 7-13 Layout Guidance of Matched Differential Pair

- For minimal crosstalk, inter-pair spacing between two differential micro-strip pairs should be at least 20 mils or 4 times the dielectric thickness of the PCB.
- Wider trace width of each differential pair is recommended in order to minimize the loss, especially for long routing. More consistent PCB impedance can be achieved by a PCB vendor if trace is wider.
- Differential signals should be routed away from noise sources and other switching signals on the printed circuit board.
- To minimize signal loss and jitter, tight bend is not recommended. All angles a should be at least 135 degrees. The inner air gap A should be at least 4 times the dielectric thickness of the PCB.

Figure 7-14 Layout Guidance of Bends

- Stub creation should be avoided when placing shunt components on a differential pair.

Figure 7-15 Layout Guidance of Shunt Component

- Placement of series components on a differential pair should be symmetrical.

(Cap placement is in same location \& symmetric)

Avoid
(Cap placement is not in same location/symmetric!)
Figure 7-16 Layout Guidance of Series Component

- Stitching vias or test points must be used sparingly and placed symmetrically on a differential pair.

Preferred
(Via placement is in same location \& symmetric)

Avoid
(Via placementis not in same location/symmetric!)
Figure 7-17 Layout Guidance of Stitching Via

7.6 HDMI 2.0 Compliance Test

Figure 7-18 HDMI 2.0 CTS test setup*
Note:
Table 7-4. Application Trace Card Information for CTS test

HDMI FR4 trace	0 in	6 in	12 in	18 in	24 in	30 in	36 in
Insertion loss @ 6Gbps	-5.91 dB	-9.75 dB	-10.47 dB	-13.05 dB	-15.87 dB	-16.97 dB	-21.20 dB

A product Line of
Diodes Incorporated
T) PERICOM

HDMI Test Report

Overall Result:

Test Configuration Details	
Device Description	
Device ID	Transmitter
Fixture Type	Other
Probe Connection	4 Probes
Probe Head Type	N5444A
Lane Connection	1 Data Lane
HDMI Specification	2.0
HDMI Test Type	TMDS Physical Layer Tests
Test Session Details	
Infiniium SW Version	05.20.0013
Infiniium Model Number	DSOX92504A
Infiniium Serial Number	MY54410104
Application SW Version	2.11
Debug Mode Used	No
Probe (Channel 1)	Model: N2801A Serial: US54094067 Head: N5444A Atten: Calibrated (18 FEB 2015 11:16:48), Using Cal Atten (5.7831E+000) Skew: Calibrated (18 FEB 2015 11:16:56), Using Cal Skew
Probe (Channel 2)	Model: N2801A Serial: US54094054 Head: N5444A Atten: Calibrated (18 FEB 2015 11:19:29), Using Cal Atten (5.5882E+000) Skew: Calibrated (18 FEB 2015 11:13:57), Using Cal Skew
Probe (Channel 3)	Model: N2801A Serial: US54094059 Head: N5444A Atten: Calibrated (18 FEB 2015 11:15:19), Using Cal Atten (5.7320E+000) Skew: Calibrated (18 FEB 2015 11:15:29), Using Cal Skew
Probe (Channel 4)	Model: N2801A Serial: US54094057 Head: N5444A Atten: Calibrated (18 FEB 2015 11:11:30), Using Cal Atten (5.5123E+000) Skew: Calibrated (18 FEB 2015 11:12:12), Using Cal Skew
Last Test Date	2016-01-21 16:43:22 UTC +08:00

Figure 7-19 HDMI 2.0 CTS Test Report

A product Line of Diodes Incorporated

PI3HDX1204E

Summary of Results

Test Statistics	
Failed	0
Passed	24
Total	24

Margin Thresholds	
Warning	$<2 \%$
Critical	$<0 \%$

Pass	$\text { F } \begin{aligned} & \# \\ & \text { Failed } \end{aligned}$	Trials	Test Name	Actual Value	Margin	Pass Limits
\checkmark	0	1	HF1-2: Clock Rise Time	151.367 ps	$\begin{aligned} & 101.8 \\ & \% \end{aligned}$	VALUE >= 75.000 ps
\checkmark	0	1	HF1-2: Clock Fall Time	150.838 ps	$\begin{aligned} & \hline 101.1 \\ & \% \end{aligned}$	VALUE >= 75.000 ps
\checkmark	0	1	HF1-6: Clock Duty Cycle(Minimum)	49.780	24.5 \%	>=40\%
\checkmark	0	1	HF1-6: Clock Duty Cycle(Maximum)	50.330	16.1 \%	<=60\%
\checkmark	0	1	HF1-6: Clock Rate	$\begin{aligned} & 148.513500000 \\ & \mathrm{MHz} \end{aligned}$	2.3 \%	$\begin{aligned} & 85.000000000 \mathrm{MHz}<=\text { VALUE <= } \\ & 150.000000000 \mathrm{MHz} \end{aligned}$
\checkmark	0	1	HF1-7: Differential Clock Voltage Swing, Vs (TP1)	997 mV	25.4 \%	400 mV < VALUE < 1.200 V
\checkmark	0	1	HF1-7: Clock Jitter (TP2 EQ with Worst Case Positive Skew)	250 mTbit	16.7 \%	VALUE <= 300 mTbit
\checkmark	0	1	HF1-7: Clock Jitter (TP2 EQ with Worst Case Negative Skew)	225 mTbit	25.0 \%	VALUE <= 300 mTbit
\checkmark	0	1	HF1-5: D0 Maximum Differential Voltage	542 m	30.5 \%	VALUE <= 780 m
\checkmark	0	1	HF1-5: D0 Minimum Differential Voltage	-564 m	27.7 \%	VALUE >= -780 m
\checkmark	0	1	HF1-2: D0 Rise Time	135.000 ps	$\begin{aligned} & 217.6 \\ & \% \end{aligned}$	VALUE >= 42.500 ps
\checkmark	0	1	HF1-2: D0 Fall Time	134.370 ps	$\begin{aligned} & 216.2 \\ & \% \\ & \hline \end{aligned}$	VALUE >= 42.500 ps
\checkmark	0	1	HF1-8: D0 Mask Test (TP2 EQ with Worst Case Positive Skew)	0.000	50.0 \%	No Mask Failures
\checkmark	0	1	HF1-8: D0 Mask Test (TP2 EQ with Worst Case Negative Skew)	0.000	50.0 \%	No Mask Failures
\checkmark	0	1	HF1-1: VL Clock +	2.684 V	48.0 \%	2.300 V <= VALUE < $=3.100 \mathrm{~V}$
\checkmark	0	1	HF1-1:Clock + VSwing	513 mV	21.8 \%	200 mV <= VALUE < $=600 \mathrm{mV}$
\checkmark	0	1	HF1-1: VL Clock -	2.678 V	47.3 \%	2.300 V <= VALUE <= 3.100 V
\checkmark	0	1	HF1-1:Clock - VSwing	513 mV	21.8 \%	200 mV <= VALUE <= 600 mV
\checkmark	0	1	HF1-4: Intra-Pair Skew - Clock	51 mTbit	33.0 \%	-150 mTbit <= VALUE <= 150 mTbit
\checkmark	0	1	HF1-1: VL D0+	2.706 V	32.3 \%	2.300 V <= VALUE <= 2.900 V
\checkmark	0	1	HF1-1: D0+ VSwing	459 mV	29.5 \%	400 mV <= VALUE <= 600 mV
\checkmark	0	1	HF1-1: VL D0-	2.718 V	30.3 \%	2.300 V <= VALUE <= 2.900 V
\checkmark	0	1	HF1-1: D0- VSwing	450 mV	25.0 \%	400 mV <= VALUE <= 600 mV
\checkmark	0	1	HF1-4: Intra-Pair Skew - Data Lane 0	36 mTbit	38.0 \%	-150 mTbit <= VALUE <= 150 mTbit

A product Line of
Diodes Incorporated
PI3HDX1204E

8. Mechanical/Packaging

8.1 Mechanical Outline

Figure 8-1 32-pin TQFN package mechanical

Figure 8-2 42-pin TQFN package mechanical

Figure 8-3 Thermal Via Pad Area: 32-pin

A product Line of Diodes Incorporated

PI3HDX1204E

8.2 Part Marking Information

Product marking follows our standard part number ordering information.

Figure 8-4 Part number information

Figure 8-5 Package marketing information

A product Line of Diodes Incorporated

8.3 Tape \& Reel Materials and Design

8.3.1 Carrier Tape

The Pocketed Carrier Tape is made of Conductive Polystyrene plus Carbon material (or equivalent). The surface resistivity is 10^{6} Ω / sq. maximum. Pocket tapes are designed so that the component remains in position for automatic handling after cover tape is removed. Each pocket has a hole in the center for automated sensing if the pocket is occupied or not, thus facilitating device removal. Sprocket holes along the edge of the center tape enable direct feeding into automated board assembly equipment. See Figures 3 and 4 for carrier tape dimensions.

8.3.2 Cover Tape

Cover tape is made of Anti-static Transparent Polyester film. The surface resistivity is $10^{7} \Omega / \mathrm{Sq}$. Minimum to $10^{11} \mathrm{Ohm}$ sq. maximum. The cover tape is heat-sealed to the edges of the carrier tape to encase the devices in the pockets. The force to peel back the cover tape from the carrier tape shall be a MEAN value of 20 to $80 \mathrm{gm}(2 \mathrm{~N}$ to 0.8 N).

8.3.3 Reel

The device loading orientation is in compliance with EIA-481, current version (Figure 2). The loaded carrier tape is wound onto either a 13 -inch reel, (Figure 4) or 7-inch reel. The reel is made of Anti-static High-Impact Polystyrene. The surface resistivity $10^{7} \Omega$ / sq. minimum to $10^{11} \Omega /$ sq. max.

Figure 8-6 Tape \& Reel label information

Figure 8-7 Tape leader and trailer pin 1 orientations

PI3HDX1204E

Figure 8-8 Standard embossed carrier tape dimensions

Table 8-1. Constant Dimensions

Tape Size	D0	D1 (Min)	E1	P0	P2	$\begin{aligned} & \text { R } \\ & \text { (See Note 2) } \end{aligned}$	S1 (Min)	$\begin{aligned} & \mathrm{T} \\ & \text { (Max) } \end{aligned}$	$\begin{aligned} & \text { T1 } \\ & \text { (Max) } \end{aligned}$
8 mm	$\begin{aligned} & 1.5+0.1 \\ & -0.0 \end{aligned}$	1.0	$\begin{aligned} & 1.75 \pm \\ & 0.1 \end{aligned}$	4.0 ± 0.1	2.0 ± 0.05	25	0.6	0.6	0.1
12 mm		1.5				30			
16 mm									
24 mm					2.0 ± 0.1				
32 mm		2.0				50			
44 mm		2.0			2.0 ± 0.15		(See Note 3)		

Table 8-2. Variable Dimensions

Tape Size	P_{1}	\mathbf{B}_{1} (Max)	E_{2} (Min)	F	So	$\begin{aligned} & \mathrm{T}_{2} \\ & \text { (Max.) } \end{aligned}$	W (Max)	$\begin{aligned} & A_{0}, B_{0} \\ & \& K_{0} \end{aligned}$
8 mm	Specific per package type. Refer to FR-0221 (Tape and Reel Packing Information)	4.35	6.25	3.5 ± 0.05	N/A (see note 4)	2.5	8.3	See Note 1
12 mm		8.2	10.25	5.5 ± 0.05		6.5	12.3	
16 mm		12.1	14.25	7.5 ± 0.1		8.0	16.3	
24 mm		20.1	22.25	11.5 ± 0.1		12.0	24.3	
32 mm		23.0	N/A	14.2 ± 0.1	28.4 ± 0.1		32.3	
44 mm		35.0	N/A	$\begin{aligned} & 20.2 \pm \\ & 0.15 \end{aligned}$	40.4 ± 0.1	16.0	44.3	

NOTES:

1. A0, B 0 , and K 0 are determined by component size. The cavity must restrict lateral movement of component to 0.5 mm maximum for 8 mm and 12 mm wide tape and to 1.0 mm maximum for $16,24,32$, and 44 mm wide carrier. The maximum component rotation within the cavity must be limited to 20 o maximum for 8 and 12 mm carrier tapes and 10 o maximum for 16 through 44 mm .
2. Tape and components will pass around reel with radius " R " without damage.
3. S1 does not apply to carrier width $\geq 32 \mathrm{~mm}$ because carrier has sprocket holes on both sides of carrier where $\mathrm{Do} \geq \mathrm{S} 1$.
4. So does not exist for carrier $\leq 32 \mathrm{~mm}$ because carrier does not have sprocket hole on both side of carrier.

A product Line of Diodes Incorporated

PI3HDX1204E

Table 8-3. Reel dimensions by tape size

Tape Size	A	N(Min) See Note A	W1	W2 (Max)	W3	B (Min)	C	D (Min)
8 mm	$\begin{aligned} & 178 \pm 2.0 \mathrm{~mm} \text { or } \\ & 330 \pm 2.0 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 60 \\ & \pm 2.0 \mathrm{~mm} \text { or } \\ & 100 \pm 2.0 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 8.4+1.5 /-0.0 \\ & \mathrm{~mm} \end{aligned}$	14.4 mm	Shall Ac-commodate Tape Width Without Interference	1.5 mm	$\begin{aligned} & 13.0 \\ & +0.5 /-0.2 \\ & \mathrm{~mm} \end{aligned}$	20.2 mm
12 mm			$\begin{aligned} & 12.4+2.0 /- \\ & 0.0 \mathrm{~mm} \end{aligned}$	18.4 mm				
16 mm	$330 \pm 2.0 \mathrm{~mm}$	$100 \pm 2.0 \mathrm{~mm}$	$\begin{aligned} & 16.4+2.0 /- \\ & 0.0 \mathrm{~mm} \end{aligned}$	22.4 mm				
24 mm			$\begin{aligned} & 24.4+2.0 /- \\ & 0.0 \mathrm{~mm} \end{aligned}$	30.4 mm				
32 mm			$\begin{aligned} & 32.4+2.0 /-0.0 \\ & \mathrm{~mm} \end{aligned}$	38.4 mm				
44 mm			$\begin{aligned} & 44.4+2.0 /-0.0 \\ & \mathrm{~mm} \end{aligned}$	50.4 mm				

NOTE:
A. If reel diameter $\mathrm{A}=178 \pm 2.0 \mathrm{~mm}$, then the corresponding hub diameter $(\mathrm{N}(\mathrm{min}))$ will by $60 \pm 2.0 \mathrm{~mm}$. If reel diameter $\mathrm{A}=330 \pm 2.0 \mathrm{~mm}$, then the corresponding hub diameter $(\mathrm{N}(\mathrm{min})$) will by $100 \pm 2.0 \mathrm{~mm}$.

PI3HDX1204E

9. Important Notice

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages. Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Display Interface IC category:
Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :
AD9887AKSZ-140 AD9887AKSZ-170 PTN3460BSF2,518 AD9883ABSTZ-110 AD9883ABSTZ-140 AD9883AKSTZ-110
AD9883AKSTZ-140 AD9887AKSZ-100 AD9888KSZ-100 AD9888KSZ-140 AD9888KSZ-170 AD9983AKSTZ-140 AD9984AKCPZ-140
AD9985AKSTZ-110 DS90UB914QSQE/NOPB SN65DP149RSBT DS90CF384AQMTX/NOPB SN75DP126SSRHUR AD9985ABSTZ-110
ADV7622BSTZ DS90C3201VS/NOPB DS90C3202VS/NOPB DS90CF384AQMTNOPB DS90UB901QSQE/NOPB
DS90UB903QSQE/NOPB DS90UB904QSQE/NOPB DS90UB913QSQE/NOPB DS90UB914QSQ/NOPB DS90UB927QSQNOPB
DS90UR906QSQE/NOPB DS90UR908QSQE/NOPB SN75DP119RGYR SN75DP122ARTQR SN75DP128ARTQT SN75DP129RHHR
SN75DP129RHHT SN75DP130DSRGZT SN75DP139RGZR SN75DP139RGZT SN75DP149RSBT TFP201APZPG4 TFP403PZP
TFP403PZPG4

[^0]: (1) Measured using a vector-network analyzer (VNA) with - 15 dBm power level applied to the adjacent input. The VNA detects the signal at the output of the victim channel. All other inputs and outputs are terminated with 50Ω.
 (2) Guaranteed by design.

