Lead-free Green

HDMI 2.0 6Gbps Linear ReDriver with High EQ, Low Jitter and DP++ Level Shifter

Description

PI3HDX1204E is the HDMI 2.0 Linear Redriver with the Level Shifter, supporting the minimum additive jitters. The linear Redriver provides the easiness of handling the signal integrity issues known in the component placement and the setting parameters of Equalization and Flat Gain compensation between Source-side and Sink-side link system.
The advantage of Linear Redriver does not block the original source differential signals to maximize the Sink-side Receiver Digital Feedback Equalization (DFE) Feedback circuits to improve the highspeed linked signal quality. The output swing range can set by Swing control for the power saving.
The optimization of the signal quality over a variety of physical mediums by reducing Inter-symbol Interference (ISI) jitters can be done by the pin-strapping or I2C programming.

In EEPROM mode, the Equalization, Voltage Swing and Gain controls can be automatically loaded during the system power-up to eliminate the need of external microprocessor or software driver.

Features

\rightarrow HDMI 2.0 Compliant TMDS Linear Redriver with 2x Improved Jitter Performance than conventional technology
\rightarrow DP++ Level Shifting for HDMI output
\rightarrow Linear Redriver increases TMDS Link Margin supporting Sinkside DFE (Decision Feedback Equalizers) receiver
\rightarrow Every Channel's Equalizations, Swings and Gains are programmable Independently
\rightarrow Support Pin- strap and I2C Programming
\rightarrow Flexible 4-bit I2C address selectable (42-pin, ZH package)
\rightarrow Power supply: 3.3 V
\rightarrow Totally Lead-Free \& Fully RoHS Compliant (Notes 1 \& 2)
\rightarrow Halogen and Antimony Free. "Green" Device (Note 3)
\rightarrow For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.
https://www.diodes.com/quality/product-definitions/
\rightarrow Package (Pb -Free \& Green):

- 32-pin TQFN (3x6mm)
- 42-pin TQFN (3.5x9mm)

Applications

\rightarrow TVs and Monitors near to the Sink-side Devices

Figure 1-1 Monitor for sink-side with Rx DFE receiver

Ordering Information

Ordering Number	Package Code	Package Description
PI3HDX1204EZLEX	ZL	32-Contact, Very Thin Quad Flat No-Lead (TQFN)
PI3HDX1204EZHEX	ZH	42-Contact, Very Thin Quad Flat No-Lead (TQFN)

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those whichcontain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and
$<1000 \mathrm{ppm}$ antimony compounds.
4. $\mathrm{E}=\mathrm{Pb}$-free and Green, $\mathrm{I}=$ Industrial
5. X suffix $=$ Tape $/$ Reel

PI3HDX1204E

2. General Information

2.1 Revision History

Date	Revision	Description
Mar 2016	-	Pin-out (p8): FGx(x=0,1) Pin name typo fixed.
Apr 2016	-	Electrical(p17): tSK_INTRA_OUT changed 5 typ, 10 max ps
May 2016	-	Application(p30): More informative system EE contents added. DDC source-side pull-up changed to $10 \mathrm{k} \Omega$ from 2 $\mathrm{k} \Omega$
Jun 2016	-	Mechanical (p39): EPAD outline changed
Oct 2016	-	Diodes Disclaimer added
Aug 2017	-	Clarified Output Swing range control in functional description. PI3HDX1204B1 limiting and PI3HDX1204E linear pin-out comparison added in generic information session
Dec 2017	1	Updated package mechanical drawing with latest (p46). Change to whole Revision number
Dec 2020	2	Updated Part Marking Updated Part Numbers Information Updated Pin Configuration Updated Pin Description Updated Features

2.2 PI3HDX1204D to PI3HDX1204E PDN Notice

PI3HDX1204E is a production part number of PI3HDX1204D. The detail comparison is summarized below.

	PI3HDX1204E	PI3HDX1204D
Changes	32-pin TQFN package added	EOL (End of Life). Pin-out
No change	PI3HDX1204D was engineering version of PI3H- DX1204E	
Application Note	No change	

2.3 Similar Products Comparison

	PI3HDX1204B1	PI3HDX1204E
Redriver Type	Limiting type	Linear type
EQ at 6Gbps	22 dB	10 dB
Output TMDS peak-to-peak Swing	Output Swing Amplitude / Pre-Emphasis control. Blocking type	Follow Source Swing Amplitude. Non-blocking type.
DDC Switch/Buffer	No	No
HDMI1.4/2.0 Type ID	No	No
Ioff Protection	External Power Switch	External Power Switch
Data Rate (Gbps)	6 Gbps	6 Gbps
Application	Near to Source-side device	Near to Sink-side device
Availability	Production	Production

Rematatines /(1) PERICOM

PI3HDX1204E

A Product Line of

Diodes Incorporated

(1) PERICOM

Contents

2. General Information 2
2.1 Revision History 2
2.2 PI3HDX1204D to PI3HDX1204E PDN Notice 2
2.3 Similar Products Comparison 2
3. Pin Configuration 5
3.1 Pin Configuration 5
3.1 Pin Description 6
4. Functional Description 10
4.1 Functional Block 10
4.2 Function Description 11
5. I2C Programming 15
5.1 Programming Registers 15
$5.2 \mathrm{I}^{2} \mathrm{C}$ Operation 17
6. Electrical Specification 19
6.1 Absolute Maximum Ratings 19
6.2 Recommended Operation Conditions 19
6.3 Electrical Characteristics 19
6.4 I2C Bus 24
7. Applications 26
7.1 DC/AC-coupled Application 26
7.2 Sink-side Redriver Application 27
7.3 Channels/Polarity Swap 27
7.4 Output Eye Diagram 28
7.5 Layout Guideline 32
7.6 HDMI 2.0 Compliance Test 38
8. Mechanical/Packaging Information 41
8.1 Mechanical 41
8.2 Part Marking Information 43
8.3 Tape \& Reel Materials and Design 44
9. Important Notice 47

PI3HDX1204E

3. Pin Configuration

3.1 Pin Configuration

Figure 3-1 32/42-pin package pin-out

Note: In TMDS Data and Clock Differential Pairs of Input and Output, the polarity ($+/-$ or P / N) of each pairs and high-speed data channels $\mathrm{A}[3: 0]$ can use interchangeably. Output pins of polarity and data channel will always follow the input polarity and data channel assignment changes.

PI3HDX1204E

3.1 Pin Description

3.1.1 32-ZL Pin Package

Pin \#	Pin Name	Type	Description
Data Signals			
1, 2	A0RX+ A0RX-	I	TMDS differential positive/negative input for Channel A0, with internal 50Ω Pull-Up and $\sim 200 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 27, \\ & 26 \end{aligned}$	$\begin{aligned} & \text { A0TX+, } \\ & \text { A0TX- } \end{aligned}$	O	TMDS differential positive/negative outputs for Channel A0, with internal 50Ω Pull-Up and $\sim 2 \mathrm{k} \Omega$ Pull-Up otherwise.
4, 5	$\begin{aligned} & \text { A1RX+, } \\ & \text { A1RX- } \end{aligned}$	I	TMDS differential positive/negative inputs for Channel A1, with internal 50Ω Pull-Up and $\sim 200 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 24, \\ & 23 \end{aligned}$	$\begin{aligned} & \text { A1TX+, } \\ & \text { A1TX- } \end{aligned}$	O	TMDS differential positive/negative outputs for Channel A1, with internal 50Ω Pull-Up and $\sim 2 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 7, \\ & 8 \end{aligned}$	$\begin{aligned} & \text { A2RX+ } \\ & \text { A2RX- } \end{aligned}$	I	TMDS differential positive/negative inputs for Channel A2, with internal 50Ω Pull-Up and $\sim 200 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 21, \\ & 20 \end{aligned}$	A2TX + , A2TX-	O	TMDS differential positive/negative outputs for Channel A2, with internal 50Ω Pull-Up and $\sim 2 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 10, \\ & 11 \end{aligned}$	A3RX+ A3RX-	I	TMDS differential positive/negative inputs for Channel A3, with internal 50Ω Pull-Up and $\sim 200 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 18 \\ & 17 \end{aligned}$	$\begin{aligned} & \text { A3TX+, } \\ & \text { A3TX- } \end{aligned}$	O	TMDS differential positive/negative outputs for Channel A3, with internal 50Ω Pull-Up and $\sim 2 \mathrm{k} \Omega$ Pull-Up otherwise.

Control Signals

$\left.\begin{array}{|l|l|c|l|}\hline 13 & \text { SCL } & \text { I/P } & \text { I }^{2} \mathrm{C} \text { Serial Clock line } \\ \hline 12 & \text { PRSNT\# } & \text { I/O } & \text { I }^{2} \mathrm{C} \text { Serial Data line }\end{array} \left\lvert\, \begin{array}{l}\text { Cable Present Detect input. This pin has internal 100K } \Omega \text { pull-up. } \\ \text { The pin is active when both PIN mode (ENI2C }=\text { LOW) and I2C mode (ENI2C }= \\ \text { HIGH). } \\ \text { When High, a cable is not present, and the device is put in lower power mode. } \\ \text { When Low, the device is enabled and in normal operation. }\end{array}\right.\right]$

PI3HDX1204E

Pin \#	Pin Name	Type	Description
16	I2C_DONE	O	I2C Done pin. Valid register load status output for using the daisy chain I2C master. Low = External EEPROM load failed High = External EEPROM load passed
Power Pins			
$3,6,9,19,22$, 25	VDD	PWR	$3.3 V$ Power supply pins
Center Pad	GND	GND	Exposed Ground pad.

PI3HDX1204E

3.1.2 42-ZH Pin Package

Pin \#	Pin Name	Type	Description
Data Signals			
$\begin{aligned} & 4 \\ & 5 \end{aligned}$	A0RX+ A0RX-	I	TMDS differential positive/negative input for Channel A0, with internal 50Ω Pull-Up and $\sim 200 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 35 \\ & 34 \\ & \hline \end{aligned}$	A0TX+, A0TX-	O	TMDS differential positive/negative outputs for Channel A0, with internal 50Ω Pull-Up and $\sim 2 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { A1RX+, } \\ & \text { A1RX- } \end{aligned}$	I	TMDS differential positive/negative inputs for Channel A1, with internal 50Ω Pull-Up and $\sim 200 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 32 \\ & 31 \end{aligned}$	A1TX+, A1TX-	O	TMDS differential positive/negative outputs for Channel A1, with internal 50Ω Pull-Up and $\sim 2 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 10, \\ & 11 \end{aligned}$	$\begin{aligned} & \text { A2RX+, } \\ & \text { A2RX- } \end{aligned}$	I	TMDS differential positive/negative inputs for Channel A2, with internal 50Ω Pull-Up and $\sim 200 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 29 \\ & 28 \end{aligned}$	$\begin{aligned} & \text { A2TX+, } \\ & \text { A2TX- } \end{aligned}$	O	TMDS differential positive/negative outputs for Channel A2, with internal 50Ω Pull-Up and $\sim 2 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & \text { A3RX+, } \\ & \text { A3RX- } \end{aligned}$	I	TMDS differential positive/negative inputs for Channel A3, with internal 50Ω Pull-Up and $\sim 200 \mathrm{k} \Omega$ Pull-Up otherwise.
$\begin{aligned} & 26 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { A3TX+, } \\ & \text { A3TX- } \end{aligned}$	O	TMDS differential positive/negative outputs for Channel A3, with internal 50Ω Pull-Up and $\sim 2 \mathrm{k} \Omega$ Pull-Up otherwise.

Control Signals

16, 17, 23	DNC		Do Not Connect
19	SCL	I/O	$I^{2} \mathrm{C}$ Serial Clock line In Master mode (ENI2C pin floating), SCL is an output. Otherwise it is an input as a slave mode.
18	SDA	I/O	$\mathrm{I}^{2} \mathrm{C}$ Serial Data line
20	PRSNT\#	I	Cable Present Detect input. This pin has internal $100 \mathrm{~K} \Omega$ pull-up. The pin is active when both PIN mode $($ ENI2C $=$ LOW $)$ and I2C mode $($ ENI2C $=$ HIGH). When High, a cable is not present, and the device is put in lower power mode. When Low, the device is enabled and in normal operation.
21	ENI2C	I	I2C Enable pin. When LOW, each channel is programmed by the external pin voltage. When HIGH, each channel is programmed by the data stored in the I2C bus. When floating, master mode (Read External EEPROM)
39, 40, 41, 42	EQ[3:1]	I	EQ Control pin. Inputs with internal $100 \mathrm{k} \Omega$ pull-up. This pins set the amount of Equalizer Boost in all channels when ENI2C is low.
	AD[3:1]	I	Address bits control pins for I2C programming with internal $100 \mathrm{k} \Omega$ pullup.
1,2	SW[1:0]	I	Output Swing control pins. Inputs with internal $100 \mathrm{k} \Omega$ pull-up. This pin sets the output Voltage Level in all channel when ENI2C is LOW.
38	FG1/I2C RESET\#	I	Shared pin for Gain Control bit-1 and I2C Reset pin. Inputs with internal $100 \mathrm{k} \Omega$ pullup resistor. (1) Sets the output flat gain level bit-1 on all channels when ENI2C is Low. (2) I2C Reset pin. Active Low to reset the registers to default state.

PI3HDX1204E

Pin \#	Pin Name	Type	Description
37	FG0	I	Flat Gain control bit-0 pin. Inputs with internal $100 \mathrm{k} \Omega$ pull up resistor. Sets the output flat gain level on all channels when ENI2C is low.
22	NC	NC	No Connect
Power Pins			
$3,9,15,24,27$, 33,36	VDD	PWR	3.3V Power supply pins
$6,12,30$, Cen- ter Pad	GND	GND	Exposed Ground pad.

4. Functional Description

4.1 Functional Block

Figure 4-1 Functional Block Diagram

A Product Line of Diodes Incorporated
(1) PERICOM

4.2 Function Description

4.2.1 Power-Down/Enable

When PRSNT\# is set to " 1 ", device enter to the power-down mode. When Input $200 \mathrm{k} \Omega$ and Output High Impedance (HIZ) termination resisters set, each individual channels $\operatorname{Ax}(\mathrm{x}=0,1,2,3)$ can program the I2C register.

4.2.2 Input Equalization Setting

The $\operatorname{EQx}(x=0,1,2,3)$ pins are the pin-strap option for each $\mathrm{Ax}(\mathrm{x}=0,1,2,3)$ channels. It can also be programmable by the I2C mode.

Table 4-1. Equalization Setting for 42-pin

EQ3	EQ2	EQ1	EQ0	6Gbps Input (dB)
0	0	0	0	3.6
0	0	0	1	4.0
0	0	1	0	4.4
0	0	1	1	4.7
0	1	0	0	5.1
0	1	0	1	5.5
0	1	1	0	5.9
0	1	1	1	6.2
1	0	0	0	6.6
1	0	0	1	6.9
1	0	1	0	7.3
1	0	1	1	7.6
1	1	0	0	8.0
1	1	0	1	8.2
1	1	1	0	8.6
1	1	1	1	8.9

Table 4-2. Equalization Setting for 32-pin

EQ3	EQ2	EQ1	6Gbps Input (dB)	Notes
0	0	0	4.0	
0	0	1	4.7	
0	1	0	5.5	(1) EQ0 pin always tied to "1" internally in 32-pin package.
0	1	1	6.2	
1	0	0	7.6	
1	0	1	8.2	
1	1	0	8.9	
1	1	1		

A Product Line of Diodes Incorporated
(1) PERICOM

4.2.3 Output - 1 dB Compression Swing setting

$\operatorname{SWx}(x=0,1)$ affects the linearity of the output when input amplitude changes.

Table 4-3. SW[1:0] Output Swing Setting

SW1	SW0	Voltage Swing mVpp @100MHz	Voltage Swing mVpp @ 6Gbps	Notes
0	0	920	1100	
0	1	1040	1200	
1	0	1280	1300	
1	1	1370	1400	Default Setting. Internally $100 \mathrm{k} \Omega$ pull-up.

Note: (1) $\mathrm{SW}[1: 0]=11$ setting support by I2C programming in 32 -pin package

4.2.4 Flat Gain Setting

$\operatorname{FGx}(x=0,1)$ two pins are the selection 2 bits for the DC Flat Gain value.

Table 4-4. Flat Gain FG[1:0] Control

FG1	FG0	Gain (dB)
0	0	-3.5
0	1	-1.5
1	0	+0.5
1	1	+2.5

A Product Line of Diodes Incorporated

PI3HDX1204E

Figure 4-2 Example of Output voltage swing with different SW setting

Figure 4-3 Power dissipation mA vs. SW [1:0] setting

PI3HDX1204E

Figure 4-4 Illustration of EQ, Gain and Swing setting

A Product Line of Diodes Incorporated
T) PERICOM

PI3HDX1204E

5. 12C Programming

5.1 Programming Registers

5.1.1 I2C address

A6	A5	A4	A3	A2	A1	A0	R/W
1	1	1	AD3	AD2	AD1	AD0	$1=\mathrm{R}, 0=\mathrm{W}$

Note: (1) Address A0 is always "1" tied high for 32-pin package.

5.1.2 Configuration Registers

BYTE 0

Bit	Type	Power up condition	Description	Control Affected	Comment
$7: 0$	R		Reserved		

BYTE 1

Bit	Type	Power up condition	Description	Control Affected	Comment
$7: 0$	R		Reserved		

BYTE 2

Bit	Type	Power up condition	Description	Control Affected	Comment
7	R/W	0		A3 Power down	
6	R/W	0		A2 Power down	
5	R/W	0		A1 Power down	
4	R/W	0	A0 Power down		
3	R/W	0	Reserved		
2	R/W	0		Reserved	
1	R/W	0	Reserved		
0	R/W	0	Reserved		

BYTE 3

Bit	Type	Power up condition	Description	Control Affected	Comment
7	R/W	0	Channel A0 configuration	EQ3	Equalizer
6	R/W	0		EQ2	
5	R/W	0		EQ1	
4	R/W	0		EQ0	
3	R/W	0		FG1	Flat gain
2	R/W	0		FG0	
1	R/W	0		SW1	Swing
0	R/W	0		SW0	

A Product Line of Diodes Incorporated
T) PERICOM

PI3HDX1204E

BYTE 4

Bit	Type	Power up condition	Description	Control Affected	Comment
7	R/W	0	Channel A1 configuration	EQ3	Equalizer
6	R/W	0		EQ2	
5	R/W	0		EQ1	
4	R/W	0		EQ0	
3	R/W	0		FG1	Flat gain
2	R/W	0		FG0	
1	R/W	0		SW1	Swing
0	R/W	0		SW0	

BYTE 5

Bit	Type	Power up condition	Description	Control Affected	Comment
7	R/W	0	Channel A2 configuration	EQ3	Equalizer
6	R/W	0		EQ2	
5	R/W	0		EQ1	
4	R/W	0		EQ0	
3	R/W	0		FG1	Flat gain
2	R/W	0		FG0	
1	R/W	0		SW1	Swing
0	R/W	0		SW0	

BYTE 6

Bit	Type	Power up condition	Description	Control Affected	Comment
7	R/W	0	Channel A3 configuration	EQ3	Equalizer
6	R/W	0		EQ2	
5	R/W	0		EQ1	
4	R/W	0		EQ0	
3	R/W	0		FG1	Flat gain
2	R/W	0		FG0	
1	R/W	0		SW1	Swing
0	R/W	0		SW0	

BYTE 7

Bit	Type	Power up condition	Description	Control Affected	Comment
$7: 0$	R/W		Reserved		

BYTE 8-15

| Bit | Type | Power up condition | Description | Control Affected |
| :---: | :---: | :---: | :--- | :--- | Comment | Power up condition : "0" |
| :--- | :--- |

A Product Line of Diodes Incorporated

PI3HDX1204E

$5.2 I^{2} \mathrm{C}$ Operation

The integrated I2C interface operates as a slave device mode. Standard I2C mode (100 Kbps) is supported with 7-bit addressing and data byte format 8-bit.
The device supports Read/Write. The bytes must be accessed in sequential order from the lowest to the highest byte with the ability to stop after any complete byte has been transferred. Address bits A3 to A0 are programmable to support multiple chips environment. The Data is loaded until a Stop sequence is issued.

Figure 5-1 I2C Reset, Enable and SCL/SDA Timing Diagram

Transferring Data

Every byte put on the SDA line must be 8-bit long. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first (see the I2C Data Transfer diagram). It will never hold the clock line SCL LOW to force the master into a wait state.

Acknowledge

Data transfer with acknowledge is required from the master. When the master releases the SDA line (HIGH) during the acknowledge clock pulse, it will pull down the SDA line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse as indicated in the I2C Data Transfer diagram. It will generate an acknowledge after each byte has been received.

Data Transfer

A data transfer cycle begins with the master issuing a start bit. After recognizing a start bit, it will watch the next byte of information for a match with its address setting. When a match is found it will respond with a read or write of data on the following clocks. Each byte must be followed by an acknowledge bit, except for the last byte of a read cycle which ends with a stop bit. Data is transferred with the most significant bit (MSB) first.

Start \& Stop Conditions

A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition.

A Product Line of Diodes Incorporated
(1) PERICOM

Table 5-1. I2C Address Setting with 4-bits AD[3:0]

I2C address: AD3, AD2, AD1, AD0	Data starting location
0000	00 H
0001	10 H
0010	20 H
0011	30 H
0100	40 H
0101	50 H
0110	60 H
0111	70 H
1000	80 H
1001	90 H
1010	AOH
1011	B0H
1100	COH
1101	D0H
1110	EOH
1111	FOH

Read Sequence

S	Slave Address	R	A	DATA	A	$\ldots .$.	DATA	$\overline{\mathrm{A}}$
P								

Write Sequence

S	Slave Address	W	A	DATA	A	$\ldots .$.	DATA	A

\square From master to slave
\square From slave to master
A = Acknowledge
$\overline{\mathrm{A}}=$ Not Acknowledge
S = Start Condition
$P=$ Stop Condition

Figure 5-2 I2C Read / Write Timing Sequence

PI3HDX1204E

6. Electrical Specification

6.1 Absolute Maximum Ratings

Abstract

Supply Voltage to Ground Potential. -0.5 V to +4.6 V DC SIG Voltage -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$ Output Current . -25 mA to +25 mA Power Dissipation Continuous. 2. 2. 1 l . ESD, HBM -2 kV to +2 kV Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note
(1) Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

6.2 Recommended Operation Conditions

Parameter	Min.	Typ.	Max	Units
Power supply voltage (VDD to GND) ${ }^{(1)}$	3.0	3.3	3.6	V
I2C (SDA, SCL)			3.6	V
Supply Noise Tolerance up to $25 \mathrm{MHz}^{(2)}$			100	$\mathrm{mVp}-\mathrm{p}$
Ambient Temperature	-40	25	85	${ }^{\circ} \mathrm{C}$

Note
(1) Typical parameters are measured at $\mathrm{VDD}=3.3 \pm 0.3 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$. They are for the reference purposes, and are not production-tested
(2) Allow supply noise (mVp-p sine wave) under typical condition

6.3 Electrical Characteristics

Over recommend operating supply and temperature range unless otherwise specified.

6.3.1 LVCMOS DC Specifications

Symbol	Parameter	Conditions	Min.	Typ.	Max	Unit
V_{IH}	DC input logic high		$\mathrm{V}_{\mathrm{DD}} / 2+0.7$		$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{IL}}$	DC input logic low		-0.3		$\mathrm{~V}_{\mathrm{DD}} / 2-0.7$	V
$\mathrm{~V}_{\mathrm{OH}}$	At $\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$		$\mathrm{~V}_{\mathrm{DD}}+0.2$			V
$\mathrm{~V}_{\mathrm{OL}}$	At $\mathrm{I}_{\mathrm{OL}}=-200 \mu \mathrm{~A}$			0.2	V	
$\mathrm{~V}_{\text {hys }}$	Hysteresis of Schmitt trigger input			0.8		

6.3.2 Power Dissipation

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
I_{DD}	Supply current	PRSNT\#=0, SW=1000mVdiff, FG=2.5		265	290	mA
		PRSNT\#=0, SW=900mVdiff, FG=2.5		240	290	mA
		PRSNT\#=0, SW=800mVdiff, FG=2.5		233	290	mA
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent Supply Current	PEN=0, TMDS Output Disable		2.0	4.2	mA

A Product Line of Diodes Incorporated
(1) PERICOM

PI3HDX1204E

6.3.3 Package Power Ratings

Package	Theta Ja(still air) $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	Theta Jc $\left({ }^{\circ} \mathrm{C} / \mathbf{W}\right)$	Max. Power Dissipation Rating (Ta $\left.\leq 70^{\circ}\right)$
32-pin TQFN (ZL32)	37.05	11.3	1.48 W
42-pin TQFN (ZH42)	33.69	15.17	1.63 W

6.3.4 Switching I/O Characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
VRX-DIFFp-p	Peak to peak differential input voltage			200		mV
T_{R}	Rise Time	Input signal with 30ps rise time, 20% to 80%		31		ps
T_{F}	Falling Time	Input signal with 30 ps rise time, 20% to 80%		31		ps
T ${ }_{\text {PLH }}$	Low-to-High Propagation Delay			65		ps
$\mathrm{T}_{\text {PHL }}$	High-to-Low Propagation Delay			65		ps
TSK_INTRA_IN	Input Intra-pair Differential Skew tolerance				0.15	IU
TSK_INTRA_ OUT	Output Intra-pair Differential Skew			5	10	ps
TSK_INTER_ OUT	Output Inter-pair Differential Skew			8		ps
R_{J}	Add-in Random Jitter	at 6 Gbps		0.57		RMS ps
D_{J}	Add-in Deterministic Jitter	at 6 Gbps		6.57		ps
$\mathrm{T}_{\text {SX }}$	Select to Switch Output				10	ns
S_{22}	Output return loss	10 MHz to 6 Gbps differential		13		dB
		2 Gbps to 6 Gbps common mode		8		
$\mathrm{R}_{\text {IN }}$	DC single-ended input impedance			50		Ω
	DC Differential Input Impedance			100		
Rout	DC single-ended output impedance			50		Ω
	DC Differential output Impedance			100		
ZRX-HIZ	DC input CM input impedance during reset or power down			200		$\mathrm{k} \Omega$
$\mathrm{V}_{\mathrm{RX} \text {-DIFFPP }}$	Differential Input Peak-to-peak Voltage	Operational			1.4	Vppd
VCMNOISE	Input source common-mode noise	DC -200 MHz			150	mVppd
TTX-IDLE- SET-TOIDLE	Max time to electrical idle after sending an EIOS			4	8	ns
TTX-IDLETO DIFFDATA	Max time to valid differential signal after leaving electrical idle			4	8	ns
T_{PD}	Latency	From input to output		0.5		ns

PI3HDX1204E

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
Gp	Peaking gain (Compensation at 6 Gbps , relative to $100 \mathrm{MHz}, 100 \mathrm{mVp}$ p sine wave input)	$\begin{aligned} & \mathrm{EQ}\langle 3: 0>=1111 \\ & \mathrm{EQ}\langle 3: 0>=1000 \\ & \mathrm{EQ}\langle 3: 0>=0000 \\ & \hline \end{aligned}$		$\begin{aligned} & 8.9 \\ & 6.6 \\ & 3.6 \\ & \hline \end{aligned}$		dB
		Variation around typical	-3		+3	dB
GF	Flat gain ($100 \mathrm{MHz}, \mathrm{EQ}<3: 0>=1000$, SW<1:0> = 10)	$\begin{aligned} & \mathrm{FG}<1: 0>=11 \\ & \mathrm{FG}<1: 0>=10 \\ & \mathrm{FG}<1: 0>=01 \\ & \mathrm{FG}<1: 0>=00 \end{aligned}$		$\begin{gathered} -3.5 \\ -1.5 \\ 0.5 \\ 2.5 \end{gathered}$		dB
		Variation around typical	-3		+3	dB
V1dB_100M	- 1 dB compression point of output swing (at 100 MHz)	$\begin{aligned} & \text { SW }\langle 1: 0\rangle=11 \\ & S W<1: 0\rangle=10 \\ & S W<1: 0>=01 \\ & S W<1: 0\rangle=00 \end{aligned}$		$\begin{aligned} & 1400 \\ & 1300 \\ & 1200 \\ & 1100 \end{aligned}$		mVppd
V1dB_6G	- 1 dB compression point of output swing (at 6 Gbps)	$\begin{aligned} & \text { SW }\langle 1: 0\rangle=11 \\ & S W<1: 0\rangle=10 \\ & S W<1: 0\rangle=01 \\ & S W<1: 0\rangle=00 \end{aligned}$		$\begin{aligned} & 1300 \\ & 1200 \\ & 1100 \\ & 1000 \end{aligned}$		mVppd
$\mathrm{V}_{\text {Coup }}$	Channel isolation	100 MHz to 6 Gbps		40		dB
Vnoise_input	Input-referred noise ${ }^{(2)}$	100 MHz to $6 \mathrm{Gbps}, \mathrm{FG}<1: 0>$ $=11, \mathrm{EQ}<3: 0>=0000$		0.5		$m V_{\text {RMS }}$
		100 MHz to $6 \mathrm{Gbps}, \mathrm{FG}<1: 0>$ $=11, \mathrm{EQ}<3: 0>=1010$		0.4		
Vnoise_output	Output-referred noise ${ }^{(2)}$	100 MHz to $6 \mathrm{Gbps}, \mathrm{FG}<1: 0>$ $=11, \mathrm{EQ}<3: 0>=0000$		0.7		$m V_{\text {RMS }}$
		100 MHz to $6 \mathrm{Gbps}, \mathrm{FG}<1: 0>$ $=11, \mathrm{EQ}<3: 0>=1010$		0.8	1.6	

Note:
(1) Measured using a vector-network analyzer (VNA) with -15 dBm power level applied to the adjacent input. The VNA detects the signal at the output of the victim channel. All other inputs and outputs are terminated with 50Ω.
(2) Guaranteed by design.

Figure 6-1 Electrical Parameter Test Setup

A Product Line of Diodes Incorporated

PI3HDX1204E

Figure 6-2 Intra and Inter-pair Differential Skew Definition

Figure 6-3 Definition of Peak-to-peak Differential Voltage

Figure 6-4 Noise Test Configuration

Figure 6-5 Channel-isolation Test Configuration

PI3HDX1204E

6.4 I2C Bus

Symbol	Parameter	Conditions	Min.	Typ.	Max	Units
VDD	Nominal Bus Voltage		3.0		3.6	V
Freq	Bus Operation Frequency				400	kHz
$\mathrm{V}_{\text {IH }}$	DC input logic high		$\mathrm{V}_{\mathrm{DD}} / 2+0.7$		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	DC input logic low		-0.3		$\mathrm{V}_{\mathrm{DD}} / 2-0.7$	V
$\mathrm{V}_{\text {OL }}$	DC output logic low	$\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$			0.4	V
Ipullup	Current Through Pull-Up Resistor or Current Source	High Power specification	3.0		3.6	mA
Ileak-bus	Input leakage per bus segment		-200		200	uA
Ileak-pin	Input leakage per device pin			-15		uA
CI	Capacitance for SDA/SCL				10	pF
tBUF	Bus Free Time Between Stop and Start condition		1.3			us
tHD:STA	Hold time after (Repeated) Start condition. After this period, the first clock is generated.	At pull-up, Max	0.6			us
TSU:STA	Repeated start condition setup time		0.6			us
TSU:STO	Stop condition setup time		0.6			us
THD:DAT	Data hold time		0			ns
TSU:DAT	Data setup time		100			ns
tLOW	Clock low period		1.3			us
tHIGH	Clock high period		0.6		50	us
tF	Clock/Data fall time				300	ns
tR	Clock/Data rise time				300	ns
tPOR	Time in which a device must be operation after power-on reset				500	ms

Note:
(1) Recommended maximum capacitance load per bus segment is 400 pF .
(2) Compliant to I2C physical layer specification.
(3) Ensured by Design. Parameter not tested in production.

PI3HDX1204E

Figure 6-6 I2C Timing Definition

7. Applications

7.1 DC/AC-coupled Application

DC-Coupled Differential Signaling Application Circuits

AC-Coupled Differential Signaling Application Circuits
Figure 7-1 DC/AC-coupled Application Diagram

PI3HDX1204E

7.2 Sink-side Redriver Application

Figure 7-2 HDMI Sink-side Application

7.3 Channels/Polarity Swap

Linear Redriver does not have built-in internal channel/polarity switch. Transmitter can send swapped polarity signal to the Redriver.

Figure 7-3 Polarity Swap Connection

A Product Line of Diodes Incorporated

7.4 Output Eye Diagram

7.4.1 Trace Card Loss Informations

Frequency	$\mathbf{3} \mathbf{G H z}$	$\mathbf{6 G H z}$	Units
6 inch Input Trace	-1.43	-4	dB
12 inch Input Trace	-6.1	-11	dB
18 inch Input Trace	-8.34	-15	dB
30 inch Input Trace	-10.14	-18	dB
36 inch Input Trace	-12.13	-22	dB
48 inch Input Trace	-16.42	-29	dB

Table 7-1. Characterization Trace Card dB Loss Information

Figure 7-4 Trace board photo

A Product Line of Diodes Incorporated
(1) PERICOM

7.4.2 Output Eye Diagram Measurement

Figure 7-5 Eye Width vs. EQ plots at 6 Gbps, PRBS2^23-1, FG=11 (Gain +2.5dB)
Eye Width vs EQ, FG $=1000 \mathrm{mV}$, Gain=+2.5dB (Input Swing=800mVd)

Figure 7-6 Eye Width vs. EQ plots at 6 Gbps, PRBS2^23-1, FG=10 (Gain +0.5dB) Eye Height vs EQ, FG=1000mV, Gain=+2.5dB (input swing $=800 \mathrm{mVd}$)

Figure 7-7 Frequency response vs EQ
with $\mathrm{FG}=11(+2.5 \mathrm{~dB})$, Output $\mathrm{Swing}=1000 \mathrm{mV}$, $\mathrm{Vdd}=3.0 \mathrm{~V}, 25 \mathrm{C}$, Input Power $=-15 \mathrm{dBm}$, No Input Trace

7.4.3 Output Eye Diagram

Condition: PRBS 2^23-1 pattern, Input Swing=800mVdiff, Output Swing= 1000 mVdiff

Table 7-2. Output Eye diagram by EQ changes at FG 0.5 dB

No Trace, FG=0.5dB	6 -in trace, $\mathrm{FG}=0.5 \mathrm{~dB}$	12-in trace, FG=0.5dB	18-in trace, $\mathrm{FG}=0.5 \mathrm{~dB}$
$\mathrm{EQ}=3 \mathrm{~dB}$	$\mathrm{EQ}=3 \mathrm{~dB}$	$\mathrm{EQ}=5 \mathrm{~dB}$	$\mathrm{EQ}=6 \mathrm{~dB}$
24 -in trace, $\mathrm{FG}=0.5 \mathrm{~dB}$	30 -in trace, FG=0.5dB	36 -in trace, FG=0.5dB	48 -in trace, FG=0.5dB
		$\mathrm{EQ}=14.5 \mathrm{~dB}$	

Table 7-3. Output Eye Diagram by EQ changes at FG 2.5dB

No Trace, FG=2.5dB	6 -in trace, $\mathrm{FG}=2.5 \mathrm{~dB}$	12 -in trace, $\mathrm{FG}=2.5 \mathrm{~dB}$	18 -in trace, FG=2.5dB
$\mathrm{EQ}=3 \mathrm{~dB}$	$\mathrm{EQ}=3 \mathrm{~dB}$		$\mathrm{EQ}=8 \mathrm{~dB}$
24 -in trace, FG=2.5dB	30 -in trace, FG=2.5dB	36 -in trace, $\mathrm{FG}=2.5 \mathrm{~dB}$	48 -in trace, FG=2.5dB
$\mathrm{EQ}=13 \mathrm{~dB}$	$\mathrm{EQ}=15 \mathrm{~dB}$		$\mathrm{EQ}=15 \mathrm{~dB}$

PI3HDX1204E

7.5 Layout Guideline

As transmission data rate increases rapidly, any flaws and/or mis-matches on PCB layout are amplified in terms of signal integrity. Layout guideline for high-speed transmission is highlighted in this application note.

7.5.1 Power and Ground

To provide a clean power supply for Pericom high-speed device, few recommendations are listed below:

- Power (VDD) and ground (GND) pins should be connected to corresponding power planes of the printed circuit board directly without passing through any resistor.
- The thickness of the PCB dielectric layer should be minimized such that the VDD and GND planes create low inductance paths.
- One low-ESR 0.1uF decoupling capacitor should be mounted at each VDD pin or should supply bypassing for at most two VDD pins. Capacitors of smaller body size, i.e. 0402 package, is more preferable as the insertion loss is lower. The capacitor should be placed next to the VDD pin.
- One capacitor with capacitance in the range of 4.7 uF to 10 uF should be incorporated in the power supply decoupling design as well. It can be either tantalum or an ultra-low ESR ceramic.
- A ferrite bead for isolating the power supply for Pericom high-speed device from the power supplies for other parts on the printed circuit board should be implemented.
- Several thermal ground vias must be required on the thermal pad. 25 -mil or less pad size and 14 -mil or less finished hole are recommended.

Figure 7-8 Decoupling Capacitor Placement Diagram

A Product Line of Diodes Incorporated

PI3HDX1204E

7.5.2 High-speed signal Routing

Well-designed layout is essential to prevent signal reflection:

- For 90Ω differential impedance, width-spacing-width micro-strip of 6-7-6 mils is recommended; for 100Ω differential impedance, width-spacing-width micro-strip of 5-7-5 mils is recommended.
- Differential impedance tolerance is targeted at $\pm 15 \%$.

Single-ended mode:			
	Microstrip	Stripline	
impedance:	$\mathrm{Zo}=50.7$	32.9	Ω
Capacitance:	$\mathrm{Co}=2.70$	6.30	pf/in
Delay:	Tpd= 137.1	171.6	ps/in
Speed:	$\mathrm{v}=185.4$	148.2	$\mathrm{mm} / \mathrm{ns}$

Differential mode:		
	Microstrip	Stripline
impedance: $\mathrm{Zo}_{0}=$	90.8	62.4

1. Microstrip Zo formula accurate if $0.1<\mathrm{W} / \mathrm{h}<2$)
2. Stripline Zo formula accurate if $(\mathrm{W} / \mathrm{b})<0.35$
3. Stripline Zo formula accurate if (b/t)>4

Figure 7-9 Trace Width and Clearance of Micro-strip and Strip-line

PI3HDX1204E

- For micro-strip, using $1 / 2 \mathrm{oz} \mathrm{Cu}$ is fine. For strip-line in $6+\mathrm{PCB}$ layers, 1 oz Cu is more preferable.

Figure 7-10 4-Layer PCB Stack-up Example

Figure 7-11 6-Layer PCB Stack-up Example

A Product Line of Diodes Incorporated
(1) PERICOM

PI3HDX1204E

- Ground referencing is highly recommended. If unavoidable, stitching capacitors of 0.1 uF should be placed when reference plane is changed.

Figure 7-12 Stitching Capacitor Placement

- To keep the reference unchanged, stitching vias must be used when changing layers.
- Differential pair should maintain symmetrical routing whenever possible. The intra-pair skew of micro-strip should be less than 5 mils.
- To keep the reference unchanged, stitching vias must be used when changing layers.
- Differential pair should maintain symmetrical routing whenever possible. The intra-pair skew of micro-strip should be less than 5 mils.

Figure 7-13 Layout Guidance of Matched Differential Pair

- For minimal crosstalk, inter-pair spacing between two differential micro-strip pairs should be at least 20 mils or 4 times the dielectric thickness of the PCB.
- Wider trace width of each differential pair is recommended in order to minimize the loss, especially for long routing. More consistent PCB impedance can be achieved by a PCB vendor if trace is wider.
- Differential signals should be routed away from noise sources and other switching signals on the printed circuit board.
- To minimize signal loss and jitter, tight bend is not recommended. All angles α should be at least 135 degrees. The inner air gap A should be at least 4 times the dielectric thickness of the PCB.

A Product Line of Diodes Incorporated

Figure 7-14 Layout Guidance of Bends

- Stub creation should be avoided when placing shunt components on a differential pair.

Figure 7-15 Layout Guidance of Shunt Component

- Placement of series components on a differential pair should be symmetrical.

(Cap placement is in same location \& symmetric)

Avoid
(Cap placement is not in same location/symmetric!)
Figure 7-16 Layout Guidance of Series Component

PI3HDX1204E

- Stitching vias or test points must be used sparingly and placed symmetrically on a differential pair.

Preferred
(Via placement is in same location \& symmetric)

Avoid
(Via placementis not in same location/symmetric!)
Figure 7-17 Layout Guidance of Stitching Via

A Product Line of Diodes Incorporated (1) PERICOM

7.6 HDMI 2.0 Compliance Test

Figure 7-18 HDMI 2.0 CTS test setup
Note: Application Trace Card Information for CTS test
Table 7-4. Application Trace Card Information for CTS test

HDMI FR4 trace	0 in	6 in	12 in	18 in	24 in	30 in	36 in
Insertion loss @ 6Gbps	-5.91 dB	-9.75 dB	-10.47 dB	-13.05 dB	-15.87 dB	-16.97 dB	-21.20 dB

A Product Line of Diodes Incorporated
(1) PERICOM

HDMI Test Report

Overall Result:

Test Configuration Details	
Device Description	
Device ID	Transmitter
Fixture Type	Other
Probe Connection	4 Probes
Probe Head Type	N5444A
Lane Connection	1 Data Lane
HDMI Specification	2.0
HDMI Test Type	TMDS Physical Layer Tests
Test Session Details	
Infiniium SW Version	05.20.0013
Infiniium Model Number	DSOX92504A
Infiniium Serial Number	MY54410104
Application SW Version	2.11
Debug Mode Used	No
Probe (Channel 1)	Model: N2801A Serial: US54094067 Head: N5444A Atten: Calibrated (18 FEB 2015 11:16:48), Using Cal Atten (5.7831E+000) Skew: Calibrated (18 FEB 2015 11:16:56), Using Cal Skew
Probe (Channel 2)	Model: N2801A Serial: US54094054 Head: N5444A Atten: Calibrated (18 FEB 2015 11:19:29), Using Cal Atten (5.5882E+000) Skew: Calibrated (18 FEB 2015 11:13:57), Using Cal Skew
Probe (Channel 3)	Model: N2801A Serial: US54094059 Head: N5444A Atten: Calibrated (18 FEB 2015 11:15:19), Using Cal Atten (5.7320E+000) Skew: Calibrated (18 FEB 2015 11:15:29), Using Cal Skew
Probe (Channel 4)	```Model: N2801A Serial: US54094057 Head: N5444A Atten: Calibrated (18 FEB 2015 11:11:30), Using Cal Atten (5.5123E+000) Skew: Calibrated (18 FEB 2015 11:12:12), Using Cal Skew```
Last Test Date	2016-01-21 16:43:22 UTC +08:00

Figure 7-19 HDMI 2.0 CTS Test Report
-

PI3HDX1204E

Summary of Results

Test Statistics	
Failed	0
Passed	24
Total	24

Margin Thresholds	
Warning	$<2 \%$
Critical	$<0 \%$

Pass	Failed	Trials	Test Name	Actual Value	Margin	Pass Limits
\checkmark	0	1	HF1-2: Clock Rise Time	151.367 ps	$\begin{array}{\|l\|} \hline 101.8 \\ \% \\ \hline \end{array}$	VALUE >= 75.000 ps
\checkmark	0	1	HF1-2: Clock Fall Time	150.838 ps	$\begin{array}{\|l\|} \hline 101.1 \\ \hline \% \\ \hline \end{array}$	VALUE >= 75.000 ps
\checkmark	0	1	HF1-6:Clock Dutv Cucle(Minimum)	49.780	24.5 \%	>=40\%
\checkmark	0	1	HF1-6: Clock Duty Cycle(Maximum)	50.330	16.1 \%	<=60\%
\checkmark	0	1	HF1-6: Clock Rate	$\begin{aligned} & 148.513500000 \\ & \mathrm{MHz} \end{aligned}$	2.3 \%	$\begin{aligned} & 85.000000000 \mathrm{MHz}<=\text { VALUE }<= \\ & 150.000000000 \mathrm{MHz} \end{aligned}$
\checkmark	0	1	$\begin{aligned} & \text { HF1-7: Differential Clock Voltage Swing. Vs } \\ & \hline \text { TP1) } \end{aligned}$	997 mV	25.4 \%	400 mV < VALUE < 1.200 V
\checkmark	0	1	HF1-7: Clock Jitter (TP2 EQ with Worst Case Positive Skew)	250 mTbit	16.7 \%	VALUE <= 300 mTbit
\checkmark	0	1	HF1-7: Clock Jitter (TP2 EQ with Worst Case Negative Skew)	225 mTbit	25.0 \%	VALUE $<=300 \mathrm{mTbit}$
\checkmark	0	1	HF1-5: D0 Maximum Differential Voltage	542 m	30.5 \%	VALUE $<=780 \mathrm{~m}$
\checkmark	0	1	HF1-5: D0 Minimum Differential Voltage	-564 m	27.7 \%	VALUE $>=-780 \mathrm{~m}$
\checkmark	0	1	HF1-2: D0 Rise Time	135.000 ps	$\begin{array}{\|l\|} 217.6 \\ \% \end{array}$	VALUE >= 42.500 ps
\checkmark	0	1	HF1-2: D0 Fall Time	134.370 ps	$\begin{array}{\|l\|l\|} \hline 216.2 \\ \% \\ \hline \end{array}$	VALUE >= 42.500 ps
\checkmark	0	1	HF1-8: D0 Mask Test (TP2 EQ with Worst Case Positive Skew)	0.000	50.0 \%	No Mask Failures
\checkmark	0	1	$\begin{aligned} & \text { HF1-8: D0 Mask Test (TP2 EQ with Worst } \\ & \text { Case Neqative Skew) } \\ & \hline \end{aligned}$	0.000	50.0 \%	No Mask Failures
\checkmark	0	1	HF1-1: VL Clock +	2.684 V	48.0 \%	$2.300 \mathrm{~V}<=$ VALUE $<=3.100 \mathrm{~V}$
\checkmark	0	1	HF1-1:Clock + VSwing	513 mV	21.8 \%	$200 \mathrm{mV}<=$ VALUE $<=600 \mathrm{mV}$
\checkmark	0	1	HF1-1:VL_Clock -	2.678 V	47.3 \%	$2.300 \mathrm{~V}<=$ VALUE $<=3.100 \mathrm{~V}$
\checkmark	0	1	HF1-1:Clock - V Swing	513 mV	21.8 \%	$200 \mathrm{mV}<=$ VALUE $<=600 \mathrm{mV}$
\checkmark	0	1	HF1-4: Intra-Pair Skew - Clock	51 mTbit	33.0 \%	-150 mTbit < V VALUE < $=150 \mathrm{mTbit}$
\checkmark	0	1	HF1-1: VL D0 +	2.706 V	32.3 \%	$2.300 \mathrm{~V}<=$ VALUE $<=2.900 \mathrm{~V}$
\checkmark	0	1	HF1-1: D0 + V Swing	459 mV	29.5 \%	$400 \mathrm{mV}<=$ VALUE $<=600 \mathrm{mV}$
\checkmark	0	1	HF1-1: VL D0-	2.718 V	30.3 \%	$2.300 \mathrm{~V}<=$ VALUE $<=2.900 \mathrm{~V}$
\checkmark	0	1	HF1-1: D0- VSwing	450 mV	25.0\%	$400 \mathrm{mV}<=$ VALUE $<=600 \mathrm{mV}$
\checkmark	0	1	HF1-4: Intra-Pair Skew - Data Lane 0	36 mTbit	38.0 \%	-150 mTbit $<=$ VALUE $<=150 \mathrm{mTbit}$

A Product Line of Diodes Incorporated

8. Mechanical/Packaging Information

8.1 Mechanical

Figure 8-1 32-pin TQFN package mechanical

PI3HDX1204E

PIN 1

TOP VIEW

BOTTOM VIEW

RECOMMENDED LAND PATTERN

DATE: 04/25/17

DESCRIPTION: 42-Contact, Very Thin Quad Flat No-Lead (TQFN)
PACKAGE CODE: ZH (ZH42)
DOCUMENT CONTROL \#: PD-2035
REVISION: G

NOTE:

1. ALL dimensions are in mm. angles in degrees.
2. COPLANARITY APPLIES tO the exposed thermal pad as well as the terminals
3. REFER JEDEC MO-220
4. RECOMMENDED LAND PATTERN IS FOR REFERENCE ONLY
5. THERMAL PAD SOLDERING AREA (MESH STENCIL IS RECOMMENDED).
6. THE

Figure 8-2 42-pin TQFN package mechanical

Figure 8-3 42-pin TQFN package mechanical

PI3HDX1204E

8.2 Part Marking Information

Our standard product mark follows our standard part number ordering information, except for those products with a speed letter code. The speed letter code mark is placed after the package code letter, rather than after the device number as it is ordered. After electrical test screening and speed binning has been completed, we then perform an "add mark" operation which places the speed code letter at the end of the complete part number.

Figure 8-4 Part Numbers Information

YY: Year
WW: Workweek
1st X: Assembly Code
2nd X: Fab Code
Figure 8-5 Part Marking Information

A Product Line of Diodes Incorporated

PI3HDX1204E

8.3 Tape \& Reel Materials and Design

8.3.1 Carrier Tape

The Pocketed Carrier Tape is made of Conductive Polystyrene plus Carbon material (or equivalent). The surface resistivity is $10^{6} \mathrm{Ohm} /$ sq. maximum. Pocket tapes are designed so that the component remains in position for automatic handling after cover tape is removed. Each pocket has a hole in the center for automated sensing if the pocket is occupied or not, thus facilitating device removal. Sprocket holes along the edge of the center tape enable direct feeding into automated board assembly equipment. See Figures 3 and 4 for carrier tape dimensions.

8.3.2 Cover Tape

Cover tape is made of Anti-static Transparent Polyester film.The surface resistivity is $10^{7} \mathrm{Ohm} / \mathrm{Sq}$. Minimum to $10^{11} \mathrm{Ohm}$ sq. maximum. The cover tape is heat-sealed to the edges of the carrier tape to encase the devices in the pockets. The force to peel back the cover tape from the carrier tape shall be a MEAN value of 20 to 80 gm (2 N to 0.8 N).

8.3.3 Reel

The device loading orientation is in compliance with EIA-481, current version (Figure 2). The loaded carrier tape is wound onto either a 13 -inch reel, (Figure 4) or 7 -inch reel. The reel is made of Antistatic High-Impact Polystyrene. The surface resistivity $10^{7} \mathrm{Ohm} / \mathrm{sq}$. minimum to $10^{11} \mathrm{Ohm} / \mathrm{sq}$. max.

Figure 8-6 Tape \& Reel Label Information

Figure 8-7 Tape Leader and Trailer pin 1 Orientations

Figure 8-8 Standard Embossed Carrier Tape Dimensions

Table 8-1. Constant Dimensions

Tape Size	D0	D1 (Min)	E1	P0	P2	$\begin{array}{\|l\|} \hline \mathbf{R} \\ \text { (See Note 2) } \end{array}$	S1 (Min)	$\begin{aligned} & \mathrm{T} \\ & \text { (Max) } \end{aligned}$	$\begin{aligned} & \text { T1 } \\ & \text { (Max) } \end{aligned}$
8 mm	$\begin{array}{\|l} 1.5+0.1 \\ -0.0 \end{array}$	1.0	$\begin{array}{\|l} 1.75 \pm \\ 0.1 \end{array}$	4.0 ± 0.1	2.0 ± 0.05	25	0.6	0.6	0.1
12 mm		1.5				30			
16 mm					2.0 ± 0.1				
24 mm									
32 mm		2.0				50	N/A		
44 mm					2.0 ± 0.15		(See Note 3)		

Table 8-2. Variable Dimensions

Tape Size	P_{1}	\mathbf{B}_{1} (Max)	E_{2} (Min)	F	So	$\begin{aligned} & \mathrm{T}_{2} \\ & \text { (Max.) } \end{aligned}$	$\begin{aligned} & \text { W } \\ & (\mathbf{M a x}) \end{aligned}$	$\begin{aligned} & A_{0}, B_{0}, \\ & \& K_{0} \end{aligned}$
8 mm	Specific per package type. Refer to FR-0221 (Tape and Reel Packing Information)	4.35	6.25	3.5 ± 0.05	N/A (see note 4)	2.5	8.3	See Note 1
12 mm		8.2	10.25	5.5 ± 0.05		6.5	12.3	
16 mm		12.1	14.25	7.5 ± 0.1		8.0	16.3	
24 mm		20.1	22.25	11.5 ± 0.1		12.0	24.3	
32 mm		23.0	N/A	14.2 ± 0.1	28.4 ± 0.1		32.3	
44 mm		35.0	N/A	$\begin{aligned} & 20.2 \pm \\ & 0.15 \end{aligned}$	40.4 ± 0.1	16.0	44.3	

NOTES:

1. A0, B0, and K0 are determined by component size. The cavity must restrict lateral movement of component to 0.5 mm maximum for 8 mm and 12 mm wide tape and to 1.0 mm maximum for $16,24,32$, and 44 mm wide carrier. The maximum component rotation within the cavity must be limited to 20 o maximum for 8 and 12 mm carrier tapes and 10 o maximum for 16 through 44 mm .
2. Tape and components will pass around reel with radius " R " without damage.
3. S1 does not apply to carrier width $\geq 32 \mathrm{~mm}$ because carrier has sprocket holes on both sides of carrier where $\mathrm{Do} \geq \mathrm{S} 1$.
4. So does not exist for carrier $\leq 32 \mathrm{~mm}$ because carrier does not have sprocket hole on both side of carrier.

PI3HDX1204E

Table 8-3. Reel Dimensions by Tape Size

Tape Size	A	N(Min) See Note A	W1	W2 (Max)	W3	B (Min)	C	D (Min)
8 mm	$\begin{aligned} & 178 \pm 2.0 \mathrm{~mm} \text { or } \\ & 330 \pm 2.0 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 60 \\ & \pm 2.0 \mathrm{~mm} \text { or } \\ & 100 \pm 2.0 \mathrm{~mm} \end{aligned}$	$\begin{array}{\|l\|} \hline 8.4+1.5 /-0.0 \\ \mathrm{~mm} \\ \hline \end{array}$	14.4 mm	Shall Ac-commodate Tape Width Without Interference	1.5 mm	$\begin{aligned} & 13.0+0.5 /- \\ & 0.2 \mathrm{~mm} \end{aligned}$	20.2 mm
12 mm			$\begin{aligned} & 12.4+2.0 /-0.0 \\ & \mathrm{~mm} \end{aligned}$	18.4 mm				
16 mm	$330 \pm 2.0 \mathrm{~mm}$	$100 \pm 2.0 \mathrm{~mm}$	$\begin{aligned} & 16.4+2.0 /-0.0 \\ & \mathrm{~mm} \end{aligned}$	22.4 mm				
24 mm			$\begin{aligned} & 24.4+2.0 /-0.0 \\ & \mathrm{~mm} \end{aligned}$	30.4 mm				
32 mm			$\begin{array}{\|l} \hline 32.4+2.0 /-0.0 \\ \mathrm{~mm} \\ \hline \end{array}$	38.4 mm				
44 mm			$\begin{aligned} & 44.4+2.0 /-0.0 \\ & \mathrm{~mm} \end{aligned}$	50.4 mm				

NOTE:
A. If reel diameter $\mathrm{A}=178 \pm 2.0 \mathrm{~mm}$, then the corresponding hub diameter $(\mathrm{N}(\mathrm{min}))$ will by $60 \pm 2.0 \mathrm{~mm}$. If reel diameter $\mathrm{A}=330 \pm 2.0 \mathrm{~mm}$, then the corresponding hub diameter $(\mathrm{N}(\mathrm{min}))$ will by $100 \pm 2.0 \mathrm{~mm}$.

9. Important Notice

1. DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
5. Diodes products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/ terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
6. Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

Copyright © 2020 Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Display Interface IC category:
Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :
AD9887AKSZ-140 AD9887AKSZ-170 PTN3460BSF2,518 AD9883ABSTZ-110 AD9883ABSTZ-140 AD9883AKSTZ-110
AD9883AKSTZ-140 AD9887AKSZ-100 AD9888KSZ-100 AD9888KSZ-140 AD9888KSZ-170 AD9983AKSTZ-140 AD9984AKCPZ-140
AD9985AKSTZ-110 DS90UB914QSQE/NOPB SN65DP149RSBT DS90CF384AQMTX/NOPB SN75DP126SSRHUR AD9985ABSTZ-110
ADV7622BSTZ DS90C3201VS/NOPB DS90C3202VS/NOPB DS90CF384AQMTNOPB DS90UB901QSQE/NOPB
DS90UB903QSQE/NOPB DS90UB904QSQE/NOPB DS90UB913QSQE/NOPB DS90UB914QSQ/NOPB DS90UB927QSQNOPB
DS90UR906QSQE/NOPB DS90UR908QSQE/NOPB SN75DP119RGYR SN75DP122ARTQR SN75DP128ARTQT SN75DP129RHHR
SN75DP129RHHT SN75DP130DSRGZT SN75DP139RGZR SN75DP139RGZT SN75DP149RSBT TFP201APZPG4 TFP403PZP
TFP403PZPG4

