3.4Gbps HDMI1.4b Active 2:1 Switch with ARC and Fast Switching

Features

- HDMI 1.4b compliant for sink side application
- Operation up to 3.4 Gbps per lane
- Support up to 48-bit per pixel Deep Color
- Fast switching between two TMDS input ports
- Programmable equalizer, emphasis and amplitude settings to achieve optimized TMDS signal integrity
- Each input can be AC coupled or DC coupled, while the output will maintain TMDS compliance DC coupled, current steering signals
- Idle clock detection function for output squelch and auto standby
- Integrated ARC(Audio Return Channel) and DDC Mux
- Integrated ESD protection on I/O pins to connector
-3.3V single power supply
- 8 KV contact per IEC61000-4-2, level 4, 8 KV HBM
- Industrial temperature coverage
- Packaging (Pb-free \& Green): 48-contact LQFP
(FB48)

Application

- Notebook Computers, Set Top Box
- A/V Home Entertainment Systems
- Dongle and Switches

Typical Application Block Diagram

Description

PI3HDX621 is the active-type 2:1 switch compliant to HDMI 1.4 b specification, featuring equalized TMDS input and preemphasized TMDS outputs, with 3.4 Gbps high speed and long cable application.
Two TMDS input ports switch fast in the built-in high speed Mux through port selection pins. Redriver boost the input signal quality, adjust known channel losses at the transmitter and restore signal integrity at the receiver. It offers doube termination or open drain output mode by output selection pin.

TMDS output can shut down to reduce power dissipation by sink side HPD detection status. DDC 2:1 Mux and ARC drivers are integrated. PI3HDX621 is specified to operate over -40 to $85{ }^{\circ} \mathrm{C}$ temperature range with 8 kV ESD protection pins.

Pin Configuration

Functional Block Diagram

Note:
(1) If HPD_SINK input voltage is higher than 5 V , serial resister is recommended. The resister value is about $20-25 \mathrm{k} \Omega$.

Pin Description

Pin \#	Pin Name	$\mathrm{I} / \mathrm{O}^{(1)}$	Description
39	HPD_SINK	I	Sink side hot plug detector input; internal pull-down at 120Kohm.
18	HPD1	O	Port 1 HPD output
42	HPD2	O	Port 2 HPD output
$\begin{aligned} & 7 \\ & 8 \\ & 10 \\ & 11 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \text { CLKN1 } \\ & \text { CLKP1 } \\ & \text { D0N1 } \\ & \text { D0P1 } \\ & \text { D1N1 } \\ & \text { D1P1 } \\ & \text { D2N1 } \\ & \text { D2P1 } \end{aligned}$	I	Port 1 TMDS inputs. Rt = 50 Ohm
$\begin{aligned} & 45 \\ & 46 \\ & 47 \\ & 48 \\ & 2 \\ & 3 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline \text { CLKN2 } \\ & \text { CLKP2 } \\ & \text { D0N2 } \\ & \text { D0P2 } \\ & \text { D1N2 } \\ & \text { D1P2 } \\ & \text { D2N2 } \\ & \text { D2P2 } \end{aligned}$	I	Port 2 TMDS inputs. Rt $=50 \mathrm{Ohm}$
$\begin{aligned} & 36 \\ & 35 \\ & 33 \\ & 32 \\ & 29 \\ & 28 \\ & 27 \\ & 26 \end{aligned}$	CLKN CLKP D0N D0P D1N D1P D2N D2P	O	TMDS outputs. Rout $=50$ Ohm when Rout_S0 = "1"
20	SCL1	IO	Port 1 DDC Clock
44	SCL2	IO	Port 2 DDC Clock
19	SDA1	IO	Port 1 DDC Data
43	SDA2	IO	Port 2 DDC Data
37	SCL_SINK	IO	Sink side DDC Clock
38	SDA_SINK	IO	Sink side DDC Data
21	ROUT_S0	I	TMDS output termination selection. Internal 100 Kohm pull-up. See ROUT_S0 truth table for functionality. "1" or "NC": Double termination " 0 ": Open drain output

Pin Description

Pin \#	Pin Name	$\mathrm{I} / \mathrm{O}^{(1)}$	Description
41	OEB	I	Output Enable control. Active low. Internal 100 Kohm pull-down. See truth table for functionality. "1": TMDS Port1 and Port2 Output disable " 0 ": TMDS Port1 and Port2 Output enable
22	OC_S0	I	TMDS output pre-emphasis selection. This pin has internal 100 Kohm pull-up. See OC_S0 truth table for functionality. " 0 ": Pre-emphasis 0 dB "1": Pre-emphasis 2.5 dB
23	EQ_S0	I	TMDS Data Input Equalization selection. This pin has an internal 100 KOhm pulllow. See EQ_S0 truth table for functionality. $\text { "0" or "NC": } 9 \mathrm{~dB}$ $\text { " } 1 \text { ": } 15 \text { dB }$ TMDS Clock inputs is always set as 3 dB EQ
40	SEL1	I	PORT1 or PORT2 selection. This pin has an internal 100 KOhm pull-up "1": Port 1 select "0": Port 2 select Please see Port Selection truth table.
25	SPDIF_IN	I	Single mode ARC signal input
24	ARC_OUT	O	Single mode ARC signal output
1,12, 31	VDD	P	3.3 V power supply
30	VDD_REG	P	LDO output for internal core power supplier. External capacitor 2.2 to $4.7 \mu \mathrm{~F}$ should be added to GND.
$\begin{aligned} & 4,9,17, \\ & 34 \end{aligned}$	GND	G	Ground

Note:
(1) $\mathrm{I}=$ Input, $\mathrm{O}=$ Output, $\mathrm{IO}=$ Bidirectional, $\mathrm{P}=$ Power, $\mathrm{G}=$ Ground.

Functional Description

Squelch

Automatic output squelch function disables TMDS output when no Input signal presents. Output Disable (Squelch) Mode uses TMDS Clock channel signal detection. When low voltage levels on the TMDS input clock signals are detected, Squelch state enables and TMDS output port signals shall disable; when the TMDS clock input signal levels are above a pre-determined threshold voltage, output ports shall return to the normal voltage swing levels.

Hot Plug Detect Sink HPD_SINK Shut Down

When HPD_SINK pin is floating or tie to GND, TMDS outputs shall shut down to sleep mode; HPD_SINK does not control DDC channel.

Pre-emphasis OC_SO Truth Table

Configuration Pins		Functional Description		
ROUT_S0	OC_S0	Single-end Vswing	Pre-emphasis ${ }^{\mathbf{(1)}}$	Output Types
0	0	500 mV	0 dB	
0	1	500 mV	2.5 dB	
1	0	500 mV	0 dB	Double termination
1	1	500 mV	2.5 dB	

Note:
(1) TMDS Clock Pre-emphasis is fixed 0 dB .

Port Selection SEL1 Truth Table

Configuration Pins		Functional Description		
OEB	SEL1	TMDS Port	DDC port	HPD port
0	1	CLKN/P1, D0N/P1, D1N/P1,D2N/P1	SCL1/SDA1	HPD1
0	0	CLKN/P2, D0N/P2, D1N/P2,D2N/P2	SCL2/SDA2	HPD2
1	X	OFF	Follow SEL1	Follow SEL1

Audio Return Channel(ARC)

There are two ARC input modes, common mode and single mode input. This device can supports "single mode input" only.

ARC single mode input and output

ARC single mode signal output waveform

Typical DDC, HPD application block diagram

Note:
(1) When source device provides 5 V power supply, two external BJTs is recommended with $1 \mathrm{k} \Omega$ pull-up with PWR5V(5V), another pull-up resistor with VDD(3.3V). HPD1/HPD2 outputs are open-drain type with external pull-up resistor requirement.
(2) Also source device DDCs are recommends to use external FETs as a voltage level-shifter for the highly reliable system design.
3.4Gbps HDMI1.4b Active 2:1 Switch with ARC and Fast Switching

Absolute Maximum Ratings

Item	Rating
Supply Voltage to Ground Potential	4.5 V
All Inputs and Outputs	-0.5 V to 4.5 V
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Soldering Temperature	$260^{\circ} \mathrm{C}$

Note: Stress beyond those lists under "Absolute Maximum Ratings" may cause permanent damage to the device

Recommended Operation Conditions

Parameter	Min.	Typ.	Max.	Unit
Ambient Operating Temperature	-40	25	85	${ }^{\circ} \mathrm{C}$
Power Supply Voltage (measured in respect to GND)	3.0	3.3	3.6	V

Electrical Specification

Parameter	Parameter	Conditions	Min.	Typ.	Max.	Unit
VDD	Operating Voltage		3.0	3.3	3.6	V
IDD	VDD Supply Current	Output Enable (open drain 500 mV single-ended, 0 dB preemphasis)		120	150	mA
		Output Enable (double termination, 500 mV single-ended, 0 dB pre-emphasis)		190	230	mA
IDD_SQLH	Supply Current in squelch mode	$\begin{aligned} & \mathrm{VDD}=3.6 \mathrm{~V} \\ & \text { HPD_SINK=3.6V } \end{aligned}$		11	13	mA
ISTB	Standby mode	$\begin{aligned} & \mathrm{VDD}=3.6 \mathrm{~V}, \mathrm{HPD} _\mathrm{x}=0 \mathrm{~V}, \\ & \mathrm{ARC} _\mathrm{OUT}=0, \mathrm{OEB}=\mathrm{High} \end{aligned}$		4	5	mA
VOL_HPD	Open Drain Output Low Voltage	$\mathrm{IOL}=4 \mathrm{~mA}$	0		0.4	V
IOFF_HPD	Off leakage current	$\mathrm{VDD}=0 \mathrm{~V}, \mathrm{VIN}=3.6 \mathrm{~V}$			20	$\mu \mathrm{A}$
IOZ_HPD	Output leakage current	$\mathrm{VDD}=3.6 \mathrm{~V}, \mathrm{VIN}=3.6 \mathrm{~V}$			20	

HPD_SINK

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
IIH	High level digital input current	VIH = VDD	-25		40	$\mu \mathrm{~A}$
IIL	Low level digital input current	VIL = GND	-10		10	$\mu \mathrm{~A}$
VIH	High level digital input voltage	VDD $=3.3 \mathrm{~V}$	2.0			V
VIL	Low level digital input voltage		0		0.8	V

Control Pin (OEB)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
IIH	High level digital input current	VIH =VDD	-30		45	$\mu \mathrm{~A}$
IIL	Low level digital input current	VIL = GND	-10		10	$\mu \mathrm{~A}$
VIH	High level digital input voltage		2.0			V
VIL	Low level digital input voltage		0		0.8	V

DDC Channel Block

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
ILK	Input leakage current	DDC switch is OFF	-10		40	$\mu \mathrm{~A}$
CIO	Input/Output capacitance	VIpeak-peak $=1 \mathrm{~V}, 100 \mathrm{KHz}$		10		pF
RON	On resistance	$\mathrm{IO}=3 \mathrm{~mA}, \mathrm{VO}=0.4 \mathrm{~V}$		25	50	Ω
VPASS	Switch Output voltage	VI $=3.3 \mathrm{~V}, \mathrm{II}=100 \mathrm{uA}$ VDD $=3.3 \mathrm{~V}$	1.5	2.0	2.5	V

SPDIF \& ARC Pins

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
IIH_SPDIF	High level input current	$\mathrm{VDD}=3.6 \mathrm{~V}, \mathrm{VIH}=3.6 \mathrm{~V}$		500		$\mu \mathrm{A}$
IIL_SPDIF	Low level input current	$\mathrm{VDD}=3.6 \mathrm{~V}, \mathrm{VIL}=\mathrm{GND}$		-350		$\mu \mathrm{A}$
VEL	Single mode input/output Vel DC voltage level		0		5.0	V
VEL_SWING_SPDIF	Single mode input swing		0.2		0.6	V
$\begin{aligned} & \text { VEL_SWING_ARC_ } \\ & \text { OUT } \end{aligned}$	Single mode ARC output swing		0.4	0.5	0.6	V
RO	Output resistance of ARC output stage			55		Ω
tR	ARC output rise time (10\% to 90%)	$\begin{aligned} & <0.4 \mathrm{UI} \\ & \left(\mathrm{f}_{\text {clock }}=6.144 \mathrm{MHz}\right) \end{aligned}$			25	ns
tF	ARC output fall time (10\% to 90%)	$\begin{aligned} & <0.4 \mathrm{UI} \\ & \left(\mathrm{f}_{\text {clock }}=6.144 \mathrm{MHz}\right) \end{aligned}$			25	ns
tJPP	ARC signal peak to peak jitter	$\begin{aligned} & <0.4 \mathrm{UI} \\ & \left(\mathrm{f}_{\text {clock }}=6.144 \mathrm{MHz}\right) \end{aligned}$			3	ns

TMDS Differential Pins

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
VOH	Single-ended high level output voltage	$\begin{aligned} & \mathrm{VDD}=3.3 \mathrm{~V} \\ & \text { ROUT }=50 \Omega \end{aligned}$	VDD-10		VDD+10	mV
VOL	Single-ended low level output voltage		$\begin{aligned} & \text { VDD- } \\ & 600 \end{aligned}$		$\begin{aligned} & \text { VDD- } \\ & 400 \end{aligned}$	mV
VSWING	Single-ended output swing voltage		400		600	mV
VOD(O)	Overshoot of output differential voltage ${ }^{(1)}$				$180^{* 1}$	mV
VOD(U)	Undershoot of output differential voltage ${ }^{(2)}$				$200^{* 2}$	mV
VOC(SS)	Change in steady-state common-mode output voltage between logic				5	mV
IOS	Short Circuit output current		-12		12	mA
	Short Circuit output current at double termination mode		-24		24	mA
$\mathrm{VI}_{\text {(open) }}$	Single-ended input voltage under high impedance input or open	$\mathrm{II}=10 \mathrm{uA}$	VDD-10		VDD+10	mV
RT	Input termination resistance	VIN=2.9V	45	50	55	Ω
IOZ	Leakage current with Hi-Z I/O	$\mathrm{VDD}=3.6 \mathrm{~V}$			10	$\mu \mathrm{A}$

Note:
(1) Overshoot of output differential voltage $\operatorname{VOD}(\mathrm{O})=(\mathrm{VSWING}(\mathrm{MAX}) * 2) * 15 \%$
(2) Undershoot of output differential voltage $\operatorname{VOD}(\mathrm{O})=(\operatorname{VSWING}(\mathrm{MIN}) * 2) * 25 \%$

TMDS Differential Pins

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
tPD	Propagation delay	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, Rout $=50 \mathrm{Ohm}$			2000	ps
tR	Differential output signal rise time $(20 \%-80 \%)$				190	
tF	Differential output signal fall time $(20 \%-80 \%)$				190	
$\mathrm{tSK}_{(\mathrm{p})}$	Pulse skew			10	50	
tSK ${ }_{\text {(D) }}$	Intra-pair differential skew			23	50	
$\mathrm{tSK}_{(\mathrm{O})}$	Inter-pair differential skew				100	
$\mathrm{tJIT}_{(\mathrm{pp})}$	Peak-to-peak output jitter CLK residual jitter	CLK Input $=300 \mathrm{MHz}$ clock		15	30	
$\mathrm{tJIT}_{(\mathrm{pp})}$	Peak-to-peak output jitter DATA Residual Jitter			18	50	
tSX	Select to switch output				10	
tEN	Enable time				1	us
tDIS	Disable time				10	ns

DDC I/O Pins (SCL, SCL_SINK, SDA, SDA_SINK)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\operatorname{tPD}_{(\mathrm{DDC})}$	Propagation Delay	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$		0.4	2.5	ns

Control and Status Pins (HPD_SINK, HPD)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{tPD}_{(\text {(HPD) }}$	Propagation Delay	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ Pull-up resistor=1 Kohm Open drain output		10		ns
tSX ${ }_{\text {(HPD) }}$	Select to switch output			10		ns

Test Setup of DC-coupled TMDS Input Measurement

Rise/Fall Time and Single-ended Swing Voltage

Intra-pair Skew Definition

Power Supply Decoupling Circuit

It is recommended to put $0.1 \mu \mathrm{~F}$ decoupling capacitors on each VDD pins of our part, there are four $0.1 \mu \mathrm{~F}$ decoupling capacitors are put in Figure 1 with an assumption of only four VDD pins on our part, if there is more or less VDD pins on our Pericom parts, the number of $0.1 \mu \mathrm{~F}$ decoupling capacitors should be adjusted according to the actual number of VDD pins. On top of $0.1 \mu \mathrm{~F}$ decoupling capacitors on each VDD pins, it is recommended to put a $10 \mu \mathrm{~F}$ decoupling capacitor near our part's VDD, it is for stabilizing the power supply for our part. Ferrite bead is also recommended for isolating the power supply for our part and other power supplies in other parts of the circuit. But, it is optional and depends on the power supply conditions of other circuits.

Recommended Power Supply Decoupling Capacitor Diagram

Requirements on the De-coupling Capacitors

There is no special requirement on the material of the capacitors. Ceramic capacitors are generally being used with typically materials of X5R or X7R.

3.4Gbps HDMI1.4b Active 2:1 Switch with ARC and Fast Switching

Layout and Decoupling Capacitor Placement Consideration

- Each $0.1 \mu \mathrm{~F}$ decoupling capacitor should be placed as close as possible to each VDD pin.
- VDD and GND planes should be used to provide a low impedance path for power and ground.
- Via holes should be placed to connect to VDD and GND planes directly.
- Trace should be as wide as possible
- Trace should be as short as possible.
- The placement of decoupling capacitor and the way of routing trace should consider the power flowing criteria.
- $10 \mu \mathrm{~F}$ Capacitor should also be placed closed to our part and should be placed in the middle location of $0.1 \mu \mathrm{~F}$ capacitors.
- Avoid the large current circuit placed close to our part; especially when it is shared the same VDD and GND planes. Since large current flowing on our VDD or GND planes will generate a potential variation on the VDD or GND of our part.

Decoupling Capacitor Placement Diagram

Packaging Mechanical: 48-Contact LQFP (FB)

NOTE :

1. ALL DIMENSIONS IN MM
2. REFER JEDEC MS-026/BBC
3. PACKAGE OUTLINE DIMENSIONS DO NOT INCLUDE MOLD FLASH AND METAL BURR

(4) PER/COM ${ }^{\text {Enabling Serial Connectivit }}$	DATE: 09/17/09
DESCRIPTION: 48-Contact, Low Profile Quad Flat Package (LQFP)	
PACKAGE CODE: FB (FB48)	
DOCUMENT CONTROL\#: PD-2027	

Please check for the latest package information on the Pericom web site at www.pericom.com/support/packaging/

Ordering Information

Ordering Number	Package Code	Package Description
PI3HDX621FBE	FB	Pb-free \& Green 48-Contact LQFP

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- $\mathrm{E}=\mathrm{Pb}$-free and Green
- X suffix $=$ Tape $/$ Reel

Related Products

Part Number	Product Description
PI3WVR12612	Wide Voltage Range DisplayPort ${ }^{\text {mi }}$ \& HDMI Video Switch
PI3HDX1204-B	HDMI2.0 Redriver and Displayport Level Shifter for 6Gbps Application
PI3EQXDP1201	Displayport 1.2 redriver with built-in auto test mode
PI3HDX414	$1: 4$ Active 3.4Gbps HDMI1.4b Splitter/DeMux with Signal Conditioning
PI3HDX412BD	1:2 Active 3.4Gbps HDMI1.4b Splitter/DeMux with Signal Conditioning
PI3HDX511F	Low power HDMI 1.4b 3.4Gbps redriver \& Displayport dual mode level shifter
PI3HDMI336	3:1 Active 2.5Gbps HDMI Switch with I2C control and ARC Transmitter

Reference Information

Document	Description
HDMI1.4b	High-Definition Multimedia Interface Specification Version 1.4b, HDMI Licensing, LLC

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH PERICOM PRODUCT. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN PERICOM'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Pericom may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Pericom reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specification. Current characterized errata are available on request.

Contact your local Pericom Sales office or your distributor to obtain the latest specifications and before placing your product order.

Copyright 2012 Pericom Corporation. All rights reserved. Pericom and the Pericom logo are trademarks of Pericom Corporation in the U.S. and other countries.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Video Switch ICs category:
Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :
PI3HDX621FBE PI3HDMI2410FFE PI3VDP12412NEE HD3SS212ZQER PI3HDMI412ADZBEX AD8191ASTZ LT6555IGN\#PBF AD8190ACPZ HD3SS215IZQER MAX4567CSE+ MAX4566ESE+ MAX4566CSE+ MAX4567ESE+ PI3HDX412BDZBEX NJM2244M LT1203CN8\#PBF MAX4885ETJ+T MAX4589CAP+ MAX4565EAP+ MAX4565CAP+ MAX4545EAP+ MAX4545CAP+ $\underline{\text { MAX4529CUT+T MAX4545CWP+ MAX4547CEE }+ \text { MAX4547EEE }+ \text { MAX4562CEE }+ \text { MAX4562EEE }+ \text { MAX4563CEE }+ \text { MAX4563EEE }+1 .}$ $\underline{\text { MAX4566CEE }+~ M A X 4567 E E E+~ M A X 4573 C A I+~ M A X 4584 E U B+~ M A X 4586 E U B+~ M A X 4587 E U B+~ M A X 4588 C A I+~ E L 4340 I U Z ~}$ MAX4885EETG+CK2 MAX4565CPP+ MAX4545EPP+ NJM2246M NJM2279D NJM2249M FSAV330MTCX FSAV430MTCX FSAV430QSCX FSAV433MTCX FSAV450BQX FSHDMI08MTDX

