Lead-free Green

3.3V, PCI Express ${ }^{\circledR}$ 1-lane, 2:1 Mux/DeMux Switch

Features

$\rightarrow 2$ Differential Channel, 2:1 Mux/DeMux
\rightarrow PCI Express ${ }^{\oplus}$ 2.0 Performance, 5.0 Gbps
\rightarrow Pinout optimized for placement between two PCIe slots
\rightarrow Bi-directional operation
\rightarrow Low Bit-to-Bit Skew, 5ps max
\rightarrow Low Crosstalk: -26dB@5 GHz
\rightarrow Low Off Isolation: - $20 \mathrm{~dB} @ 5 \mathrm{GHz}$
\rightarrow VDD Operating Range: +3.3 V
\rightarrow ESD Tolerance: 2 kV HBM
\rightarrow Totally Lead-Free \& Fully RoHS Compliant (Notes 1 \& 2)
\rightarrow Halogen and Antimony Free. "Green" Device (Note 3)
\rightarrow For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative. https://www.diodes.com/quality/product-definitions/
\rightarrow Packaging (Pb -free \& Green):

- 28 contact TQFN (ZH)

Block Diagram

Description

Diodes' PI3PCIE2215 is a 4 to 2 differential channel multiplexer/ demultiplexer switch. The PI3PCIE family of switch solutions is fully compliant with PCIe signals at 5.0 Gbps . Due to its low bit-to-bit skew, high channel-to-channel noise isolation and high bandwidth, this product is ideal for PCI Express switching.

Application

Switch a PCI Express ${ }^{\star}$ lane output between two PCI Express lane inputs

Truth Table

Function	SEL
xIy to xOay	L
xIy to xOby	H

[^0]A product Line of Diodes Incorporated

PI3PCIE2215

Pin Configuration

Pin Descriptions

Pin Number	Pin Name	Type	Description
1 2	$\begin{aligned} & \mathrm{AI}+ \\ & \text { AI- } \end{aligned}$	Differential input	Differential input pair from PCIE signal source. Signal is passed through to the $\mathrm{AOa}+, \mathrm{AOa}-$ pin respectively when $\mathrm{SEL}=0$. Signal is passed through to the $\mathrm{AOb}+\mathrm{AOb}-$ pin respectively when $\mathrm{SEL}=1$.
$\begin{aligned} & 23 \\ & 22 \end{aligned}$	$\begin{aligned} & \mathrm{AOa} \\ & \mathrm{AOa} \end{aligned}$	Differential pass-through input	Differential analog pass-through output. Signal from AI + and AI- is passed through AOa+ and AOa- respectively when SEL=0.
3	$\begin{aligned} & \text { AOb+ } \\ & \text { AOb- } \end{aligned}$	Differential pass-through input	Differential analog pass-through output. Signal from AI+ and AI- is passed through $\mathrm{AOa}+$ and $\mathrm{AO}-$ respectively when $\mathrm{SEL}=1$.
5	$\begin{aligned} & \text { BI+ } \\ & \text { BI- } \end{aligned}$	Differential input	Differential input pair from PCIE signal source. Signal is passed through to the $\mathrm{BOa}+, \mathrm{BOa}$ pin respectively when $\mathrm{SEL}=0$. Signal is passed through to the $\mathrm{BOb}+, \mathrm{BOb}-$ pin respectively when $\mathrm{SEL}=1$.
$\begin{aligned} & 19 \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{BOa}+ \\ & \text { BOa- } \end{aligned}$	Differential pass-through input	Differential analog pass-through output. Signal from BI+ and BI- is passed through $\mathrm{BOa}+$ and $\mathrm{BO}-$ respectively when $\mathrm{SEL}=0$.
7 8	$\begin{aligned} & \text { BOb+ } \\ & \text { BOb- } \end{aligned}$	Differential pass-through input	Differential analog pass-through output. Signal from BI+ and BI- is passed through $\mathrm{BOb}+$ and $\mathrm{BOb}-$ respectively when $\mathrm{SEL}=1$.
$11,13,15,21,24$, 26,28 , Center pad	GND	Ground input	Ground
10	NC	-	No Connect - Reserved, do not connect
16	SEL	3.6V tolerant low-voltage single-ended input	SEL controls the mux through a flow-through latch.
$\begin{aligned} & 9,12,14,17,20, \\ & 25,27 \end{aligned}$	V_{DD}	Power supply	Power, $3.3 \mathrm{~V} \pm 10 \%$

A product Line of
Diodes Incorporated
(1) PERICOM

PI3PCIE2215

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature .. $65^{\circ} \mathrm{C}$ to $+150{ }^{\circ} \mathrm{C}$	
Supply Voltage to Ground Potential	-0.5 V to +4.6 V
DC Input Voltage	. -0.5 V to 1.5 V
DC Output Current	120 mA
Power Dissipation	...0.5W

Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics

Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Typ.	Max	Units
$V_{\text {DD }}$	$3.3 V$ Power Supply	3.0	3.3	3.6	V	
$\mathrm{I}_{\text {DD }}$	Total current from $\mathrm{V}_{\mathrm{DD}} 3.3 \mathrm{~V}$ supply		0		2.5	mA
$\mathrm{~T}_{\text {CASE }}$	Case temperature range for operation within spec.		-40		85	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%$)

Parameter	Description	Test Conditions	Min	Typ. ${ }^{(1)}$	Max	Units
$\mathrm{V}_{\text {IH-SEL }}$	Input high level, SEL input		2.0		3.6	V
$\mathrm{V}_{\text {IL-SEL }}$	Input Low Level, SEL input		0		0.8	V
IIN_SEL	Input Leakage Current, SEL input	Measured with input at $\mathrm{V}_{\text {IH-SEL }}$ max and $V_{\text {IL-SEL }}$ min	-10		10	$\mu \mathrm{A}$
R_{ON}	On Resistance	$\mathrm{V}_{\mathrm{DD}}=$ Min., $\mathrm{V}_{\mathrm{IN}}=1.3 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=40 \mathrm{~mA}$			12	Ω
CON	On Channel Capacitance	$\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}$		2.0		pF

Note:

1. Typical values are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.

Dynamic Electrical Characteristics for $\mathbf{x I} \pm, \mathbf{x O y} \pm$

Parameter	Description	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Units
DDIL	Differential Insertion Loss	$\begin{aligned} & \mathrm{f}=1.2 \mathrm{GHz} \\ & \mathrm{f}=2.5 \mathrm{GHz} \\ & \mathrm{f}=5.0 \mathrm{GHz} \\ & \mathrm{f}=7.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & -1.5 \\ & -2.0 \\ & -5.0 \\ & -9.0 \end{aligned}$			dB
DDIL $_{\text {OFF }}$	Differential Off Isolation	$\mathrm{f}=0$ to 3.0 GHz			-20.0	
DDRL	Differential Return Loss	$\begin{aligned} & \mathrm{f}=0 \text { to } 2.8 \mathrm{GHz} \\ & \mathrm{f}=2.8 \text { to } 5.0 \mathrm{GHz} \\ & \mathrm{f}=5.0 \text { to } 7.5 \mathrm{GHz} \end{aligned}$		$\begin{gathered} -14.0 \\ -8.0 \\ -4.0 \end{gathered}$		
DDNEXT	Near End Crosstalk	$\begin{aligned} & \mathrm{f}=0 \text { to } 2.5 \mathrm{GHz} \\ & \mathrm{f}=2.5 \text { to } 5.0 \mathrm{GHz} \\ & \mathrm{f}=5.0 \text { to } 7.5 \mathrm{GHz} \end{aligned}$			$\begin{aligned} & -32.0 \\ & -26.0 \\ & -20.0 \end{aligned}$	

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%$)

Parameter	Description	Test Conditions	Min.	Typ.	Max.	Units
tPZH, tPZL	Line Enable Time - SEL to xI+/-, $\mathrm{xOy}+/-$	See "Test Circuit for Electrical Characteristics"	0.5		12.0	ns
tPHZ, tPLZ	Line Disable Time - SEL to $\mathrm{xI}+/-$, $\mathrm{xOy}+/-$	See "Test Circuit for Electrical Characteristics"	0.5		12.0	ns
tb-b	Bit-to-bit skew within the same differential pair	See "Test Circuit for Electrical Characteristics"			7	ps
$\mathrm{t}_{\text {ch-ch }}$	Channel-to-channel skew	See "Test Circuit for Electrical Characteristics"			35	ps

A product Line of Diodes Incorporated

5.0 Gbps Receive Eye Mask (-3.5dB)

Differential Insertion Loss

Differential Return Loss

Differential Off Isolation

A product Line of Diodes Incorporated

Differential Crosstalk

Differential Insertion Loss/Return Loss Test Circuit

Differential Near End Crosstalk Test Circuit

A product Line of Diodes Incorporated

PI3PCIE2215

Test Circuit for Electrical Characteristics ${ }^{(1-5)}$

Notes:

1. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance: includes jig and probe capacitance.
2. $\mathrm{R}_{\mathrm{T}}=$ Termination resistance: should be equal to $\mathrm{Z}_{\text {OUT }}$ of the Pulse Generator
3. Output 1 is for an output with internal conditions such that the output is low except when disabled by the output control. output 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
4. All input impulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{R}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{F}} \leq 2.5 \mathrm{~ns}$.
5. The outputs are measured one at a time with one transition per measurement.

Switch Positions

Test	Switch
tPLZ, $^{\prime}$, t $_{\text {PL }}$	$2 \times$ V $_{\text {DD }}$
t PHZ, $^{\text {PZH }}$	GND
Prop Delay	Open

Switching Waveforms

Voltage Waveforms Enable and Disable Times

Applications Information

Differential Inputs/Output Characteristics for Gen2 speeds

Symbol	Parameter	Min	Nom	Max	Units	Comments	
Tbit	Unit Interval	199.94	200.00	200.06	ps	Defined by Gen2 spec.	
$\mathrm{V}_{\text {RX-Diffp-p }}$	Differential Input Peak to Peak Voltage	TBD		1.200	V	VRX-DIFFp-p $=2^{*} \mid$ VRX-D +-VRX-D-\|. Applies to IN_S and RX_IN signals.	
$\mathrm{T}_{\text {RX-EYE }}$	Minimum Eye Width at IN_D input pair.	TBD			Tbit		
$\mathrm{V}_{\text {CM-AC-pp }}$	AC Peak Common-Mode Input Voltage			100	mV	$\begin{aligned} & \text { VCM-AC-pp }=\mid \text { VRX-D }++ \text { VRX- } \\ & \text { D-\|/2 - VRX-CM-DC. } \end{aligned}$ VRX-CM-DC = DC(avg) of \|VRX- D++VRX-D-	/2 VCM-AC-pp includes all frequencies above 30 kHz .
ZRX-DIFF-DC	DC Differential Input Impedance	80	100	120	W	Rx DC Differential Mode impedance	
ZRX-DC	DC Input Impedance	40	50	60	W	Required IN_D+ as well as IN_DDC impedance ($50 \mathrm{~W}+/-20 \%$ tolerance). Includes mux resistance.	
$\mathrm{V}_{\text {RX-Bias }}$	Rx input termination voltage	0		2.0	V	Intended to limit power-up stress on PCIE output buffers.	

Part Marking

YY: Year
WW: Workweek
1st X : Assembly Code
2nd X: Fab Code
Bar above fab code means Cu wire

Packaging Mechanical: 28-TQFN (ZH)

NOTE :

1. ALL DIMENSIONS ARE $\operatorname{IN} \mathrm{mm}$. ANGLES IN DEGREES.
2. COPLANARITY APPLIES TO THE EXPOSED THERMAL PAD AS WELL AS THE TERMINALS.
3. REFER JEDEC MO-220
4. RECOMMENDED LAND PATTERN IS FOR REFERENCE ONLY.
5. THERMAL PAD SOLDERING AREA (MESH STENCIL DESIGN IS RECOMMENDED).

(4)	DATE: 07/11/12
DESCRIPTION: 28-Contact, Very Thin Quad Flat No-Lead, TQFN	
PACKAGE CODE: ZH28	REVISION: C
DOCUMENT CONTROL \#: PD-2034	

12-0419

For latest package info.
please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Code	Package Code	Package Description
PI3PCIE2215ZHEX	ZH	28-Contact, Very Thin Quad Flat No-Lead (TQFN)

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and $<1000 \mathrm{ppm}$ antimony compounds.
4. $\mathrm{E}=\mathrm{Pb}$-free and Green
5. X suffix $=$ Tape $/$ Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.
Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.
Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the
failure of the life support device or to affect its safety or effectiveness.
Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 CD4053BPWRG4 ADG658TRUZ-EP FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZ-RL7 ADW54003-0 AD7506JNZ AD7506KNZ AD7506SQ AD8170AR AD8183ARUZ AD8184ANZ AD8185ARUZ AD8187ARUZ AD8188ARUZ AD8189ARUZ ADG1208YRUZREEL7 ADG1409YCPZ-REEL7 ADG5209FBRUZ ADG1408YRUZ-REEL7 ADG659YRUZ-REEL7

[^0]: Notes:

 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
 3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and $<1000 \mathrm{ppm}$ antimony compounds.
