Description

PI3PCIE3415

3.3V, PCI Express® 3.0 2-Lane, 2:1 Mux/DeMux Switch

Diodes Incorporated PI3PCIE3415 is an 8 to 4 differential channel multiplexer/demultiplexer switch. This solution can switch

2 full PCI Express[®] 3.0, lanes to one of two locations. Using a

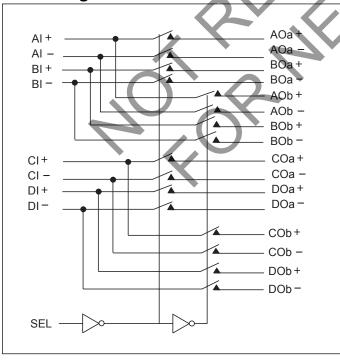
unique design technique, Diodes has been able to minimize

the impedance of the switch such that the attenuation observed through the switch is negligible. The unique design technique

also offers a layout targeted for PCI Express signals, which mini-

mizes the channel to channel skew as well as channel to channel

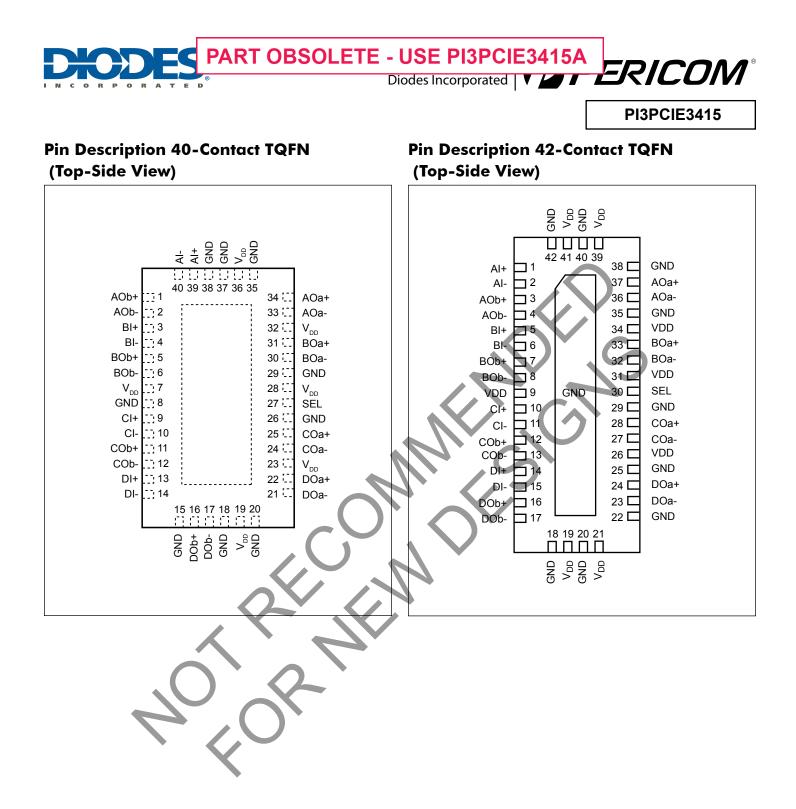
Routing of PCI Express 3.0, DP1.2, USB3.0, SAS2.0, SATA3.0,


crosstalk as required by the PCI Express specification.

XAUI, RXAUI signals with low signal attenuation.

Features

- → 4 Differential Channel, 2:1 Mux/DeMux
- → PCI Express[®] 3.0 Performance, 8.0Gbps
- → Pinout optimized for placement between two PCIe slots
- → Bi-directional operation
- → Low Bit-to-Bit Skew, 10ps max
- → Low Crosstalk: -48dB @4GHz
- → High Off Isolation: -22dB @4GHz
- → Low Insertion Loss: -1.6dB @4GHz
- → Return Loss: -15dB @4GHz
- → V_{DD} Operating Range: +3.3V
- → Industrial Temperature Range: -40°C to 85°C
- → ESD Tolerance: 2kV HBM
- → Low channel-to-channel skew, 20ps max
- → Packaging (Pb-free & Green):
 - ^a 42-contact, TQFN (ZH42), 3.5 x 9mm
 - 40-contact, TQFN (ZL40), 3 x 6mm


Block Diagram

Truth Table

Application

Function	SEL
xIy to xOay	L
xIy to xOby	Н

PI3PCIE3415

Signal Descriptions

Pin Number				
42-TQFN	40-TQFN	Pin Name	Туре	Description
1, 2	39, 40	AI+, AI-	Differential I/O	Differential I/O pair from PCIE signal source. Signal is routed to the AOa+, AOa- pin respectively when SEL=0. Signal is routed to the AOb+, AOb- pin respectively when SEL = 1.
37, 36	34, 33	AOa+, AOa-	Differential I/O	Differential analog pass-through I/O. Signal from AI+ and AI- is routed to AOa+ and AOa- respectively when SEL=0.
3, 4	1, 2	AOb+, AOb-	Differential I/O	Differential analog pass-through I/O. Signal from AI+ and AI- is routed to AOb+ and AOb- respectively when SEL=1.
5, 6	3, 4	BI+, BI-	Differential I/O	Differential I/O pair from PCIE signal source. Signal is routed to the BOa+, BOa- pin respectively when SEL=0. Signal is routed to the BOb+, BOb- pin respectively when SEL = 1.
33, 32	31, 30	BOa+, BOa-	Differential I/O	Differential analog pass-through I/O. Signal from BI+ and BI- is routed to BOa+ and BOa- respectively when SEL=0.
7, 8	5, 6	BOb+, BOb-	Differential I/O	Differential analog pass-through I/O. Signal from BI+ and BI- is routed to BOb+ and BOb- respectively when SEL=1.
10, 11	9, 10	CI+, CI-	Differential I/O	Differential I/O pair from PCIE signal source. Signal is routed to the COa+, COa- pin respectively When SEL=0. Signal is routed to the COb+, COb- pin respectively when SEL = 1.
28, 27	25, 24	COa+, COa-	Differential I/O	Differential analog pass-through I/O. Signal from CI+ and CI- is routed to COa+, COa- pin respectively when SEL = 0.
12, 13	11, 12	COb+, COb-	Differential I/O	Differential analog pass-through I/O. Signal from CI+ and CI- is routed to COb+, COb- pin respectively when SEL = 1.
14, 15	13, 14	DI+, DI-	Differential I/O	Differential I/O pair from PCIE signal source. Signal is routed to the DOa+, DOa- pin respectively When SEL=0. Signal is routed to the DOb+, DOb- pin respectively when SEL = 1.
24, 23	22, 21	DOa+, DOa-	Differential I/O	Differential analog pass-through I/O. Signal from DI+ and DI- is routed to DOa+, DOa- pin respectively when SEL = 0.
16, 17	16, 17	DOb+, DOb-	Differential I/O	Differential analog pass-through I/O. Signal from DI+ and DI- is routed to DOb+, DOb- pin respectively when SEL = 1.
18, 20, 22, 25, 29, 35, 38, 40, 42	15, 18, 20, 26, 29, 35, 37, 38, Center Pad	GND	Ground input	Ground
30	27	SEL	3.6V tolerant low-voltage single-ended input	SEL controls the mux through a flow-through latch.
9, 19, 21, 26, 31, 34, 39, 41	7, 19, 23, 28, 32, 36	VDD	Power supply	Power, 3.3V ±10%

PI3PCIE3415

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Supply Voltage to Ground Potential	-0.5V to +4.6V
Channel DC Input Voltage	–0.5V to 1.5V
DC Output Current	
Power Dissipation	0.5W
SEL DC Input Voltage	0.5V to 4.6V

Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics Recommended Operating Conditions

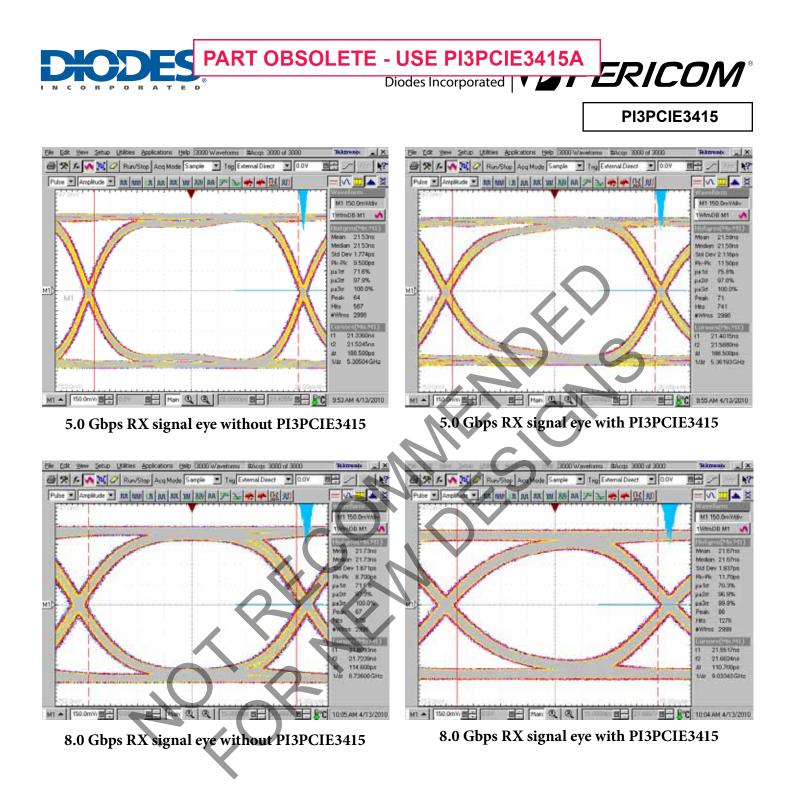
Symbol	Parameter	Conditions		Min.	Typ.	Max.	Units
V _{DD}	3.3V Power Supply			3.0	3.3	3.6	V
I _{DD}	Total current from V DD3.3V supply	SEL = 0V or V_{DD}		0	0.15	1	mA
T _A	Operating temperature range		1,9	-40		85	°C

DC Electrical Characteristics ($T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{DD} = 3.3V \pm 10\%$)

Parameter	Description	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Units
V _{IH-SEL}	Input high level, SEL input		2.0		3.6	V
V _{IL-SEL}	Input Low Level, SEL input		0		0.8	V
I _{IN_SEL}	Input Leakage Current, SEL input	Measured with input at VIH-SEL max and VIL-SEL min	-10		10	uA
I _{IH}	Input High Current, xI, xO	$V_{DD} = Max, V_{IN} = 1.5V$	-10		10	uA
I _{IL}	Input Low Current, xI, xO	$V_{DD} = Max, V_{IN} = 0V$	-10		10	uA
I _{IH}	Input High Current, SEL	$V_{DD} = Max, V_{IN} = V_{DD}$	-5		5	uA
I _{IL}	Input Low Current, SEL	$V_{DD} = Max, V_{IN} = 0V$	-5		5	uA
I _{OZH}	HighZ High Current xOa, xOb	$V_{DD} = Max, V_{IN} = 1.5V$	-10		10	uA
I _{OZL}	HighZ Low Current xOa, xOb	$V_{DD} = Max, V_{IN} = 0V$	-10		10	uA

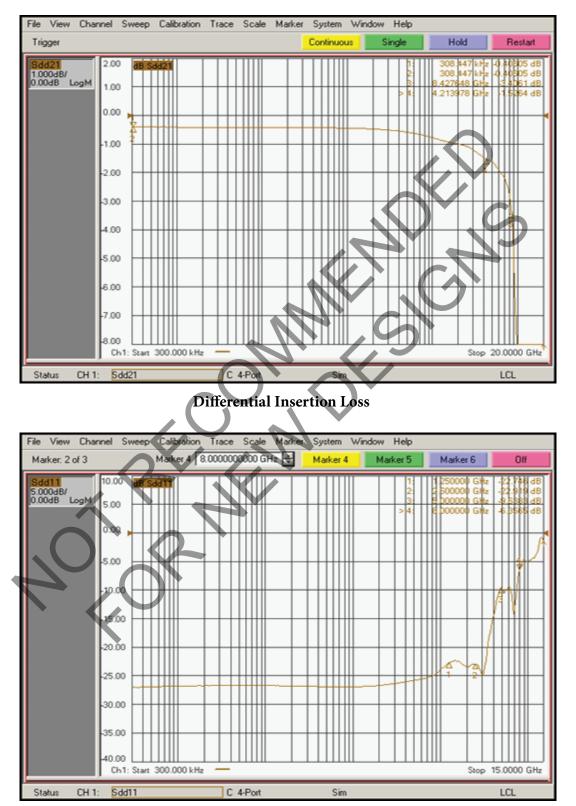
Note:

1. Typical values are at V_{DD} = 3.3V, T_A = 25°C ambient and maximum loading.

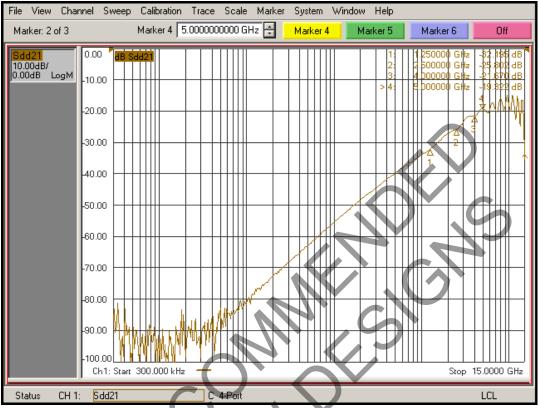

PI3PCIE3415

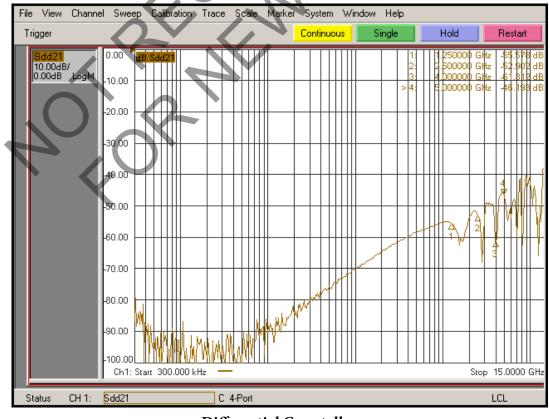
Dynamic Electrical Characteristics for xI+/-, xOy+/-

	Test Conditions	Min.	Typ.(1)	Max.	Units
	f=50MHz -1.25GHz		-0.8	-1.0	
	f=1.25GHz - 2.5GHz		-1.1	-1.3	
Differential filser tion Loss	f=2.5GHz - 4GHz		-1.6	-1.9	
	f=5.0GHz		-1.7	-2.0	
Differential Off Isolation	f= 0 to 4.0GHz	-25.8 -20.6 -17.6 -15.4	-32.2 -25.8 -22.0 -19.3		
Differential Return Loss	f=50MHz - 1.25GHz f=1.25GHz - 2.5GHz f=2.5GHz - 4GHz f=5.0GHz	-18.2 -16.8 -12 -8	-22.7 -21.0 -15.0 -10.0		dB
Near End Crosstalk	f=50MHz -1.25GHz f=1.25GHz - 2.5GHz f=2.5GHz - 4GHz f=5.0GHz	-44.8 -41.6 -38.4 -36	-56 -52 -48 -45		
Bandwidth -3dB			8.7		GHz
	Differential Return Loss Near End Crosstalk	Differential Insertion Lossf=1.25GHz - 2.5GHz f=2.5GHz - 4GHz f=5.0GHzDifferential Off Isolationf= 0 to 4.0GHzDifferential Return Lossf=50MHz - 1.25GHz f=1.25GHz - 2.5GHz f=2.5GHz - 4GHz f=5.0GHzNear End Crosstalkf=50MHz - 1.25GHz f=1.25GHz - 2.5GHz f=1.25GHz - 2.5GHz f=1.25GHz - 2.5GHz f=1.25GHz - 4GHz f=1.25GHz - 2.5GHz f=1.25GHz - 4GHz f=1.25GHz - 4GHz f=1.25GHz - 4GHz f=1.25GHz - 4GHz f=2.5GHz - 4GHz f=1.25GHz - 4GHz f=1.25GHz - 4GHz f=2.5GHz - 4GHz f=5.0GHz	$ \begin{array}{c} \mbox{Differential Insertion Loss} & f=1.25 \mbox{GHz} - 2.5 \mbox{GHz} \\ f=2.5 \mbox{GHz} - 4 \mbox{GHz} \\ f=5.0 \mbox{GHz} \\ \end{array} \\ \begin{array}{c} -25.8 \\ -20.6 \\ -17.6 \\ -17.6 \\ -15.4 \\ f=0 \ to \ 4.0 \mbox{GHz} \\ \end{array} \\ \begin{array}{c} f=0 \ to \ 4.0 \mbox{GHz} \\ f=0 \ to \ 4.0 \mbox{GHz} \\ \end{array} \\ \begin{array}{c} f=0 \ to \ 4.0 \mbox{GHz} \\ -17.6 \\ -15.4 \\ f=1.25 \mbox{GHz} - 2.5 \mbox{GHz} \\ f=1.25 \mbox{GHz} - 2.5 \mbox{GHz} \\ f=2.5 \mbox{GHz} \\ f=2.5 \mbox{GHz} \\ f=2.5 \mbox{GHz} \\ f=2.5 \mbox{GHz} \\ f=5.0 \mbox{GHz} \\ f=2.5 \m$	$ \begin{array}{ccccc} \text{Differential Insertion Loss} & \begin{array}{c} \text{f=1.25GHz} & -2.5\text{GHz} \\ \text{f=2.5GHz} & -4\text{GHz} \\ \text{f=2.5GHz} & -4\text{GHz} \\ \text{f=5.0GHz} & -1.7 \\ -25.8 & -32.2 \\ -20.6 & -25.8 \\ -17.6 & -22.0 \\ -25.8 \\ -17.6 & -22.0 \\ -15.4 & -19.3 \\ -$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$


Switching Characteristics

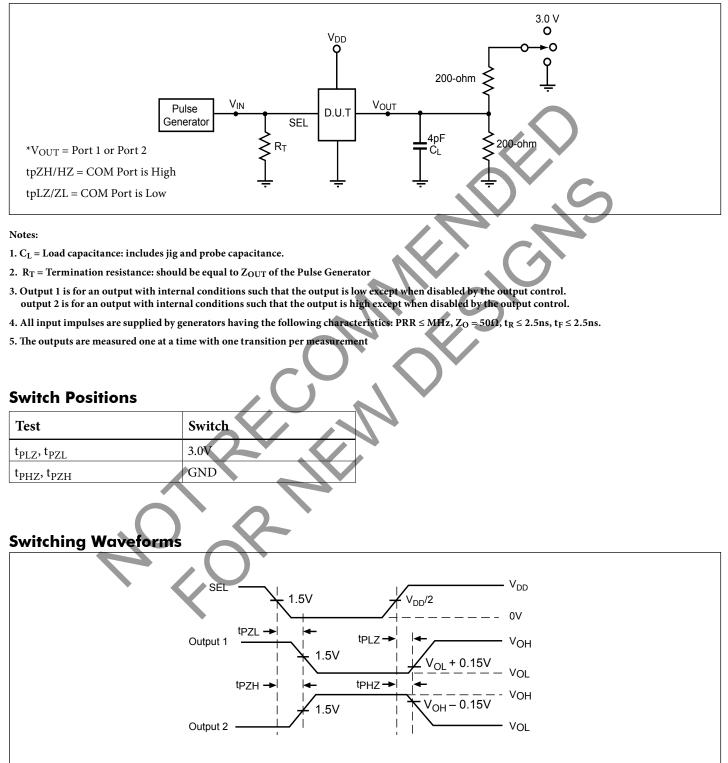
Parameter	Description	Test Conditions	Min.	Тур.	Max.	Units
t _{PZH} , t _{PZL} Line Enable Time - SEL to xI+/-, xOy-		See "Test Circuit for	0.5	15	25	
	Line Enable Time - SEL to XI+/-, XOy+/-	Electrical Characteristics"	0.5	15		ns
L L	Line Disable Time - SEL to xI+/-, xOy+/-	See "Test Circuit for	0.5	5	25	
t_{PHZ}, t_{PLZ}	Line Disable Time - SEL to XI+/-, XOy+/-	Electrical Characteristics"	0.5	3	25	ns
4	Bit-to-bit skew within the same differential	See "Test Circuit for		4	10	
t _{b-b}	pair	Electrical Characteristics"		4	10	ps
t _{ch-ch}	Channel-to-channel skew	See "Test Circuit for			20	
		Electrical Characteristics"				ps


PI3PCIE3415

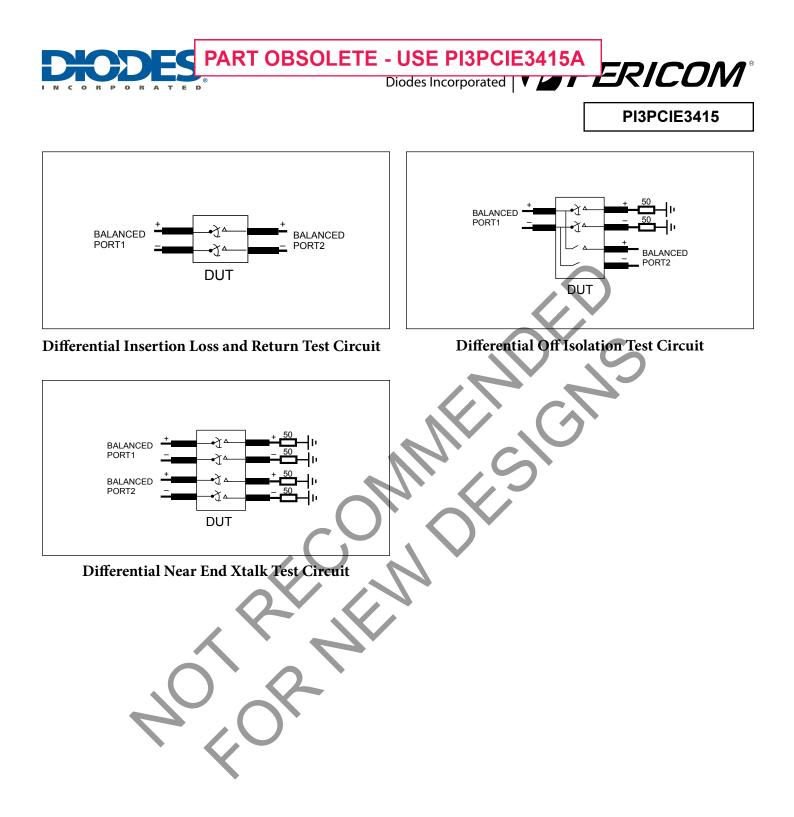

Differential Return Loss

PI3PCIE3415

Differential Off Isolation

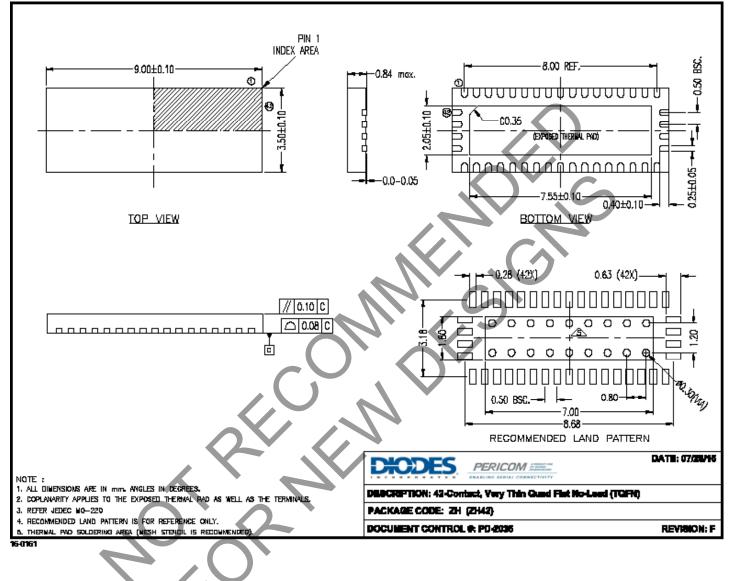


Differential Crosstalk

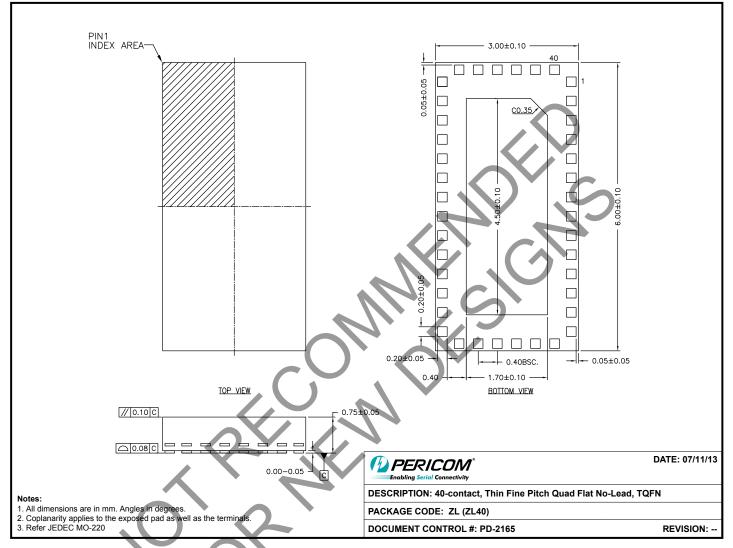


PI3PCIE3415

Test Circuit for Electrical Characteristics⁽¹⁻⁵⁾


Voltage Waveforms Enable and Disable Times

PI3PCIE3415


Packaging Information

PI3PCIE3415

Packaging Information

Note: For latest package info, please check: http://www.pericom.com/support/packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Code	Package Code	Package Description
PI3PCIE3415ZHE	ZH	42-contact, Very Thin Quad Flat No-Lead (TQFN)
PI3PCIE3415ZHEX	ZH	42-contact, Very Thin Quad Flat No-Lead (TQFN), Tape & Reel
PI3PCIE3415ZLE	ZL	40-contact, Thin Fine Pitch Quad Flat No-Lead (TQFN)
PI3PCIE3415ZLEX	ZL	40-contact, Thin Fine Pitch Quad Flat No-Lead (TQFN), Tape & Reel

Notes:

• Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

• "E" denotes Pb-free and Green

• Adding an "X" at the end of the ordering code denotes tape and reel packaging

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multiplexer Switch ICs category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :

NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF MC74HC4053ADWR2G MAX4051AEEE+ PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T CD4053BPWRG4 ADG658TRUZ-EP 74HC4053D.653 74HCT4052PW.118 74LVC2G53DP.125 74HC4052DB.112 74HC4052PW.112 74HC4053DB.112 74HC4067DB.112 74HC4351DB.112 74HCT4052D.112 74HCT4052DB.112 74HCT4067D.112 74HCT4351D.112 74LV4051PW.112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZ-RL7 ADW54003-0 AD7506JNZ