3.3V, PCI Express ${ }^{\oplus} 3.0$ 2-Lane, (4-Channel), Differential Mux/Demux with Bypass

Features

$\rightarrow 8$ Differential Channel SPST switch with Mux/DeMux option
$\rightarrow \mathrm{PCIe}^{\oplus} 3.0$ performance
\rightarrow Bi-directional operation
\rightarrow Low Bit-to-Bit Skew: 10ps (between \pm signals)
\rightarrow Low Crosstalk: -50dB @ 4.0GHz (8Gbps)
\rightarrow Low Off Isolation: - 21 dB @ 4 GHz
\rightarrow Low Insertion Loss: -1.8 dB @ 4.0 GHz (8Gbps)
\rightarrow Return Loss: -15 dB @ 4 GHz
$\rightarrow \mathrm{V}_{\mathrm{DD}}$ Operating Range: $3.3 \mathrm{~V} \pm 10 \%$
\rightarrow ESD Tolerance: 2 kV HBM
\rightarrow Packaging (Pb-free \& Green): 42-contact, TQFN (ZH42)

Truth Table

Function	SEL	OE\#
$\mathrm{Ax}=\mathrm{Bx}$ $\mathrm{Cx}=\mathrm{Dx}$	L	0
$\mathrm{Ax}=\mathrm{Dx}$ $\mathrm{B}=\mathrm{C}=\mathrm{Hi}-\mathrm{Z}$	H	0
$\mathrm{Ax}, \mathrm{Bx}, \mathrm{Cx}, \mathrm{Dx}=\mathrm{Hi}-\mathrm{Z}$ (disconnected)	x	1

Block Diagram

Description

Pericom semiconductor's PI3PCIE3422 is an 8 to 4 channel differential multiplexer/demultiplexer featuring 8 -channel passthrough. It supports two full PCIe ${ }^{\circledR}$ lanes at $8.0 \mathrm{Gbps} \mathrm{PCIe}^{\oplus} 3.0$ performance.

With the select control input low Port A connects to Port B, and Port C connects to port D for an 8 -channel differential passthough. When the select control input is high Port A connects to Port D, and Port B and Port C are in a high-impedance state. The mux/demux function is between Port A and Ports B or D as determined by the select input control.

Pin Diagram (Top-side view)

Pin Description

Pin \#	Pin Name	I/O	Description
1 2	$\begin{aligned} & \mathrm{A} 0+ \\ & \mathrm{A} 0- \end{aligned}$	I/O	Signal I/O, Channel 0, Port A
5 6	$\begin{aligned} & \mathrm{A} 1+ \\ & \mathrm{Al}- \end{aligned}$	I/O	Signal I/O, Channel 1, Port A
$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \mathrm{A} 2+ \\ & \mathrm{A} 2- \end{aligned}$	I/O	Signal I/O, Channel 2, Port A
14 15	$\begin{aligned} & \mathrm{A} 3+ \\ & \mathrm{A} 3- \end{aligned}$	I/O	Signal I/O, Channel 3, Port A
$\begin{aligned} & 38 \\ & 37 \end{aligned}$	$\begin{aligned} & \mathrm{B} 0+ \\ & \mathrm{B} 0- \end{aligned}$	I/O	Signal I/O, Channel 0, Port B
$\begin{aligned} & 34 \\ & 33 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1+ \\ & \mathrm{B} 1- \end{aligned}$	I/O	Signal I/O, Channel 1, Port B
$\begin{aligned} & 29 \\ & 28 \end{aligned}$	$\begin{aligned} & \text { B2+ } \\ & \text { B2- } \end{aligned}$	I/O	Signal I/O, Channel 2, Port B
$\begin{aligned} & 25 \\ & 24 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B3+ } \\ \text { B3- } \\ \hline \end{array}$	I/O	Signal I/O, Channel 3, Port B
3 4	$\begin{aligned} & \mathrm{C} 0+ \\ & \mathrm{C} 0- \end{aligned}$	I/O	Signal I/O, Channel 0, Port C
7 8	$\begin{aligned} & \mathrm{C} 1+ \\ & \mathrm{C} 1- \end{aligned}$	I/O	Signal I/O, Channel 1, Port C
$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{C} 2+ \\ & \mathrm{C} 2- \end{aligned}$	I/O	Signal I/O, Channel 2, Port C
16 17	$\begin{aligned} & \mathrm{C} 3+ \\ & \mathrm{C} 3- \end{aligned}$	I/O	Signal I/O, Channel 3, Port C
36 35	$\begin{aligned} & \text { D0+ } \\ & \text { D0- } \end{aligned}$	I/O	Signal I/O, Channel 0, Port D
32 31	$\begin{aligned} & \text { D1+ } \\ & \text { D1- } \end{aligned}$	I/O	Signal I/O, Channel 1, Port D
27 26	$\begin{aligned} & \mathrm{D} 2+ \\ & \mathrm{D} 2- \end{aligned}$	I/O	Signal I/O, Channel 2, Port D
23 22	$\begin{aligned} & \text { D3+ } \\ & \text { D3- } \end{aligned}$	I/O	Signal I/O, Channel 3, Port D
41	OE\#	I	Output Enable, active low. When OE\# = 0 the device I/O is enabled. When OE\#=1, all I/O are high impedance
9	SEL	I	Operation mode Select (when SEL $=0$: $A \rightarrow B, C \rightarrow D$, when SEL=1: $A \rightarrow D, B+C=H i-Z$)
18, 20, 30, 40, 42	V_{DD}	Pwr	$3.3 \mathrm{~V} \pm 10 \%$ Positive Supply Voltage
19, 21, 39, Center Pad	GND	Pwr	Power ground

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +4.6 V
Channel DC Input Voltage	-0.5V to 1.5 V
DC Output Current	120 mA
Power Dissipation	0.5 W
SEL DC Input Voltage	... -0.5 V to 4.6 V

Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_{DD}	3.3 V Power Supply		3.0	3.3	3.6	V
I_{DD}	Total current from V_{DD} $3.3 V$ supply	SEL and OE\# at OV or V_{DD}		0.15	1	mA
$\mathrm{~T}_{\text {CASE }}$	Case temperature range for operation within spec.		-40		85	Celsius

DC Electrical Characteristics for Switching over Operating Range

Parameters	Description	Test Conditions ${ }^{(1)}$	Min	Typ(1)	Max	Units
V_{IH} - SEL	Input HIGH Voltage, SEL input	Guaranteed HIGH level	2		3.6	V
V_{IL} - SEL	Input LOW Voltage, SEL input	Guaranteed LOW level	0		0.8	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\text {IN }}=-18 \mathrm{~mA}$		-0.7	-1.2	
I_{IH}	Input HIGH Current for OE\# and SEL	$\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$	-10		10	$\mu \mathrm{A}$
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$	-10		+10	
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$	-10		+10	
R_{ON}	On Channel Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}}=1.3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{IN}}=40 \mathrm{~mA} \end{aligned}$		8	15	Ohm
C_{ON}	On Channel Capacitance	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0$		2.5		pF
I_{OZ}	Output Current	$\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 1.5 V	-10		+10	$\mu \mathrm{A}$

Note:

1. Typical values are at $\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$ ambient and maximum loading.

Switching Characteristics

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Units
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PZL}}$	Line Enable Time - SEL to $\mathrm{A}_{\mathrm{N}}, \mathrm{B}_{\mathrm{N}}, \mathrm{C}_{\mathrm{N}}, \mathrm{D}_{\mathrm{N}}$		0.5	15	25	ns
$\mathrm{t}_{\mathrm{PHZ}}, \mathrm{t}_{\text {PLZ }}$	Line Disable Time - SEL to $\mathrm{A}_{\mathrm{N}}, \mathrm{B}_{\mathrm{N}}, \mathrm{C}_{\mathrm{N}}, \mathrm{D}_{\mathrm{N}}$		0.5	5	25	
$\mathrm{t}_{\mathrm{b} \text {-b }}$	Bit-to-bit skew within the same differential pair			4	10	ps
$\mathrm{t}_{\mathrm{ch} \text {-ch }}$	Channel-to-channel skew				20	

Dynamic Electrical Characteristics

Parameter	Description	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Units
BW	Bandwidth -3dB			7		GHz
DDIL	Differential Insertion Loss $\left(\mathrm{V}_{\mathrm{IN}}=-10 \mathrm{dBm}, \mathrm{DC}=0 \mathrm{~V}\right)$	$\begin{aligned} & \mathrm{f}=1.25 \mathrm{GHz} \\ & \mathrm{f}=2.5 \mathrm{GHz} \\ & \mathrm{f}=4.0 \mathrm{GHz} \\ & \mathrm{f}=5.0 \mathrm{GHz} \\ & \mathrm{f}=8.0 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & -0.9 \\ & -1.2 \\ & -1.7 \\ & -2.0 \\ & -5.0 \end{aligned}$	$\begin{aligned} & -1.0 \\ & -1.3 \\ & -1.8 \\ & -2.1 \\ & -5.1 \end{aligned}$	dB
$\mathrm{DDIL}_{\text {OFF }}$	Differential Off Isolation	$\mathrm{f}=4.0 \mathrm{GHz}$		-19		dB
DDRL	Differential Return Loss	$\begin{aligned} & \mathrm{f}=0 \text { to } 1.25 \mathrm{GHz} \\ & \mathrm{f}=1.25 \text { to } 2.5 \mathrm{GHz} \\ & \mathrm{f}=2.5 \text { to } 4.0 \mathrm{GHz} \end{aligned}$		$\begin{gathered} -16 \\ -15 \\ -15 \end{gathered}$	$\begin{gathered} -15 \\ -14 \\ -14 \end{gathered}$	dB
DDNEXT	Near End Crosstalk	$\begin{aligned} & \mathrm{f}=0 \text { to } 2.8 \mathrm{GHz} \\ & \mathrm{f}=2.8 \text { to } 5.0 \mathrm{GHz} \\ & \mathrm{f}=5.0 \text { to } 8.0 \mathrm{GHz} \end{aligned}$		$\begin{gathered} -52 \\ -50 \\ -48 \end{gathered}$		dB

Notes:

1. Guaranteed by design. Typical values are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.

Differential Insertion Loss

Differential Return Loss

Differential Off Isolation

Differential Crosstalk

Differential Insertion Loss and Return Test Circuit

8.0 Gbps RX signal eye with PI3PCIE3422

Differential Off Isolation Test Circuit

Differential Near End Xtalk Test Circuit

Test Circuit for Electrical Characteristics ${ }^{(1-5)}$

Notes:

1. $\quad C_{L}=$ Load capacitance: includes jig and probe capacitance.
2. $\quad R_{T}=$ Termination resistance: should be equal to $Z_{O U T}$ of the Pulse Generator
3. Output 1 is for an output with internal conditions such that the output is low except when disabled by the output control. output 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
4. All input impulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{R}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{F}} \leq 2.5 \mathrm{~ns}$.
5. The outputs are measured one at a time with one transition per measurement.

Switch Positions

Test	Switch
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PZL }}$	3.0 V
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PZH }}$	GND
Prop Delay	Open

Switching Waveforms

Output 1

Voltage Waveforms Enable and Disable Times

Packaging Information

12-0529
Note:
For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Description
PI3PCIE3422ZHE	ZH	Pb-free \& Green, 42-contact TQFN

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- "E" denotes Pb-free and Green
- Adding an " X " at the end of the ordering code denotes tape and reel packaging

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 CD4053BPWRG4 ADG658TRUZ-EP FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZ-RL7 ADW54003-0 AD7506JNZ AD7506KNZ AD7506SQ AD8170AR AD8183ARUZ AD8184ANZ AD8185ARUZ AD8187ARUZ AD8188ARUZ AD8189ARUZ ADG1208YRUZREEL7 ADG1409YCPZ-REEL7 ADG5209FBRUZ ADG1408YRUZ-REEL7 ADG659YRUZ-REEL7

